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Abstract 

This study investigated a modern composite material, which is a short geopolymer concrete column (GPCC) reinforced 

by GFRP bars. The structural performances of GPCC subjected to eccentric load were studied and compared to the 

normal strength concrete column (NSCC) reinforced by steel bars. In this study, the primary experimental parameters 

were the reinforcement bars types, load eccentricity, and concrete types. Seven short columns were tested: three normal 

strength concrete columns reinforced by steel bars, three geopolymer concrete columns reinforced by GFRP bars and one 

normal strength concrete column without reinforcement. The model dimensions chosen in the present study was a square 

section of 130×130 mm and a total height of 850 mm. It was shown that the steel bars contribute about 16.47% of 

column capacity under concentric load. Comparing with the normal strength concrete column, a geopolymer concrete 

column reinforced by GFRP bars showed a little increase in ultimate load (5.17%) under concentric load. Under the load 

eccentricity of 130 mm, a geopolymer concrete column reinforced by GFRP bars showed a significant increase in the 

ultimate load (69.37%). Under large eccentricity, a geopolymer concrete column reinforced by GFRP bars has an 

outstanding effect on the columns' ultimate load capacity. Also, the sine form can be utilized for GPCC to find the lateral 

deflection along with the column high at different load values up to the failure. 

Keywords: Geopolymer Concrete; GFRP; Eccentric Load; Short Columns. 

 

1. Introduction 

The columns are more significant members of the structure as their weakness may cause a failure of adjacent 

structural elements leads to the collapse of the whole structure. There are different ways to improve column 

performance such as increasing the durability of the column, preventing the steel corrosion used as columns' 

reinforcement, etc. [1]. In this regard, Glass Fiber Polymer (GFRP) bars and the Geopolymer concrete (GPC) can be 

employed. 

In addition of its corrosion resistant, GFRP as lightweight bars have high tensile strength, big durability, and 

electromagnetic impartiality [2, 3]. Geopolymer concrete (GPC), also called inorganic polymer concrete (IPC), is 

environmentally nonhazardous material which utilizes a geopolymer binder instead of Portland cement (PC). The 

manufacture of (PC) contributes nearly 6.8% of total carbon dioxide quantity [4]. This nearly adds (1600000) milliard 

kilo gram of (CO2) into the environment [5]. Accordingly, this denotes more satisfying to investigate the substitute 

binding by less of emission of CO2 for a concrete product. With this regard, Geopolymer binder can be utilized. The 
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reaction of industrial cinders produces the Geopolymer binder in silica (SiO2) and alumina (Al2O3), like metakaolin, 

fly ash, and ground granulated blast-furnace slag with an alkaline fluid, usually a blend of sodium silicate and the 

solution of sodium hydroxide [6-8]. The components of Geopolymer concrete are fine and coarse aggregates, fly ash, 

blast-furnace slag, sodium silicate, sodium hydroxide solution, water and/or super plasticizer. Geopolymer concrete is 

essentially chemical and fire-resistant, low drying shrinkage, little creep, good thermal stability, excellent resistance of 

acid and sulphate and the best bond with reinforcing steel [9-12]. Additionally, the geopolymer concrete compressive 

strength is either superior or nearer than that of the normal strength concrete of similar quality [13, 14]. 

Several researches investigated the shear performance and flexural performance of steel reinforced geopolymer 

concrete [15, 16], FRP reinforced concrete [17-19] and FRP reinforced geopolymer concrete [20]. Comparatively, a 

small number of researches are existing that studied the performance of columns consisted of these systems [21, 22]. 

Generally, the ACI 440.1R-08 [23] ignores the compression associating of GFRP bars while the CSA S806-12 [24] 

does not recommend utilizing of GFRP bars in columns, due to their low compression strength. Depending on prior 

studies, the compressive strength for GFRP bars is about 30% to 70% of their tensile strength [25]. FIB Bulletin 40 

[26] referred that the association of the steel bars in compression is more than the GFRP bars to carry the ultimate load 

of the concrete column. Based on fifteen 45×25×120 cm3 column specimens, Alsayed et al. [27] noticed that replacing 

the GFRP rebars with an equivalent quantity of steel rebars increased the column capacity by 12%. Based on Tobbi et 

al. [28], at a column’s maximum load, the GFRP rebars compressive strength is 36% of their capability in tension. 

