Bivariate Generalized Double Weighted Exponential Distribution

In this article we suggest a bivariate generalized double weighted exponential distribution with discussion some of its properties , such as joint probability density function and its marginal , joint reliability function , the mathematical expectation , the marginal moment generating function and, we use the maximum likelihood method to estimate its parameters.

Keywords

Generalized double weighted exponential distribution, Conditional probability density function, Joint reliability function.

1. Introduction

Abed Al-Kadim and Hantoosh [1] introduced the double weighted distribution and double weighted exponential (DWE) distribution.

So that our object of this article is to display a bivariate generalized double weighted exponential (BGDWE) distribution , which is a special case of the multivariate distributions . Its marginals are generalized double weighted exponential (GDWE) distribution by using the method similar to those used by Marshall and Olkin [2], Sarhan and Balakrishnan [3] defined a new bivariate distribution using generalized distribution and exponential distribution and derived some properties of this new distribution , Al-Khedhairi and El-Gohary [4] presented a class of bivariate Gompertz distributions , Kundu and Gupta [5] proposed the bivariate distribution with generalized gompertz marginals and Davarzani et al. [7] studied the bivariate lifetime geometric distribution in presence of cure fractions.

Plan of the Article:

In this article, we define the BVGDWE distribution and discuss its different properties in Section 2. Section 3 present the reliability analysis. In Section 4 we introduce the mathematical expectation. In Section 5 we derive the marginal moment generating function. Section 6 obtains the parameter estimation using MLE. Finally, a conclusion for the results is given in Section 7.

۱

2. Bivariate Generalized Double Weighted Exponential Distribution

Suppose *Y* is a non-negative random variable with probability density function (PDF), then the double weighted exponential distribution by using probability density function is:

$$f_{DWE}(y) = \frac{[w(y) f(y)] f(y)}{\mu_w} = \frac{w(y) [f(y)]^2}{\mu_w}, y > 0 \text{ and } \mu_w = E[w(y) f(y)] < \infty$$

The first weight is $w(y) = y$ and the second is $f(y)$, where $f(y)$ is probability density function of exponential distribution.

Then

$$f_{DWE}(y;\lambda) = 4\lambda^2 y e^{-2\lambda y}$$
, $y > 0$, $\lambda > 0$ (1)
also the cumulative distribution function is:

(2)

$$F_{DWE}(y;\lambda) = 1 - 2\lambda y e^{-2\lambda y} - e^{-2\lambda y}$$

The univariate GDWE distribution has the following PDF and CDF respectively for y > 0;

$$f_{GDWE}(y;\alpha,\lambda) = 4\alpha\lambda^2 y e^{-2\lambda y} \left(1 - 2\lambda y e^{-2\lambda y} - e^{-2\lambda y}\right)^{\alpha-1}$$
(3)

$$F_{GDWE}(y;\alpha,\lambda) = \left(1 - 2\lambda y e^{-2\lambda y} - e^{-2\lambda y}\right)^{\alpha}$$
(4)

where $\alpha > 0$ and $\lambda > 0$ are the shape and scale parameters respectively. Suppose that $D_1 \sim \text{GDWE}(\alpha_1, \lambda)$, $D_2 \sim \text{GDWE}(\alpha_2, \lambda)$ and $D_3 \sim \text{GDWE}(\alpha_3, \lambda)$ and they are mutually independent. Here ' ~ ' means is distributed GDWE. Define $Y_1 = \max(D_1, D_3)$ and $Y_2 = \max(D_2, D_3)$. Then we say that the bivariate vector (Y_1, Y_2) has a bivariate generalized double weighted exponential distribution with the shape parameters α_1, α_2 and α_3 and the scale parameter λ . We will denote it by BGDWE($\alpha_1, \alpha_2, \alpha_3, \lambda$).

2.1. The Joint Cumulative Distribution Function

We now introduce the joint distribution of random variables Y_1 and Y_2 considered the following theorem of the joint CDF of the BGDWE($\alpha_1, \alpha_2, \alpha_3, \lambda$).

Theorem 2.1. [8] If $(Y_1, Y_2) \sim \text{BGDWE}(\alpha_1, \alpha_2, \alpha_3, \lambda)$, then the joint CDF of (Y_1, Y_2) for $y_1 > 0$, $y_2 > 0$, is:

$$F_{BGDWE}(y_1, y_2) = \left(1 - 2\lambda y_1 e^{-2\lambda y_1} - e^{-2\lambda y_1}\right)^{\alpha_1} \left(1 - 2\lambda y_2 e^{-2\lambda y_2} - e^{-2\lambda y_2}\right)^{\alpha_2} \times \left(1 - 2\lambda t e^{-2\lambda t} - e^{-2\lambda t}\right)^{\alpha_3}$$
(5)

where $t = \min(y_1, y_2)$

Proof.

e
$$F(y_1, y_2) = P(Y_1 \le y_1, Y_2 \le y_2)$$

et $F(y_1, y_2) = P(\max(D_1, D_3) \le y_1, \max(D_2, D_3) \le y_2)$
 $= P(D_1 \le y_1, D_2 \le y_2, D_3 \le \min(y_1, y_2))$

where D_j (j = 1,2,3) are mutually independent, we readily obtain $F_{BGDWE}(y_1, y_2) = P(D_1 \le y_1)P(D_2 \le y_2)P(D_3 \le \min(y_1, y_2))$ $= F_{GDWE}(y_1; \alpha_1, \lambda)F_{GDWE}(y_2; \alpha_2, \lambda)F_{GDWE}(t; \alpha_3, \lambda)$ (6)

Substituting (4) into (6) we obtain (5) which completes the proof of the theorem 2.1.

