
Finding a Good Global Sequence using Multi-Level Genetic Algorithm

Zeyd S. Alkaaby1 Esraa H. Alwan2 Ahmed B. M. Fanfakh3

zeydsaeed@gmail.com isr.phd@gmail.com afanfakh@gmail.com

Department of Computer science 123
 Collage of science for women

 University of Babylon

Abstract

Trying all the optimization sequences manually to find out a one that give the best performance is

not practical solution. Therefore, it is essential to layout a schema which is able to introduce an

optimization sequence with better performance for a given function.

In this work, multi-levels genetic algorithm has been used to find a good optimal sequence. Our

method has three levels. In the first level, the programs search space is divided into three groups

and try to find a good sequence for each program in group. These good sequences for each program

will be used as initial seed to find good sequence for all programs in that group. This process will

be repeated for all three groups to find good sequence for each one. Then, these good sequences

from three groups will be used as a seed for initial population to the Third level. Genetic algorithm

will use the resulting sequences to find out one good optimal sequence for all these groups. LLVM

compiler framework has been used to validate the proposed method. Experiments that have been

implemented on the generated good sequence for different benchmarks show the effectiveness of

the proposed method. Overall, it achieves better performance compare with the -O2 flag.

I. Introduction

Modern compilers introduce a massive number of optimization passes targeting different code

segments of an application. These optimization passes can transform the code segment which

might be a basic block, a function or the whole program to optimize one (Purini,2013). The

optimization can be applied through the whole life of the program, in another word, at different

compilation stages (Almagor,2004). Although the purpose of optimization is producing better

code (speed or code size), however there is no grantee that the resulting code is doing better than

the original one. Typical optimizer is made up of a set of analysis passes followed by

transformation passes. The analysis passes responsible for collecting information about the

mailto:zeydsaeed@gmail.com
mailto:sr.phd@gmail.com
mailto:afanfakh@gmail.com