Also, the GFRP rebars' associating was 11% of column capability, which is convergent from that of steel rebars 

(13%). Additionally, they assure the GFRP rebars employing in columns if sufficient confinement is done. Sarker [29] 

studied the performance of columns casted by geopolymer concrete and reinforced by steel rebars. He advised that the 

design provisions of ordinary concrete columns might be utilized for geopolymer concrete columns with use of the 

suitable stress–strain relation. Sreenath et al. [30] studied the suitability of using GFRP bars to reinforce concentrically 

or eccentrically loaded columns. They concluded that GFRP bars are not suitable for reinforcing columns subject to 

concentric or eccentric loads by a small eccentricity. This conclusion was due to the practical results obtained from 

their practical program, which confirms that the yield load, failure load and energy absorption capacity of the 

reinforced columns with GFRP bars are much lower than the reinforced columns with steel bars. Sumajouw et al. [31] 

analyzed the reinforced geopolymer concrete columns' behaviour which is subjected to uniaxial bending and 

concentric load. They suggested the analytical method existed in the codes can be utilized to analyses the reinforced 

geopolymer concrete columns. Mohamed et al. [32] used the finite element method to analyze the reinforced columns 

with GFRP bars casted by geopolymer concrete or ordinary concrete utilizing the ABAQUS program. The reinforced 

column subjected to concentric and eccentric loads. The results obtained from the ABAQUS program were compared 

with the practical results, and a very large convergence between them was found. Minhao et al. [33] investigated the 

structural behavior of eleven air-cured reinforced columns with GFRP bars and made of geopolymer concrete 

subjected to concentric loads. The results showed that the ultimate load of concrete columns reinforced with GFRP 

bars is about 10.8% higher than the ultimate load of concrete columns reinforced with steel bars.                       

The present paper studied the structural performance of the Geopolymer concrete columns reinforced by GFRP 

bars subjected to eccentric load. Results are compared with columns made of ordinary concrete reinforced by steel 

bars. The properties of geopolymer concrete, normal strength concrete, GFRP bar and steel bar were studied. 

Additionally, the effects of the longitudinal bar types, the load eccentricity and the concrete types (normal strength 

concrete and Geopolymer concrete) were investigated on the load- lateral deflection curves, first cracking loads, 

ultimate load, failure modes, crack patterns and concrete strain variation of specimens. 

2. Materials and Methods 

2.1. Materials' Properties  

2.1.1. Normal Strength Concrete and Geopolymer Concrete 

Mix proportions (ACI 211.1-91) [34] was used to design the normal strength concrete (NSC) base on the ACI 

approch. The Geopolymer concrete was made of coarse and fine aggregate, Geopolymer binder, plasticizer and water. 

Table 1 shows the characteristics of the blast-furnace slag and fly ash oxides. The alkaline solution produced from 

dissolved solid sodium hydroxide into the solution of sodium silicate is used in the formation of the Geopolymer 

binder. The ratio of the solution of sodium silicate / solid sodium hydroxide is equal to 1.6. Based on the previous 

studies, thirteen groups of geopolymer binder were tested so as to find the best composition of the mixture. With this 

regard, durability and mechanical properties were examined [35, 36]. The natural sand was utilized as fine aggregate, 

and the gravel (coarse aggregate) was crushed with a maximum aggregate size (MAS) of 12.5 mm. Table 2 and Figure 

1 show distributions of the particle size. Table 3 shows the mix proportions of geopolymer concrete and normal 

strength concrete. ASTM C469-02 [37] and ASTM C39/C39M-05 [38] were utilized to test the static-elastic modulus 

(Ec) and compressive strength of cylinder concrete (fc′) respectively. Each result of static-elastic modulus and 

compressive strength were obtained by the average of two cylinders (150×300 mm) specimens at 28 days. The average  
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static-elastic modulus and compressive strength of the normal strength concrete and the geopolymer concrete were 

24.5 GPa, 27.3 MPa, and 32.9 GPa, 36.2 MPa, respectively.    

Table 1. Characteristics of blast furnace slag and fly ash oxides (wt %) 

Composition BFS Fly ash 

SiO2 31.30 50.13 

CaO 38.11 3.08 

Fe2O3 0.41 5.32 

Al2O3 14.57 30.03 

MgO 9.89 1.14 

K2O 0.34 2.33 

SO3 3.05 1.43 

BaO 0.31 0.04 

Na2O 0.37 0.65 

others 1.27 2.53 

L O I 0.38 3.32 

Table 2. The Particle size distribution of sand and gravel 

Size of sieve (mm) 
Passing (%) 

