
SESSION

WORLDCOMP/GCA KEYNOTES

Chair(s)

TBA

Int'l Conf. Grid Computing and Applications | GCA'10 | 1

2 Int'l Conf. Grid Computing and Applications | GCA'10 |

WORLDCOMP/GCA Keynote:
Computing With Words and Perceptions—A Paradigm Shift

Lotfi A. Zadeh*

There are many misconceptions about what Computing with Words (CW) is and what it
has to offer. A common misconception is that CW is closely related to natural language
processing. In reality, this is not the case. More importantly, at this juncture what is widely
unrecognized is that moving from computation with numbers to computation with words has the
potential for evolving into a basic paradigm shift—a paradigm shift which would open the door
to a wide-ranging enlargement of the role of natural languages in scientific theories.

In essence, CW is a system of computation which adds to traditional systems of
computation two important capabilities: (a) the capability to precisiate the meaning of words and
propositions drawn from natural language; and (b) the capability to reason and compute with
precisiated words and propositions.

As a system of computation, a CW-based model, or simply CW-model, has three
principal components. (a) A question, Q, of the form: What is the value of a variable, Y? (b) An
information set, I=(p1, ..., pn), where the pi, i=(1, ..., n), are propositions which individually or
collectively are carriers of information about the value of Y, that is, are question-relevant. One or
more of the pi may be drawn from world knowledge. A proposition, pi, plays the role of an
assignment statement which assigns a value, vi, to a variable, Xi, in pi. Equivalently, pi may be
viewed as an answer to the question: What is the value of Xi? Xi and vi, may be explicit or
implicit. A proposition, pi, may be unconditional or conditional, expressed as an if-then rule.
Basically, an assignment statement constrains the values which Xi is allowed to take. To place
this in evidence, Xi and vi are referred to as the constrained variable and the constraining
relation, respectively. More concretely, what this implies is that the meaning of a proposition, p,
may be represented as a generalized constraint, X isr R, in which X is the constrained variable, R
is the constraining relation and r defines the modality of the constraint, that is, the way in which
R constrains X. When vi is a word or a combination of words, Xi is referred to as a linguistic
variable, with vi being its linguistic value. When it is helpful to stress that pi assigns a value to a
variable, pi is referred to as a valuation. Correspondently, the information set, I, is referred to as a
valuation system, V.

The third component is an aggregation function, f, which relates Y to the Xi.

Y=f(X1, ..., Xn)

* Department of EECS, University of California, Berkeley, CA 94720-1776; Telephone: 510-642-4959; Fax: 510-
642-1712; E-Mail: zadeh@eecs.berkeley.edu. Research supported in part by ONR N00014-02-1-0294, BT Grant
CT1080028046, Omron Grant, Tekes Grant, Chevron Texaco Grant and the BISC Program of UC Berkeley.

Int'l Conf. Grid Computing and Applications | GCA'10 | 3

mailto:zadeh@eecs.berkeley.edu

The principal difference between CW and conventional systems of computation is that
CW allows inclusion in the information set, I, of propositions expressed in a natural language,
that is, linguistic valuations. Legalization of linguistic valuations has important
implications. First, it greatly enhances the capability of computational methodologies to deal
with imperfect information, that is, information which in one or more respects is imprecise,
uncertain, incomplete, unreliable, vague or partially true. In realistic settings, such information is
the norm rather than exception. Second, in cases in which there is a tolerance for imprecision,
linguistic valuations serve to exploit the tolerance for imprecision through the use of words in
place of numbers. And third, linguistic valuations are close to human reasoning and thus
facilitate the design of systems which have a high level of machine intelligence, that is, high
level of MIQ (machine IQ).

What does Computing with Words have to offer? The answer rests on two important
tools which are provided by the machinery of fuzzy logic. The first tool is a formalism for mm-
precisiation of propositions expressed in a natural language through representation of the
meaning of a proposition as a generalized constraint of the form X isr R, where as noted earlier
X is the constrained variable, R is the constraining relation and r is the modality of the constraint
(Zadeh 1986).