2.2. The Joint Probability Density Function

Lemma 2.2. If $(Y_1, Y_2) \sim BGDWE(\alpha_1, \alpha_2, \alpha_3, \lambda)$, then the joint PDF of (Y_1, Y_2) for $y_1 > 0, y_2 > 0$, is: $f_{BGDWE}(y_1, y_2) = \begin{cases} f_1(y_1, y_2) & \text{if } 0 < y_1 < y_2 < \infty \\ f_2(y_1, y_2) & \text{if } 0 < y_2 < y_1 < \infty \\ f_3(y, y) & \text{if } 0 < y_1 = y_2 = y < \infty \end{cases}$ where $f_1(y_1, y_2) = f_{GDWE}(y_1; \alpha_1 + \alpha_3, \lambda) f_{GDWE}(y_2; \alpha_2, \lambda)$ $= (\alpha_1 + \alpha_3) 16\lambda^4 y_1 e^{-2\lambda y_1} (1 - 2\lambda y_1 e^{-2\lambda y_1} - e^{-2\lambda y_1})^{\alpha_1 + \alpha_3 - 1} \times \alpha_2 y_2 e^{-2\lambda y_2} (1 - 2\lambda y_2 e^{-2\lambda y_2} - e^{-2\lambda y_2})^{\alpha_2 - 1}$ (8) $f_2(y_1, y_2) = f_{GDWE}(y_1; \alpha_1, \lambda) f_{GDWE}(y_2; \alpha_2 + \alpha_3, \lambda)$ $= \alpha (\alpha_1 + \alpha_3) 16\lambda^4 y_1 e^{-2\lambda y_1} (1 - 2\lambda y_2 e^{-2\lambda y_1} - e^{-2\lambda y_1})^{\alpha_1 - 1}$

$$= \alpha_{1}(\alpha_{2} + \alpha_{3}) 16\lambda^{4} y_{1} e^{-2\lambda y_{1}} (1 - 2\lambda y_{1} e^{-2\lambda y_{1}} - e^{-2\lambda y_{1}})^{\alpha_{1}} + x y_{2} e^{-2\lambda y_{2}} (1 - 2\lambda y_{2} e^{-2\lambda y_{2}} - e^{-2\lambda y_{2}})^{\alpha_{2} + \alpha_{3} - 1}$$
(9)

$$f_{3}(y,y) = \frac{\alpha_{3}}{\alpha_{1}+\alpha_{2}+\alpha_{3}} f_{GDWE}(y;\alpha_{1}+\alpha_{2}+\alpha_{3},\lambda)$$
$$= (\alpha_{3})4\lambda^{2}ye^{-2\lambda y} (1-2\lambda ye^{-2\lambda y}-e^{-2\lambda y})^{\alpha_{1}\alpha_{2}+\alpha_{3}-1}$$
(10)

Proof.

Let us first suppose that $y_1 < y_2$. Then, $F_{BGDWE}(y_1, y_2)$ in (5) will be denoted by $F_1(y_1, y_2)$ and becomes

 $F_1(y_1, y_2) = (1 - 2\lambda y_1 e^{-2\lambda y_1} - e^{-2\lambda y_1})^{\alpha_1 + \alpha_3} (1 - 2\lambda y_2 e^{-2\lambda y_2} - e^{-2\lambda y_2})^{\alpha_2}$ By taking $\frac{\partial^2 F_1(y_1, y_2)}{\partial y_1 \partial y_2} = f_1(y_1, y_2)$, we get equation (8). By the same way we find $f_2(y_1, y_2)$ when $y_2 < y_1$. But $f_3(y, y)$ cannot be derived in a similar way. Using the facts that:

$$\int_{0}^{\infty} \int_{0}^{y_2} f_1(y_1, y_2) \, dy_1 dy_2 + \int_{0}^{\infty} \int_{0}^{y_1} f_2(y_1, y_2) \, dy_2 dy_1 + \int_{0}^{\infty} f_3(y, y) dy = 1$$
(11)
Let

$$T_{1} = \int_{0}^{\infty} \int_{0}^{y_{2}} f_{1}(y_{1}, y_{2}) dy_{1} dy_{2} \quad and \quad T_{2} = \int_{0}^{\infty} \int_{0}^{y_{1}} f_{2}(y_{1}, y_{2}) dy_{2} dy_{1}$$

Then

$$T_{1} = \int_{0}^{\infty} \int_{0}^{y_{2}} (\alpha_{1} + \alpha_{3}) 16\lambda^{4} y_{1} e^{-2\lambda y_{1}} (1 - 2\lambda y_{1} e^{-2\lambda y_{1}} - e^{-2\lambda y_{1}})^{\alpha_{1} + \alpha_{3} - 1} \\ \times \alpha_{2} y_{2} e^{-2\lambda y_{2}} (1 - 2\lambda y_{2} e^{-2\lambda y_{2}} - e^{-2\lambda y_{2}})^{\alpha_{2} - 1} dy_{1} dy_{2} \\ = \int_{0}^{\infty} \alpha_{2} 4\lambda^{2} y_{2} e^{-2\lambda y_{2}} (1 - 2\lambda y_{2} e^{-2\lambda y_{2}} - e^{-2\lambda y_{2}})^{\alpha_{1} + \alpha_{2} + \alpha_{3} - 1} dy_{2}$$
(12)