Sand Gravel 

14 - 100 

10 - 71.8 

4.75 94.7 8.3 

2.36 80.4 - 

1.18 75.3 - 

0.6 61.8 - 

0.3 32.4 - 

0.15 6.6 - 

0.075 1.01 - 

 

Figure 1. Grading curves of used materials 

Table 3. The mix proportions of the normal strength concrete and the Geopolymer concrete (kg/m
3
) 

Concrete type Cement GP binder Water Plasticizer Fine aggregate Coarse aggregate 

NSC 310 - 200 - 840 950 

GPC - 450 136 5.4 610 1247 
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Figure 2. Static-elastic modulus test for geopolymer concrete tested at 28 days 

2.1.2. Steel Reinforcement  

In this study, two types of steel reinforcing rebars were utilized: first, deformed steel rebars of nominal diameter Ø4 

mm as transverse ties and second, deformed steel rebar of nominal diameter Ø12 mm as longitudinal and corbel 

reinforcement (Ukrainian production). Based on ASTM A496-02 [39] requirements, tensile testing was performed on 

three samples, provided from each kind of steel reinforcing rebars. The machine was able to draw the load-

displacement curve using a computer program up to the failure of the sample. Table 4 shows the test results. 

Table 4. Test results of steel and GFRP reinforcing rebars 

Property 
Tensile strength 

(MPa) 

Yield strength 

(MPa) 

Compression strength 

(MPa) 

Tensile modulus of 

elasticity (GPa) 

Compression modulus 

of elasticity (GPa) 

Ø4 mm steel bar 590 408 - 198 - 

Ø12 mm steel bar 610 497 - 205 - 

Ø12 mm GFRP bar 715 - 383 40.5 39.7 

2.1.3. GFRP Reinforcement 

In GFRP column samples, the longitudinal reinforcement is four high-modulus (HM) GFRP bars by diameter (12 

mm), as shown in Figure 3. The GFRP bar was produced using glass fibers saturated by a vinyl ester resin. Over and 

above, sand coated its surface. So, the force transfer and the bond between Geopolymer concrete and bars were 

improved. Measuring the tensile strength according to ASTM D7205M [40], three tensile samples were tested. Up 

until now, due to the fiber micro-buckling, there is no standard technique for measuring the compressive properties of 

GFRP bars. In this regard, three 12 mm GFRP bars, by a free height twice the diameter of bars, were cut as even as 

enabled and were exposed to compression loads.  

 

 

 

 

 

 

 

 

 

Figure 3. Sand coated GFRP bars 

In the compression test, the GFRP bars failed by crushing while there were no buckling. Table 4 represents the 

results of tensile and compressive tests. Based on the compression test, average of the GFRP bars' compressive 

strength was 383 MPa, which was 53.6% of the tensile strength of the bars. This percent ratio of strength was lower 

than that stated by De Luca et al. [41] (55%) for GFRP bars but was like to that determined by Deitz et al. [42] (52%). 

In compression and tension, the study assumed a linear elastic behavior up to the failure of GFRP bars. Moreover, the 

GFRP bar’s modulus of elasticity in tension and compression were like. Prior studies mentioned these assumptions. 
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2.2. Details of Test Samples  

In this study, the primary experimental parameters are longitudinal bar types, load eccentricity and concrete types. 

Two kinds of longitudinal reinforcement GFRP bar and steel bar were chosen. Three eccentricities of 130 mm, 30 mm 

and 0 mm were selected. And, two kinds of normal strength concrete and geopolymer concrete were studied. The test 

sample design details are shown in Figure 4 and Table 5, where "ST" stands for the ordinary steel bar and "GF" refers 

to the GFRP bar.  

The test samples were classified into two types. The first type labeled "NSCC" was consisted of four ordinary 

reinforced concrete columns, except the sample NSCC-0 denotes plain concrete without reinforcement, and served as 

control samples. "GPCC" consisted of three geopolymer concrete columns. For each type, three samples were tested 

under an eccentricity of 0, 30, and 130 mm, respectively. All seven short columns were tested: three normal strength 

concrete columns reinforced by steel bars, three geopolymer concrete columns reinforced by GFRP bars and one 

normal strength concrete column without reinforcement. All columns are identical in size and the nominal dimensions. 

The model dimensions chosen in the present study was a square section of 130×130 mm and a total height of 850 mm. 