The second tool is a formalism for computing with mm-precisiated propositions through
propagation and counterpropagation of generalized constraints. The principal rule governing
constraint propagation is the Extension Principle (Zadeh 1965, 1975). In combination, these two
tools provide an effective formalism for computation with information described in a natural
language. And it is these tools that serve as a basis for legalization of linguistic valuations.

What is important to note is that the machinery of fuzzy if-then rules—a machinery
which is employed in almost all applications of fuzzy logic—is a part of the conceptual structure
of CW.

Biographical Note
Professor Lotfi A. Zadeh

LOTFI A. ZADEH is a Professor in the Graduate School, Computer Science Division, Department of EECS,
University of California, Berkeley. In addition, he is serving as the Director of BISC (Berkeley Initiative in Soft
Computing).

Lotfi Zadeh is an alumnus of the University of Tehran, MIT and Columbia University. He held visiting
appointments at the Institute for Advanced Study, Princeton, NJ; MIT, Cambridge, MA; IBM Research Laboratory,
San Jose, CA; AI Center, SRI International, Menlo Park, CA; and the Center for the Study of Language and
Information, Stanford University. His earlier work was concerned in the main with systems analysis, decision
analysis and information systems. His current research is focused on fuzzy logic, computing with words and soft
computing, which is a coalition of fuzzy logic, neurocomputing, evolutionary computing, probabilistic computing
and parts of machine learning.

4 Int'l Conf. Grid Computing and Applications | GCA'10 |

http://www-bisc.cs.berkeley.edu/zadeh/papers/1986-CWW.pdf
http://www-bisc.cs.berkeley.edu/zadeh/papers/Fuzzy%20Sets-1965.pdf
http://www-bisc.cs.berkeley.edu/zadeh/papers/The%20Concept%20of%20a%20Linguistic%20Variable%20and%20its%20Applications%20to%20Approximate%20Reasoning%20III-1975.pdf

Lotfi Zadeh is a Fellow of the IEEE, AAAS, ACM, AAAI, and IFSA. He is a member of the National Academy of
Engineering and a Foreign Member of the Russian Academy of Natural Sciences, the Finnish Academy of Sciences,
the Polish Academy of Sciences, Korean Academy of Science & Technology and the Bulgarian Academy of
Sciences. He is a recipient of the IEEE Education Medal, the IEEE Richard W. Hamming Medal, the IEEE Medal of
Honor, the ASME Rufus Oldenburger Medal, the B. Bolzano Medal of the Czech Academy of Sciences, the Kampe
de Feriet Medal, the AACC Richard E. Bellman Control Heritage Award, the Grigore Moisil Prize, the Honda Prize,
the Okawa Prize, the AIM Information Science Award, the IEEE-SMC J. P. Wohl Career Achievement Award, the
SOFT Scientific Contribution Memorial Award of the Japan Society for Fuzzy Theory, the IEEE Millennium Medal,
the ACM 2001 Allen Newell Award, the Norbert Wiener Award of the IEEE Systems, Man and Cybernetics
Society, Civitate Honoris Causa by Budapest Tech (BT) Polytechnical Institution, Budapest, Hungary, the V.
Kaufmann Prize, International Association for Fuzzy-Set Management and Economy (SIGEF), the Nicolaus
Copernicus Medal of the Polish Academy of Sciences, the J. Keith Brimacombe IPMM Award, the Silicon Valley
Engineering Hall of Fame, the Heinz Nixdorf MuseumsForum Wall of Fame, other awards and twenty-six honorary
doctorates. He has published extensively on a wide variety of subjects relating to the conception, design and analysis
of information/intelligent systems, and is serving on the editorial boards of over sixty journals.