Similarly

$$T_{2} = \int_{0}^{\infty} \alpha_{1} 4\lambda^{2} y_{1} e^{-2\lambda y_{1}} \left(1 - 2\lambda y_{1} e^{-2\lambda y_{1}} - e^{-2\lambda y_{1}}\right)^{\alpha_{1} + \alpha_{2} + \alpha_{3} - 1} dy_{1}$$
(13)
Pu substituting (12) and (12) in equation (11), we get

By substituting (12) and (13) in equation (11), we get

$$\int_0^\infty f_3(y,y) dy = \int_0^\infty (\alpha_1 + \alpha_2 + \alpha_3) 4\lambda^2 y e^{-2\lambda y} \times (1 - 2\lambda y e^{-2\lambda y} - e^{-2\lambda y})_r^{\alpha_1 + \alpha_2 + \alpha_3 - 1} dy$$

$$-\int_{0}^{\infty} \alpha_{2} 4\lambda^{2} y e^{-2\lambda y} (1 - 2\lambda y e^{-2\lambda y} - e^{-2\lambda y})^{\alpha_{1} + \alpha_{2} + \alpha_{3} - 1} dy$$
$$-\int_{0}^{\infty} \alpha_{1} 4\lambda^{2} y e^{-2\lambda y} (1 - 2\lambda y e^{-2\lambda y} - e^{-2\lambda y})^{\alpha_{1} + \alpha_{2} + \alpha_{3} - 1} dy$$

This is

$$f_3(y,y) = \alpha_3 4\lambda^2 y e^{-2\lambda y} \left(1 - 2\lambda y e^{-2\lambda y} - e^{-2\lambda y}\right)^{\alpha_1 + \alpha_2 + \alpha_3 - 1} \quad \blacksquare \qquad (1 \, \varepsilon)$$

2.3. Marginal Probability Density Function

The following theorem gives the marginal density function of Y_1 and Y_2 .

Theorem 2.3. The marginal probability density functions of Y_i (i = 1,2) is given by

$$f_{Y_i}(y_i) = (\alpha_i + \alpha_3) 4\lambda^2 y_i e^{-2\lambda y_i} (1 - 2\lambda y_i e^{-2\lambda y_i} - e^{-2\lambda y_i})^{\alpha_i + \alpha_3 - 1}$$
(15)
= $f_{GDWE}(y_i; \alpha_i + \alpha_3, \lambda), y_i > 0, (i = 1, 2)$

Proof.

The marginal cumulative distribution function of Y_i , say $F_{Y_i}(y_i)$, written as: $F_{Y_i}(y_i) = P(Y_i \le y_i)$ $= P(\max(D_i, D_3) \le y_i)$

$$= P(D_i \leq y_i, D_3 \leq y_i)$$

and since D_i is independent of D_3 , we simply have

$$F_{Y_i}(y_i) = \left(1 - 2\lambda y_i e^{-2\lambda y_i} - e^{-2\lambda y_i}\right)^{\alpha_i} \left(1 - 2\lambda y_i e^{-2\lambda y_i} - e^{-2\lambda y_i}\right)^{\alpha_3}$$

$$= \left(1 - 2\lambda y_i e^{-2\lambda y_i} - e^{-2\lambda y_i}\right)^{\alpha_i + \alpha_3}$$

$$= F_{GDWE}(y_i; \alpha_i + \alpha_3, \lambda) \quad y_i > 0, i = 1, 2$$
By differentiating w r.t. y_i , we get (15)
$$(16)$$

By differentiating w.r.t. y_i , we get (15).

2.4. Conditional Probability Density Functions

We present the conditional probability density functions of Y_1 and Y_2 by using the marginal probability density functions in the following theorem.

Theorem 2.4. The conditional probability density functions of Y_i , given $Y_j = y_j$ denoted by $f_{ij} = (y_i / y_j)$, $i_j = 1, 2, i \neq j$ is:

denoted by
$$f_{Y_i/Y_j}(y_i/y_j)$$
, $l, j = 1, 2$; $l \neq j$, is:

$$\begin{pmatrix} f_{Y_i/Y_j}^{(1)}(y_i/y_j) & \text{if } y_i < y_j \end{pmatrix}$$

$$f_{Y_i/Y_j}(y_i/y_j) = \begin{cases} f_{Y_i/Y_j}^{(2)}(y_i/y_j) & \text{if } y_j < y_i \\ f_{Y_i/Y_j}^{(3)}(y_i/y_j) & \text{if } y_i = y_j = y \end{cases}$$
(17)

where

$$f_{Y_i/Y_j}^{(1)}(y_i/y_j) = \frac{(\alpha_i + \alpha_3)\alpha_j \, 4\lambda^2 y_i \, e^{-2\lambda y_i} \left(1 - 2\lambda y_i e^{-2\lambda y_i} - e^{-2\lambda y_i}\right)^{\alpha_i + \alpha_3 - 1}}{(\alpha_j + \alpha_3) \left(1 - 2\lambda y_j \, e^{-2\lambda y_j} - e^{-2\lambda y_j}\right)^{\alpha_3}} \tag{18}$$

$$f_{Y_i/Y_j}^{(2)}(y_i/y_j) = \alpha_i 4\lambda^2 y_i e^{-2\lambda y_i} (1 - 2\lambda y_i e^{-2\lambda y_i} - e^{-2\lambda y_i})^{\alpha_i - 1}$$
(19)

and

$$f_{Y_i/Y_j}^{(3)}(y_i/y_j) = \frac{\alpha_3 (1 - 2\lambda y e^{-2\lambda y} - e^{-2\lambda y})^{\alpha_1}}{(\alpha_2 + \alpha_3)}$$
(20)

Proof.