The height between corbels is of 450 mm and every corbel head had a length of 200 mm. All samples reinforced by 

longitudinal bars located by symmetrical form. The transverse reinforcement was prepared by rectangular ties Ø 4 mm 

@ 90 mm C/C. The depth of concrete cover was 150 mm. Additional transverse and longitudinal reinforcement was 

prepared in corbel heads to avoid early failures in corbel heads. The reinforcement details and sample layout are 

shown in Figure 5. 

 

 

 

 

 

 

 

 

 

Figure 4. Schematic representation of columns samples 

2.3. Casting and Curing Procedure  

To prevent concrete from sticking to the mould, the inner faces of wooden column moulds were oiled. After that, 

the reinforcement was located in the correct location for each one of column moulds. The samples were cast in a 

mould made from wood with one batch. For geopolymer concrete, gravel and sand were initially mixed for 2.5 minute. 

Then, the geopolymer binder was mixed at the same time with gravel and sand for 3.5 minute followed to a slow 

adding of plasticizer and water. All moulds filled by concrete in a single layer with compaction. After one day, the 

samples were levered from their moulds and then all samples were immersed in a water container for 28 days. Then, 

white coloring used to coat the columns in order to make sure an obvious look of the crack development, and after that 

kept in the laboratory up to testing. 

 

 

 

 

 

 

Under Eccentric Load Under Concentric Load 
GPCC-0-GF)) 

Eccentricity 30 mm 
NSCC-30-ST)) 

Eccentricity 130 mm 
NSCC-130-ST)) 

Eccentricity 30 mm 
GPCC-30-GF)) 

Eccentricity 130 mm 
GPCC-130-GF)) 

Under Eccentric Load Under Concentric Load 

NSCC-0-ST)) 

 

Reinforced by Steel Bars Without Steel Bars under 
Concentric Load   

(NSCC-0) 
 

Reinforced by GFRP Bars 

Geopolymer Concrete Columns Normal Strength Concrete Columns 

Columns Samples 



Civil Engineering Journal         Vol. 6, No. 3, March, 2020 

568 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Reinforcement details and sample layout 

Table 5. Details of the tested column samples 

Samples Longitudinal reinforcement Longitudinal reinforcement ratio ρ % Eccentricity (mm) 

NSCC-0 0 0 0 

NSCC-0-ST ST 4Ø12 2.67 0 

NSCC-30-ST ST 4Ø12 2.67 30 

NSCC-130-ST ST 4Ø12 2.67 130 

GPCC-0-GF GF 4Ø12 2.67 0 

GPCC-30-GF GF 4Ø12 2.67 30 

GPCC-130-GF GF 4Ø12 2.67 130 

2.4. Loading Condition and Test Setup  

The column samples were tested in a testing machine, which has a (670 kN) capability by a hydraulic jack and a 

digital gauge. Two end supports made as hinged links by defined eccentricity. All columns were loaded up to failure. 

The force applied in stages by a loading increase speed of about 5 kN. The major properties of their structural manners 

were tested at each stage of loading through the test of the column samples. The result of test, which were registered 

through the tests, were: the first cracking load besides the ultimate load at failure, concrete strain and lateral 

deflections. In every load stage, notes of crack growth on the concrete column indicated by a deep felt pen. 

Measurements of the lateral deflection were registered at the tension side of the column in midpoint height and at a 

distance of 200 mm below and above midpoint height using three LVDT. The concrete strain was measured by an 

extensometer (strain gage) having a precision (0.002 mm). Five couples of demec discs were utilized at the midpoint 

of column height to measure the concrete strain. The arrangements of LVDT, demec discs and extensometer are 

shown in Figure 6. 
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Figure 6. Arrangement of LVDT, demec discs and extensometer 

3. Experimental Results  

3.1. Load-lateral Deflection Curves  

Lateral deflection measurements at midpoint height were registered up to the ultimate load. Recorded loads and 

lateral deflection at the midpoint height of columns GPCC-30-GF, NSCC-30-ST, GPCC-130-GF, NSCC-130-ST are 

presented in Figure 7. Testing the other columns NSCC-0, GPCC-0-GF, NSCC-0-ST under concentric loading, lateral 

deflection of these columns is equal to zero. 