Professor in the Graduate School, Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720 -1776
Director, Berkeley Initiative in Soft Computing (BISC)

Int'l Conf. Grid Computing and Applications | GCA'10 | 5

WORLDCOMP/GCA Keynote: Cloud Computing - The Next Revolution in
Information Technology

Professor Dr. Rajkumar Buyya,

Director of CLOUDS Lab, The University of Melbourne, Australia
CEO, Manjrasoft Pvt Ltd, Melbourne, Australia

Recipient of the 2009 IEEE Medal for Excellence in Scalable Computing

Abstract:

Computing is being transformed to a model consisting of services that are commoditised and delivered in a
manner similar to utilities such as water, electricity, gas, and telephony. In such a model, users access services
based on their requirements without regard to where the services are hosted. Several computing paradigms have
promised to deliver this utility computing vision and they include Grid computing, P2P computing, and more
recently Cloud computing. The latter term denotes the infrastructure as a “Cloud” in which businesses and users
are able to access applications from anywhere in the world on demand. Cloud computing delivers infrastructure,
platform, and software (application) as services, which are made available as subscription-based services in a
pay-as-you-go model to consumers. These services in industry are respectively referred to as Infrastructure as a
Service (Iaas), Platform as a Service (PaaS), and Software as a Service (SaaS). To realize Cloud computing
potential, vendors such as Amazon, Google, Microsoft, and IBM are starting to create and deploy Clouds in
various locations around the world. In addition, companies with global operations require faster response time,
and thus save time by distributing workload requests to multiple Clouds in various locations at the same time.
This creates the need for establishing a computing atmosphere for dynamically interconnecting and provisioning
Clouds from multiple domains within and across enterprises. There are many challenges involved in creating
such Clouds and Cloud interconnections.

This keynote (1) presents the 21st century vision of computing and identifies various IT paradigms promising to
deliver the vision of computing utilities; (2) defines the architecture for creating market-oriented Clouds and
computing atmosphere by leveraging technologies such as VMs; (3) provides thoughts on market-based
resource management strategies that encompass both customer-driven service management and computational
risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our
new Cloud Computing initiative, called Cloudbus: (i) Aneka, a software system for providing PaaS within
private or public Clouds and supporting market-oriented resource management, (ii) internetworking of Clouds
for dynamic creation of federated computing environments for scaling of elastic applications, (iii) creation of
3rd party Cloud brokering services for content delivery network and e-Science applications and their
deployment on capabilities of IaaS providers such as Amazon and Nirvanix along with Grid mashups, and (iv)
CloudSim supporting modelling and simulation of Clouds for performance studies; and (5) concludes with the
need for convergence of competing IT paradigms for delivering our 21st century vision along with pathways for
future research.

About the speaker:

Dr. Rajkumar Buyya is Professor of Computer Science and Software Engineering; and Director of the Cloud
Computing and Distributed Systems (CLOUDS) Laboratory at the University of Melbourne, Australia. He is
also serving as the founding CEO of Manjrasoft Pty Ltd., a spin-off company of the University, commercialising
its innovations in Grid and Cloud Computing. He has authored and published over 300 research papers and four
text books. The books on emerging topics that Dr. Buyya edited include, High Performance Cluster Computing
(Prentice Hall, USA, 1999), Content Delivery Networks (Springer, Germany, 2008) and Market-Oriented Grid
and Utility Computing (Wiley, USA, 2009). He is one of the highly cited authors in computer science and

6 Int'l Conf. Grid Computing and Applications | GCA'10 |

software engineering worldwide (h-index=46, g-index=98, 11000+ citations).

Dr. Buyya has contributed to the creation of high-performance computing and communication system software
for Indian PARAM supercomputers. He has pioneered Economic Paradigm for Service-Oriented Distributed
Computing and developed key Grid and Cloud Computing technologies such as Gridbus and Aneka that power
the emerging e-Science and e-Business applications. Software technologies for Grid and Cloud computing
developed under Dr. Buyya's leadership have gained rapid acceptance and are in use at several academic
institutions and commercial enterprises in 40 countries around the world.