We get (18),(19) and (20), using the joint PDF of (Y_1, Y_2) given in (7) and $f_{Y_i}(y_i)$ in (15) in the following formula :

$$f_{Y_i/Y_j}(y_i/y_j) = \frac{f_{Y_i/Y_j}(y_i/y_j)}{f_{Y_j}(y_j)} , i \neq j = 1,2$$
(21)

3. Reliability Analysis [9]

We discuss some reliability measures , the joint reliability function , joint hazard function and joint reversed hazard function.

3.1. The Joint Reliability Function

In the following Proposition , we find the joint reliability function of Y_1 and Y_2 . **Proposition 3.1.** The joint reliability function of Y_1 and Y_2 is given by:

$$R_{BGDWE}(y_1, y_2) = \begin{cases} R_1(y_1, y_2) & \text{if } y_1 < y_2 \\ R_2(y_1, y_2) & \text{if } y_2 < y_1 \\ R_3(y, y) & \text{if } y_1 = y_2 = y \end{cases}$$
(22)

then

$$R_{1}(y_{1}, y_{2}) = 1 - (1 - 2\lambda y_{1}e^{-2\lambda y_{1}} - e^{-2\lambda y_{1}})^{\alpha_{1} + \alpha_{3}} - (1 - 2\lambda y_{2}e^{-2\lambda y_{2}} - e^{-2\lambda y_{2}})^{\alpha_{2} + \alpha_{3}} + (1 - 2\lambda y_{1}e^{-2\lambda y_{1}} - e^{-2\lambda y_{1}})^{\alpha_{1} + \alpha_{3}} (1 - 2\lambda y_{2}e^{-2\lambda y_{2}} - e^{-2\lambda y_{2}})^{\alpha_{2}} (23)$$

$$R_{2}(y_{1}, y_{2}) = 1 - (1 - 2\lambda y_{1}e^{-2\lambda y_{1}} - e^{-2\lambda y_{1}})^{\alpha_{1} + \alpha_{3}} - (1 - 2\lambda y_{2}e^{-2\lambda y_{2}} - e^{-2\lambda y_{2}})^{\alpha_{2} + \alpha_{3}} + (1 - 2\lambda y_{1}e^{-2\lambda y_{1}} - e^{-2\lambda y_{1}})^{\alpha_{1}} (1 - 2\lambda y_{2}e^{-2\lambda y_{2}} - e^{-2\lambda y_{2}})^{\alpha_{2} + \alpha_{3}} (24)$$

and

$$R_{3}(y,y) = 1 - \left(1 - 2\lambda y e^{-2\lambda y} - e^{-2\lambda y}\right)^{\alpha_{1} + \alpha_{3}} - \left(1 - 2\lambda y e^{-2\lambda y} - e^{-2\lambda y}\right)^{\alpha_{2} + \alpha_{3}} + \left(1 - 2\lambda y e^{-2\lambda y} - e^{-2\lambda y}\right)^{\alpha_{1} + \alpha_{2} + \alpha_{3}}$$
(25)
Proof

The joint reliability function of Y_1 and Y_2 is: $R_{BGDWE}(y_1, y_2) = 1 - \left[F_{Y_1}(y_1) + F_{Y_2}(y_2) - F_{BGDWE}(y_1, y_2)\right]$ (26)substituting from equation (16) and (5) in equation (26), we get $R_{BGDWE}(y_1, y_2) = 1 - (1 - 2\lambda y_1 e^{-2\lambda y_1} - e^{-2\lambda y_1})^{\alpha_1 + \alpha_3}$ $-(1-2\lambda y_2 e^{-2\lambda y_2} - e^{-2\lambda y_2})^{\alpha_2 + \alpha_3}$ + $(1 - 2\lambda y_1 e^{-2\lambda y_1} - e^{-2\lambda y_1})^{\alpha_1} (1 - 2\lambda y_2 e^{-2\lambda y_2} - e^{-2\lambda y_2})^{\alpha_2}$ × $(1 - 2\lambda t e^{-2\lambda t} - e^{-2\lambda t})^{\alpha_3}$ where $t = min(y_1, y_2)$,

if $y_1 < y_2$, we have obtain the expression of given in (23), if $y_2 < y_1$, we have obtain the expression of given in (24) and if $y_1 = y_2 = y$ we have obtain the expression of given in (25).