 

Figure 7.  Load-lateral deflection at the midpoint height of tested columns 

From Figure 7, the load versus lateral deflection curve has three distinctive stages. The first stage is a direct 

segment representing the linear elastic step. The second is a non-linear portion with a notable change of slope showing 

an increase of deflections (elastic-plastic stage). Finally, the third is a non-linear portion but has a minor increase in 

the load with a higher deflection (representing the plastic stage). Due to the higher compressive strength of GPCC, the 

GPCC stiffness reinforced by GFRP bars is more than the NSCC stiffness reinforced by steel bars. For the column 

subjected to loads along with its height, two other LVDTs were located at the lower and upper quartiles about the 

midpoint of height to investigate the lateral deflections increment (Figure 6). Figure 8 shows lateral deflections tested 

along with the height for NSCC and GPCC during different levels of the applied loads. For each one of the samples, 

the lateral deflections are remarkably near for one with others at lower and upper quartiles. For normal strength 

concrete columns, the lateral deflection at an identified location along with the height of the column, δ, is calculated 

applying the sine form, δ = ∆. sin(πx/H), where ∆ defines the maximum lateral deflection at the midpoint of sample 

height, x denotes the vertical distance from the base of the sample and H is the sample height. Figure 8 shows the 

results calculated by the abovementioned equations and experimental results. Results exhibit an extremely high 

closeness for experimental with analytical results. This states that sine form of normal strength concrete columns can 
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utilize to geopolymer concrete columns reinforced by GFRP bars to calculate the lateral deflection along with the 

height of column during different loading stages up to failure. This is consistent with the study of Sarker [29]. 

3.2. First Cracking Load and Ultimate Load  

Table 6 shows the test results for the load corresponding to the first cracking and the ultimate load. From table 6, 

one can see the load corresponding to the first cracking changed from (9.88%) to (60.64%) of ultimate loads. This 

significant variation in the proportions was due to the compressive strength, eccentricity of the load and type of 

longitudinal reinforcement. The columns with a concentric load or small eccentricity were under the compressive 

stress, and therefore, the cracks required a big load to initiate. Nevertheless, the initial cracks of the columns with high 

eccentricity needed a small load to initiate. Based on the experimental results in Table 6, for the NSCC-0-ST sample, 

the steel bars contributed 16.47% of column capacity under an axial load. This is consistent with the study of Tobbi et 

al. [28]. Moreover, the GPC column reinforced by the GFRP bar (GPCC-0-GF) showed a little increase (5.17%) in the 

ultimate load under an axial load. Whereas, it showed a distinct increase (69.37%) under the load eccentricity of 130 

mm. It can note that using the geopolymer concrete column reinforced by the GFRP bar has a significant effect on the 

ultimate load capacity with high eccentricity. All samples of small eccentricity showed a higher ultimate load due to 

their different failure modes. Both of the compressive and tensile longitudinal reinforcement bars and the concrete 

participated in the load-bearing of the sample with small eccentricity. But for the sample with high eccentricity, just 

the tensile longitudinal reinforcement bars, and concrete took part and the column collapsed in tension dominated 

failure. 

  

  

Figure 8. Analytical and the experimental lateral deflection of the tested columns 
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Table 6. Test results of the ultimate load and the first cracking load 

Samples Ultimate load Pu (kN) First crack load Pcr (kN) (Pcr/Pu) % 

NSCC-0 498 302 60.64 

NSCC-0-ST 580 196 33.79 

NSCC-30-ST 345 130 37.68 

NSCC-130-ST 50.6 5 9.88 

GPCC-0-GF 610 290 47.54 

GPCC-30-GF 458 250 54.59 

GPCC-130-GF 85.7 20 23.34 

3.3. Failure Modes and Cracks Pattern  

For the column sample NSCC-0, failure occurred suddenly after reaching the ultimate load. Moreover, the 

columns’ sample NSCC-0-ST and NSCC-30-ST collapsed in a brittle manner because of concrete cleavage and 

simultaneous buckling of the longitudinal reinforcement bars. Also, GPCC-0-GF and GPCC-30-GF samples failure 

happened suddenly in a brittle manner because of concrete crushing and simultaneous rupturing of the longitudinal 

reinforcement bars. This is not consistent with the study of Sreenath et al. [30]. The failure of all the above samples 

can be described as a compressive failure mode. Whereas the failure behavior of the remaining samples (NSCC-130-

ST and GPCC-130-GF) was gradually directed toward the tension region, even the remaining outermost concrete 

crumbled. Consequently, NSCC-130-ST and GPCC-130-GF can be classified as a tension failure mode. The columns 

with concentric load or small eccentricity were under compressive stress and; therefore, the cracks needed a higher 

load to initiate.  Because of stress concentration near the corbels, the cracks appeared firstly in this region. Under high 

eccentricity of loading, as the concrete tensile stress reached the ultimate tensile strength, the first cracks appeared in 

the middle of the column or near it through the tension face. Figure 9 shows a failure and the cracks pattern of all 

samples. 