Dr. Buyya has led the establishment and development of key community activities, including serving as
foundation Chair of the IEEE Technical Committee on Scalable Computing and four IEEE conferences
(CCGrid, Cluster, Grid, and e-Science). He has presented over 200 invited talks on his vision on IT Futures and
advanced computing technologies at international conferences and institutions in Asia, Australia, Europe, North
America, and South America. These contributions and international research leadership of Dr. Buyya are
recognised through the award of "2009 IEEE Medal for Excellence in Scalable Computing" from the IEEE
Computer Society, USA. For further information on Dr. Buyya, please visit his cyberhome: www.buyya.com.

Int'l Conf. Grid Computing and Applications | GCA'10 | 7

http://www.buyya.com/

8 Int'l Conf. Grid Computing and Applications | GCA'10 |

SESSION

GRID SERVICES, SCHEDULING, AND RESOURCE
MANAGEMENT + RELATED ISSUES

Chair(s)

TBA

Int'l Conf. Grid Computing and Applications | GCA'10 | 9

10 Int'l Conf. Grid Computing and Applications | GCA'10 |

Novel Mechanism for evaluating feedback in the Grid
Environment on resource allocation

V.Vijayakumar1, R.S.D.Wahida Banu2, and J. H. Abawajy3

1PhD Research Scholar, Faculty of Information and Communication Engineering,

Anna University, Chennai, Tamilnadu, India
2PhD Research Supervisor, Faculty of Information and Communication Engineering,

Anna University, Chennai, Tamilnadu, India
3Pervasive Computing and Networks Research Director, Faculty of Science and Technology,

Deakin University, Geelong, Victoria, Australia

Abstract

 The primary concern in proffering an
infrastructure for general purpose computational grids
formation is security. Grid implementations have been
devised to deal with the security concerns. The chief
factors that can be problematic in the secured selection of
grid resources are the wide range of selection and the
high degree of strangeness. Moreover, the lack of a
higher degree of confidence relationship is likely to
prevent efficient resource allocation and utilization. In
this paper, we propose an efficient approach for the
secured selection of grid resources, so as to achieve
secure execution of the jobs. The presented approach
utilizes trust and reputation for securely selecting the grid
resources by also evaluating user’s feedback on the basis
of the feedback already available about the entities. The
proposed approach is scalable for an increased number
of resources.

Index Terms: Security, Resource Selection, Trust,
Self-Protection Capability, Reputation, Feedback
Evaluation.

1. Introduction

 The latest developments in wide-area network
performance have facilitated the emergence of grid
computing as a practical archetype to satisfy the growing
demand for computation power that could not be fulfilled
with the aid of the internal resources of a single
organization [14]. The objective to distribute processing
resources amidst several organizations in order to resolve
large scale problems has resulted in the introduction of
computational grids [1, 2]. Grids have developed into
widespread platforms for high-performance and resource-
intensive applications due to the reason that they
encompass vast potential of capabilities that can assist
large distributed applications [15].

 The apprehensive sharing is not primarily file
exchange, rather direct access to computers, software,
data and other resources that are essential for diverse
collaborative problem-solving and resource-brokering
strategies emerging in industry, science and engineering
[31]. A range of phenomena including (a) geographical
allocation of resources, (b) resource heterogeneity, (c)
autonomously managed grid domains comprising of their
own resource policies and practices, and (d) Grid domains
employing diverse access and cost models, generate huge
challenges for resource management in grid systems.