3.2. Joint Hazard Function

Let (Y_1, Y_2) be two random variables with probability density function $f_{BGDWE}(y_1, y_2)$. defined joint hazard function as:

$$h_{BGDWE}(y_1, y_2) = \frac{f_{BGDWE}(y_1, y_2)}{R_{BGDWE}(y_1, y_2)}$$
(27)

Then , the joint hazard function is:

$$h_{BGDWE}(y_1, y_2) = \begin{cases} h_1(y_1, y_2) & \text{if } y_1 < y_2 \\ h_2(y_1, y_2) & \text{if } y_2 < y_1 \\ h_3(y, y) & \text{if } y_1 = y_2 = y \end{cases}$$
(28)

$$h_1(y_1, y_2) = \frac{f_1(y_1, y_2)}{R_1(y_1, y_2)}$$
(29)

where $f_1(y_1, y_2)$ from equation (8) and $R_1(y_1, y_2)$ from equation (23), *if* $y_2 < y_1$, then

$$h_2(y_1, y_2) = \frac{f_2(y_1, y_2)}{R_2(y_1, y_2)}$$
(30)

where $f_2(y_1, y_2)$ from equation (9) and $R_2(y_1, y_2)$ from equation (24),

if
$$y_1 = y_2 = y$$
, then
 $h_3(y, y) = \frac{f_3(y, y)}{R_3(y, y)}$
(31)

where $f_3(y, y)$ from equation (10) and $R_3(y, y)$ from equation (25).

3.3. Joint Reversed Hazard Function

The joint reversed hazard function is defined as the ratio of the PDF and the corresponding CDF .

1. The joint reversed hazard function of (Y_1, Y_2) is defined as:

$$r_{BGDWE}(y_1, y_2) = \frac{f_{BGDWE}(y_1, y_2)}{F_{BGDWE}(y_1, y_2)}$$
(32)

so that

$$r_{BGDWE}(y_1, y_2) = \begin{cases} r_1(y_1, y_2) & \text{if } y_1 < y_2 \\ r_2(y_1, y_2) & \text{if } y_2 < y_1 \\ r_3(y, y) & \text{if } y_1 = y_2 = y \end{cases}$$
(33)

then

$$r_{1}(y_{1}, y_{2}) = (\alpha_{1} + \alpha_{3}) \alpha_{2} 16\lambda^{4} y_{1} y_{2} e^{-2\lambda(y_{1} + y_{2})} \\ \times \left[(1 - 2\lambda y_{1} e^{-2\lambda y_{1}} - e^{-2\lambda y_{1}}) (1 - 2\lambda y_{2} e^{-2\lambda y_{2}} - e^{-2\lambda y_{2}}) \right]^{-1}$$
(34)

$$r_{2}(y_{1}, y_{2}) = \alpha_{1}(\alpha_{2} + \alpha_{3}) 16\lambda^{4} y_{1} y_{2} e^{-2\lambda(y_{1} + y_{2})} \\ \times \left[\left(1 - 2\lambda y_{1} e^{-2\lambda y_{1}} - e^{-2\lambda y_{1}} \right) \left(1 - 2\lambda y_{2} e^{-2\lambda y_{2}} - e^{-2\lambda y_{2}} \right) \right]^{-1}$$
(35)

and

$$r_{3}(y,y) = \alpha_{3} 4\lambda^{2} y e^{-2\lambda y} \left(1 - 2\lambda y e^{-2\lambda y} - e^{-2\lambda y}\right)^{-1}$$
(36)

2. The gradient vector of the joint reversed hazard function is given by:

$$r(y_{1}, y_{2}) = \left(r_{Y_{1}}(y_{1}), r_{Y_{2}}(y_{2})\right), \text{ where}$$

$$r_{Y_{i}}(y_{i}) = \frac{f_{Y_{i}}(y_{i})}{F_{Y_{i}}(y_{i})} = \frac{\partial}{\partial y_{i}} \ln F_{Y_{i}}(y_{i}) \quad , i = 1, 2 \text{ , then}$$

$$r_{Y_{i}}(y_{i}) = (\alpha_{i} + \alpha_{3}) 4\lambda^{2} y_{i} e^{-2\lambda y_{i}} \left(1 - 2\lambda y_{i} e^{-2\lambda y_{i}} - e^{-2\lambda y_{i}}\right)^{-1}, i = 1, 2$$
(38)

4. The Mathematical Expectation

In the following Proposition, we can derive the mathematical expectation of Y_i , (i = 1, 2).

Proposition 4.1. If $Y_i \sim \text{GDWE}(\alpha_i + \alpha_3, \lambda)$, then the r^{th} moment of Y_i as following: $E(Y_i^r) = (\alpha_i + \alpha_3) \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} (-1)^{\alpha_i + \alpha_3 - 1 - j + k} {\alpha_i + \alpha_3 - 1 \choose j} {j \choose k} (2\lambda)^{2+k}$

$$\times \frac{\Gamma(r+k+2)}{(2\lambda\alpha_i+2\lambda\alpha_3-2\lambda_j+2\lambda_k)^{(r+k+2)}} , i = 1,2$$
(39)

Proof.