3.4. Strain of Concrete    

Five couples of demec discs were used at the midpoint of the column height to measure the concrete strain at the 

chosen values of loading. Demec discs calibrated by a supplementary particular ruler. Figure 10 shows the variation of 

concrete strain at the midpoint height of the columns with a load increasing. When comparing the strain of concrete at 

the failure load of the geopolymer concrete column under axial load with the normal strength concrete column, it is 

noted that the strain of the geopolymer concrete column is less by about 50% of the strain of normal strength concrete 

column because the elastic modulus and the compressive strength of the geopolymer concrete is greater than the 

normal strength concrete. Also, it was observed that the concrete strain of the column NSCC-0 is almost the same as 

the column NSCC-0-ST, this indicates that the reinforcement bars have no significant impact on the strain of concrete 

in the columns under axial loads. 

In the initial loading stages of the columns samples NSCC-30-ST, GPCC-30-GF, NSCC-130-ST and GPCC-130-

GF, the strain of concrete on the tension side was little due to the concrete and reinforcement work together to resist 

the tensile deformation. Whereas in the final loading stages, the geopolymer concrete strain on the tensile side was 

much greater than the strain of normal strength concrete due to the modulus of elasticity of the steel bars of the normal 

strength concrete columns much greater than the GFRP bars of geopolymer concrete columns. As for the strain on the 

compression side of the geopolymer concrete columns, it was almost the same in the normal strength concrete 

columns, despite the difference in the load value this is due to the good mechanical properties of the geopolymer 

concrete. Based on Figure 10, there is a pure compression zone for the samples with an axial load such as NSCC-0, 

NSCC-0-ST, and GPCC-0-GF or with small eccentricities such as NSCC-30-ST and GPCC-30-GF. By eccentricity 

increment, the compression zone decreased gradually while the tension zone appeared and developed. With this 

regard, the neutral axis shifted in direction of the compression zone. For all the samples, the changes of concrete 

strains at the midpoint height were wavy linearly or close to linear. For columns having tension and compression 

zones, it became more uniform. 
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Figure 9. Cracks pattern of failure 
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Figure 10. Concrete strain variation at the midpoint height of all tested columns with a load increasing 

4. Conclusions 

 Under an axial load, comparing by the normal strength concrete column reinforced with steel bars, a Geopolymer 

concrete column reinforced by GFRP bars gives some increase in the ultimate load (5.17%).  But, under load 

eccentricity of 130 mm, a Geopolymer concrete column reinforced by GFRP bars gives a distinct increase in the 

ultimate load (69.37%). Thereupon, for the columns with high eccentricity, the geopolymer concrete column 

reinforced by GFRP bars increases the ultimate load capacity.   

 For columns under pure compression, the concrete strain variations at midpoint height show wavy linear 

behavior or close to linear and become more uniform for columns having tension and compression zones.  

 Under an axial load, based on the experimental results, the steel bars contributed about 16.47% at column 

capacity for NSCC-0-ST samples. 

 Under an eccentric load, along with the height of the column, the calculated lateral deflection by the sine 

equation shows a high closeness to the experimental data. Such similarity was observed for all the samples at 

various loading stages until failure identified. With this regard, the above-mentioned equation can be utilized for 

the calculations of the geopolymer concrete columns reinforced by GFRP bars. 

 The stiffness of the GPCC reinforced by the GFRP bars is more than that of NSCC reinforced by steel bars. This 

can be associated with the higher compressive strength of the GPCC than that of the NSCC.  

 Under pure compression, failure of columns occurs suddenly due to cleavage of the concrete and simultaneously, 

rupturing of some longitudinal GFRP bars. With an increase in load eccentricity, the tension area appears and 

develops at the expense of a compression area. With this manner, due to spelling of the concrete cover, sudden 

failure changes to gradual one, (all these types of failure can be classified as compressive failure mode). With 

high eccentricity, gradual expanding the tension area expands gradually and the compression area reduces, even 

the remaining outermost concrete crumbles. 
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