 Resource and security assurance are the two
fundamental requirements of Grid applications [29], [30].
The solid problems underneath the grid concept include
coordinated resource sharing and problem resolving in
dynamic, multi-institutional virtual organizations [19].
Infected grid resources can probably wreck the
applications running on the same grid platform via the
malicious codes designed by intruders

 At present, security is integrated in the grid
toolkits (e.g. the Globus toolkit [21]) employed at the
provider sites (parties that provide resources for use in the
grid). Secure channels, authentication [32], unsupervised
login, delegation, and resource usage [31] are all
administered by the toolkit. However, these mechanisms
do not offer security of the grid user (the person or entity
who desires to utilize resources). The user is forced to
trust the provider without confirming the justification of
the trust [20]. Users submit jobs to far-off resources and
generally have no clear authority over the resources
themselves. Therefore, mutually the users and resources
can be considered as independent agents, possessing
control of their own behavior. The independence causes
an increase in intrinsic insecurity owing to the fact that an
individual is not capable of predicting the response of
another to varying situations. It is essential that the grid
service providers proffer guaranteed security, privacy
protection, and dependable accessibility of all Grid-
enabling platforms [30].

Int'l Conf. Grid Computing and Applications | GCA'10 | 11

 This paper discusses a novel approach for
selecting grid resources on the basis of trust and
reputation, to execute the jobs in a secured manner. Our
earlier researches [12], [13] and [16] have been extended
with a novel and effective approach presented for
evaluating user’s feedback. The chief objective of this
research is to develop an approach that is capable of
availing trust and reputation based security for Grid
resource selection towards scheduling large number of
independent and indivisible jobs. The proposed approach
performs the scheduling of the incoming jobs in
accordance with the computed Trust Factor value. The
feedback from user communities and the feedback
received from other entities in the Grid are employed in
determining an entity’s reputation weightage which in
turn is utilized along with Self-protection capability to
compute the entity’s Trust Factor (TF) value. The
ability of an entity to handle intrusions, viruses,
unauthorized access and secured file storage are denoted
as self protection capability of that site. The reputation
mechanisms provide a way for building trust through
social control using community based feedback about past
experiences of entities. Besides, a novel approach is
proposed for evaluating user’s feedback. The feedback
given by a user about an entity is evaluated on the basis of
the aggregated feedback available about that entity.

 The rest of the paper is organized as follows: In
Section 2, a concise review of the recent researches
related to the proposed approach is presented. An
overview of Trust and Reputation in the context of Grid
computing is provided in Section 3. The proposed
efficient approach for secured Grid resource selection and
the devised novel approach for evaluating user’s feedback
are explained in Section 4 and Section 5 concludes the
paper.

2. Review of related Researches

 A brief review of some of the literature dealing
with trust management and reputation-based security
mechanisms for improving the performance of grid
computing are given below which serve as the motivation
behind the proposed work.

 A formal definition of both trust and
reputation was presented and a model for
incorporating trust into Grid systems was discussed by
Farag Azzedin and Muthucumaru Maheswaran [3]. An
overview of an open source Grid toolkit known as Grid
bus, the architecture of which is fundamentally driven by
the requirements of Grid economy was carried out by
Rajkumar Buyya and Srikumar Venugopal [4]. Grid bus
technologies proffer services for both computational and
data grids that control the budding eScience and

eBusiness applications. A self-regulating system for P2P
network that works on robust reputation mechanism was
proposed by Ernesto Damiani et al. [10]. They realized
reputation sharing with the aid of the distributed polling
algorithm. A general-purpose resource selection
framework was put forth by Chuang Liu et al. [11] they
have defined a resource selection service for positioning
Grid resources that conform to application requirements
and evaluated them on basis of specified performance
model and mapping strategies, and returned an
appropriate collection of resources, if any were present.

 Abawajy et al. [17] have proposed an approach
that makes use of credit score and reputation score to
manage creditworthiness and trustworthiness of the
Grid Service Customer (GSC) and Grid Service
Provider (GSP) respectively. A Bayesian network-based
trust model and a method for building reputation based on
recommendations in peer-to-peer networks was put forth
by Yao Wang and Julita Vassileva [9]. Sepandar D.
Kamvar et al. [23] proposed a reputation management
system known as Eigen Trust, which was capable of
effectively decreasing the number of downloads of
inauthentic files in a P2P system. The reputation value of
every peer is calculated with the aid of the number of
successful downloads and the “opinions” of other peers.