$$E(Y_i^r) = \int_0^\infty y_i^r f_{Y_i}(y_i) \, dy_i$$

= $\int_0^\infty (\alpha_i + \alpha_3) \, 4\lambda^2 y_i^{r+1} \, e^{-2\lambda y_i} \left(\left(1 - 2\lambda y_i e^{-2\lambda y_i} \right) - e^{-2\lambda y_i} \right)^{\alpha_i + \alpha_3 - 1} \, dy_i$
Since $0 < \left(\left(1 - 2\lambda y_i e^{-2\lambda y_i} \right) - e^{-2\lambda y_i} \right) < 1$ for $y_i > 0$, then by using the

binomial series expansion we have /

$$\left(\left(1-2\lambda y_{i}e^{-2\lambda y_{i}}\right)-e^{-2\lambda y_{i}}\right)^{\alpha_{i}+\alpha_{3}-1}=\sum_{j=0}^{\infty}\left(1-2\lambda y_{i}e^{-2\lambda y_{i}}\right)^{j}\times\left(-1\right)^{\alpha_{i}+\alpha_{3}-1-j}\begin{pmatrix}\alpha_{i}+\alpha_{3}-1\\j\end{pmatrix}\left(e^{-2\lambda y_{i}}\right)^{\alpha_{i}+\alpha_{3}-1-j}\qquad(40)$$

also
$$\left(1-2\lambda y_{i}e^{-2\lambda y_{i}}\right)^{j}=\sum_{k=0}^{\infty}\left(-1\right)^{k}\binom{j}{k}\left(2\lambda y_{i}e^{-2\lambda y_{i}}\right)^{k}\qquad(41)$$

(41)

also

$$\begin{split} E(Y_i^r) &= (\alpha_i + \alpha_3) \ 4\lambda^2 \int_0^\infty y_i^{r+1} \ e^{-2\lambda y_i} \sum_{j=0}^\infty \ (-1)^{\alpha_i + \alpha_3 - 1 - j} \binom{\alpha_i + \alpha_3 - 1}{j} \\ &\times \left(e^{-2\lambda y} \right)^{\alpha_i + \alpha_3 - 1 - j} \sum_{k=0}^\infty (-1)^k \binom{j}{k} \left(2\lambda y_i e^{-2\lambda y_i} \right)^k dy_i \\ &= (\alpha_i + \alpha_3) \sum_{j=0}^\infty \sum_{k=0}^\infty \ (-1)^{\alpha_i + \alpha_3 - 1 - j + k} \ \binom{\alpha_i + \alpha_3 - 1}{j} \binom{j}{k} (2\lambda)^{2 + k} \\ &\times \int_0^\infty y_i^{r+1 + k} \ e^{-(2\lambda \alpha_i + 2\lambda \alpha_3 - 2\lambda j + 2\lambda k) y_i} \ dy_i \end{split}$$

$$E(Y_i^r) = (\alpha_i + \alpha_3) \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} (-1)^{\alpha_i + \alpha_3 - 1 - j + k} {\alpha_i + \alpha_3 - 1 \choose j} {j \choose k} (2\lambda)^{2+k}$$

$$\times \frac{\Gamma(r+k+2)}{(2\lambda\alpha_i+2\lambda\alpha_3-2\lambda j+2\lambda k)^{(r+k+2)}}$$

Then the r^{th} moment of Y_i is:

$$E(Y_i^r) = (\alpha_i + \alpha_3) \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} (-1)^{\alpha_i + \alpha_3 - 1 - j + k} {\alpha_i + \alpha_3 - 1 \choose j} {j \choose k} (2\lambda)^{2+k}$$
$$\times \frac{\Gamma(r+k+2)}{(2\lambda\alpha_i + 2\lambda\alpha_3 - 2\lambda j + 2\lambda k)^{(r+k+2)}} , i = 1,2$$

5. The Marginal Moment Generating Function

We find the marginal moment generating function of Y_i , (i = 1,2) in the following lemma

Lemma 5.1. If $Y_i \sim \text{GDWE}(\alpha_i + \alpha_3, \lambda)$, then the marginal moment generating function of Y_i , (i = 1,2) as following:

$$M_{Y_{i}}(t_{i}) = (\alpha_{i} + \alpha_{3}) \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \sum_{r=0}^{\infty} (-1)^{\alpha_{i} + \alpha_{3} - 1 - j + k} {\alpha_{i} + \alpha_{3} - 1 \choose j} {j \choose k} (2\lambda)^{2 + k}$$
$$\times \frac{t_{i}^{r} \Gamma(r + k + 2)}{r! (2\lambda \alpha_{i} + 2\lambda \alpha_{3} - 2\lambda j + 2\lambda k)^{(r + k + 2)}} , i = 1,2$$
(42)

Proof.

$$\begin{split} M_{Y_{i}}(t_{i}) &= E(e^{t_{i}y_{i}}) \\ &= \int_{0}^{\infty} e^{t_{i}y_{i}} f_{Y_{i}}(y_{i}) dy_{i} \\ &= \sum_{r=0}^{\infty} \frac{t_{i}^{r}}{r!} \int_{0}^{\infty} y_{i}^{r} f_{Y_{i}}(y_{i}) dy_{i} \\ &= \sum_{r=0}^{\infty} \frac{t_{i}^{r}}{r!} E(Y_{i}^{r}) \\ &= (\alpha_{i} + \alpha_{3}) \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \sum_{r=0}^{\infty} (-1)^{\alpha_{i} + \alpha_{3} - 1 - j + k} {\alpha_{i} + \alpha_{3} - 1} {j \choose k} (2\lambda)^{2 + k} \\ &\times \frac{t_{i}^{r} \Gamma(r + k + 2)}{r! (2\lambda\alpha_{i} + 2\lambda\alpha_{3} - 2\lambda j + 2\lambda k)^{(r + k + 2)}} , i = 1,2 \end{split}$$

6. Maximum Likelihood Estimation

To estimate the unknown parameters of the BGDWE distribution , we use the method of maximum likelihood estimators (MLEs) .

Let $((Y_{11}, Y_{21}), (Y_{12}, Y_{22}), \dots, (Y_{1n}, Y_{2n}))$ is a random sample from BGDWE $(\alpha_1, \alpha_2, \alpha_3, \lambda)$, where

$$n_1 = (i; Y_{1i} < Y_{2i}), n_2 = (i; Y_{1i} > Y_{2i}), n_3 = (i; Y_{1i} = Y_{2i} = Y_i), n = \sum_{k=1}^{3} n_k$$
 (43)

By using the equations (8), (9),(10) and (43), we find that the likelihood of the sample as following:

sample as following: $l(\alpha_1, \alpha_2, \alpha_3, \lambda) = \prod_{i=1}^{n_1} f_1(y_{1i}, y_{2i}) \prod_{i=1}^{n_2} f_2(y_{1i}, y_{2i}) \prod_{i=1}^{n_3} f_3(y_i, y_i)$ The log-likelihood function becomes:

$$L(\alpha_{1}, \alpha_{2}, \alpha_{3}, \lambda) = n_{1}ln(\alpha_{1} + \alpha_{3}) + n_{1}\ln(4) + 2n_{1}ln(\lambda) + \sum_{i=1}^{n_{1}} ln(y_{1i})$$

$$-2\lambda \sum_{i=1}^{n_{1}} (y_{1i}) + (\alpha_{1} + \alpha_{3} - 1)$$

$$\times \sum_{i=1}^{n_{1}} ln(1 - 2\lambda y_{1i} e^{-2\lambda y_{1i}} - e^{-2\lambda y_{1i}}) + n_{1}\ln(\alpha_{2}) + n_{1}\ln(4)$$

$$+2n_{1}ln(\lambda) + \sum_{i=1}^{n_{1}} ln(y_{2i}) - 2\lambda \sum_{i=1}^{n_{1}} (y_{2i}) + (\alpha_{2} - 1)$$

$$\times \sum_{i=1}^{n_{1}} ln(1 - 2\lambda y_{2i} e^{-2\lambda y_{2i}} - e^{-2\lambda y_{2i}}) + n_{2}\ln(\alpha_{1}) + n_{2}\ln(4)$$

$$+2n_{2}ln(\lambda) + \sum_{i=1}^{n_{2}} ln(y_{1i}) - 2\lambda \sum_{i=1}^{n_{2}} (y_{1i}) + (\alpha_{1} - 1)$$

$$\times \sum_{i=1}^{n_{2}} ln(1 - 2\lambda y_{1i} e^{-2\lambda y_{1i}} - e^{-2\lambda y_{1i}}) + n_{2}\ln(\alpha_{2} + \alpha_{3})$$

$$+n_{2}\ln(4) + 2n_{2}ln(\lambda) + \sum_{i=1}^{n_{2}} ln(y_{2i}) - 2\lambda \sum_{i=1}^{n_{2}} (y_{2i})$$

$$+(\alpha_{2} + \alpha_{3} - 1) \sum_{i=1}^{n_{2}} ln(1 - 2\lambda y_{2i} e^{-2\lambda y_{2i}} - e^{-2\lambda y_{2i}}) + n_{3}ln(\alpha_{3})$$

$$+n_{3}ln(4) + 2n_{3}ln(\lambda) + \sum_{i=1}^{n_{3}} ln(y_{i}) - 2\lambda \sum_{i=1}^{n_{3}} (y_{i})$$

$$+(\alpha_{1} + \alpha_{2} + \alpha_{3} - 1) \sum_{i=1}^{n_{1}} ln(1 - 2\lambda y_{i} e^{-2\lambda y_{i}} - e^{-2\lambda y_{i}})$$
(44)

Taking the first partial derivatives of (44) with respect to $\alpha_1, \alpha_2, \alpha_3$ and λ , and setting the results equal zero:

$$\begin{aligned} \frac{\partial L}{\partial \alpha_{1}} &= \frac{n_{1}}{(\alpha_{1} + \alpha_{3})} + \sum_{i=1}^{n_{1}} ln(1 - 2\lambda y_{1i} e^{-2\lambda y_{1i}} - e^{-2\lambda y_{1i}}) + \frac{n_{2}}{\alpha_{1}} \\ &+ \sum_{i=1}^{n_{2}} ln(1 - 2\lambda y_{1i} e^{-2\lambda y_{1i}} - e^{-2\lambda y_{1i}}) + \sum_{i=1}^{n_{1}} ln(1 - 2\lambda y_{i} e^{-2\lambda y_{i}} - e^{-2\lambda y_{i}}) (45) \\ \frac{\partial L}{\partial \alpha_{2}} &= \frac{n_{1}}{\alpha_{2}} + \sum_{i=1}^{n_{1}} ln(1 - 2\lambda y_{2i} e^{-2\lambda y_{2i}} - e^{-2\lambda y_{2i}}) + \frac{n_{2}}{(\alpha_{2} + \alpha_{3})} \\ &+ \sum_{i=1}^{n_{3}} ln(1 - 2\lambda y_{2i} e^{-2\lambda y_{2i}} - e^{-2\lambda y_{2i}}) + \sum_{i=1}^{n_{1}} ln(1 - 2\lambda y_{i} e^{-2\lambda y_{i}} - e^{-2\lambda y_{i}}) (46) \\ \frac{\partial L}{\partial \alpha_{3}} &= \frac{n_{1}}{(\alpha_{1} + \alpha_{3})} + \sum_{i=1}^{n_{1}} ln(1 - 2\lambda y_{1i} e^{-2\lambda y_{1i}} - e^{-2\lambda y_{1i}}) + \frac{n_{2}}{(\alpha_{2} + \alpha_{3})} \\ &+ \sum_{i=1}^{n_{1}} ln(1 - 2\lambda y_{2i} e^{-2\lambda y_{2i}} - e^{-2\lambda y_{2i}}) + \frac{n_{3}}{\alpha_{3}} \\ &+ \sum_{i=1}^{n_{1}} ln(1 - 2\lambda y_{2i} e^{-2\lambda y_{2i}} - e^{-2\lambda y_{2i}}) + \frac{n_{3}}{\alpha_{3}} \\ &+ \sum_{i=1}^{n_{1}} ln(1 - 2\lambda y_{2i} e^{-2\lambda y_{2i}} - e^{-2\lambda y_{2i}}) + \frac{n_{3}}{\alpha_{3}} \\ &+ \sum_{i=1}^{n_{1}} ln(1 - 2\lambda y_{i} e^{-2\lambda y_{i}} - e^{-2\lambda y_{i}}) \\ &- 2\sum_{i=1}^{n_{1}} (y_{2i}) + (\alpha_{2} - 1)\sum_{i=1}^{n_{1}} \frac{4\lambda (y_{2i})^{2} e^{-2\lambda y_{2i}}}{(1 - 2\lambda y_{2i} e^{-2\lambda y_{2i}} - e^{-2\lambda y_{2i}})} + \frac{4n_{2}}{\lambda} - 2\sum_{i=1}^{n_{2}} (y_{1i}) \\ &+ (\alpha_{1} - 1)\sum_{i=1}^{n_{2}} \frac{4\lambda (y_{1i})^{2} e^{-2\lambda y_{1i}}}{(1 - 2\lambda y_{1i} e^{-2\lambda y_{1i}} - e^{-2\lambda y_{2i}})} + \frac{2n_{3}}{\lambda} - 2\sum_{i=1}^{n_{1}} (y_{i}) \end{aligned}$$

$$+(\alpha_{1}+\alpha_{2}+\alpha_{3}-1)\sum_{i=1}^{n_{3}} \frac{4\lambda(y_{i})^{2} e^{-2\lambda y_{i}}}{(1-2\lambda y_{i} e^{-2\lambda y_{i}}-e^{-2\lambda y_{i}})}$$
(48)

These equations cannot easy to solve , but numerically by using the statistical software , to get the MLEs of the unknown parameters.

7. Conclusion

This article introduced the bivariate generalized double weighted exponential distribution whose marginals are generalized double weighted exponential distribution. Some statistical properties of this distribution . It is observed that the MLEs of the unknown parameters can be obtained by solving four non-linear equations using numerical technique.

References

- [1] Al-Kadim, K., Hantoosh, A. F., 2013. Double Weighted Distribution and Double Weighted Exponential Distribution. Mathematical Theory and Modeling, vol. 3, no. 5, 124-134.
- [2] Marshall, A. W., Olkin, I. A., 1967. A multivariate exponential distribution. Journal of the American Statistical Association, 62, 30-44.
- [3] Sarhan, A. M., Balakrishnan, N., 2007. A new class of bivariate distributions and its mixture. Journal of Multivariate Analysis, 98, 1508 1527.
- [4] Al-Khedhairi, A., El-Gohary, A., 2008. A New Class of Bivariate Gompertz Distributions and its mixture. Journal of Math. Analysis, vol.2, no. 5, 235 253.
- [5] Kundu, D., Gupta, R. D., 2009. Bivariate generalized exponential distribution. Journal of Multivariate Analysis, vol. 100, 581-593.
- [6] El-Sherpieny, E. A., Ibrahim, S. A., Bedar, R. E., 2013. A New Bivariate Distribution with Generalized Gompertz Marginals. Asian Journal of Applied Sciences, vol. 01, Issue. 04, 140-150.
- [7] Davarzani, N., Achcar, J. A., Smirnov, E. N., Ralf, R., 2015. Bivariate lifetime geometric distribution in presence of cure fractions. Journal of Date Sciences, 13, 755-770.
- [8] Roozegar, R., Jafari, A. A., 2015. On Bivariate Exponentiated Extended Weibull Family of Distributions. <u>http://arxiv.org/pdf/1507.07535.pdf</u>.
- [9] El-Damcese, M. A., Mustafa, A., Eliwa, M. S. Bivariate Exponentiated Generalized Weibull-Gompertz Distribution. <u>http://arxiv.org/pdf/1501.02241.pdf</u>.

الخلاصة

في هذا البحث نقترح التوزيع الاسي الموزون المضاعف المععم للمتغيرين مع مناقشة بعض خواصة ، مثل دالة الكثافة الاحتمالية المشتركة والهامشية ، دالة الموثوقية المشتركة ، التوقع الرياضي ، الدالة المولدة للعزوم الهامشية وفي النهاية ، نستخدم طريقة الامكان الاعظم لتقدير معلماته.

الكلمات المفتاحية

التوزيع الاسي الموزون المضاعف المععم ، دالة الكثافة الاحتمالية الشرطية ، دالة الموثوقية المشتركة ، مقدرات الامكان الاعظم .