 A novel fuzzy-logic trust model for securing
Grid computing across multiple resources sites was
devised by Shanshan Song and Kai Hwang [5]. They built
a novel Grid security scheme known as SARAH
supported by encrypted channels amid private networks.
Justin R.D. Dyson et al. [22] illustrated a trust framework
model for Grid computing that facilitates users to
implement their jobs on reliable and efficient resources,
thus fulfilling clients’ quality-of-service (QoS)
requirements.

 A reputation-based trust supporting framework
that encompasses a coherent adaptive trust model for
quantifying and comparing the trustworthiness of peers on
basis of a transaction-based feedback system and a
decentralized implementation of such a model over a
structured P2P network was illustrated by Li Xiong and
Ling Liu [24]. A brief review of the contemporary state of
Globus was carried out by Ian Foster [21]. The spotlight
was on those features of the GT4 release that should
sound interesting to those aspiring to work with the
software. A trust brokering system which operates in a
peer-to-peer fashion was proposed by Farag Azzedin and
Muthucumaru Maheswaran [25]. They built a security-
aware model involving resource providers and the
consumers that segregates the concepts of accuracy and
honesty. A novel fuzzy-logic trust model for securing
Grid resources was put forth by Shanshan Song et al. [26].

12 Int'l Conf. Grid Computing and Applications | GCA'10 |

They have as well built a SeGO scheduler that aids in
trusted Grid resource allocation.

 Chunqi Tian et al. [27] presented the ARTrust—
an Attack Resistant Trust management model which is a
novel recommendation on basis of trust model for P2P
networks. A trust model used to compute and compare the
trustworthiness of entities in the same autonomous and
different domains was proposed by Baolin Ma et al. [28].
This model proffers various methods to handle the
problems of users and related resources belonging to the
identical or diverse domains. Nadia Ranaldo and Eugenio
Zimeo [18] put forth a framework for brokering of Grid
resources, virtualized through web Services where in a
dynamically configuration is possible with respect to
multiple syntactic and semantic description languages and
related matching strategies. Zhiguo Shi et al. [19]
described a novel anonymous coordination authentication
scenario capable of providing efficient and reliable
anonymous identity authentication and remote platform
attestation for Grid computing systems. Lohr et al. [20]
illustrated an approach to improve the Grid security with
the aid of a combination of trusted computing and
virtualization technologies.

3. Trust and Reputation

 This section comprehends a prologue of trust and
reputation in the context of Grid Computing.

3.1 Trust

 Trust is not a black and white substance. Often,
there exists a grey area in conveying the trustworthiness
of a computer site [5]. Like the human relationships, trust
is as well denoted by a linguistics term rather numerically.
The definition of trust as given by Farag Azzedin and
Muthucumaru Maheswaran [3] is as follows:

 Trust is the firm belief in the competence of an
entity to act as expected, such that, the firm belief is not a
fixed value associated with the entity but rather it is
subject to entity’s behavior and applies only within a
specific context at a given time.

 The firm belief can be defined as a dynamic
value which is found to span over a set of values varying
from very trustworthy to very untrustworthy. The trust
factor is developed on the basis of earlier experiences and
is provided for a particular context. The trust factor is
associated with a given time instance, as the trust level
involving two entities is not essentially the same for today
when compared to a year ago.

3.2 Reputation

 Reputation is defined as a measure of
trustworthiness in the sense of reliability. Reputation
systems [6] proffer a scheme for creating trust through
social control devoid of trusting third parties. By means of
community based feedback about past experiences of
entities; reputation mechanisms offer a scheme for
building trust through social control. This aids in arriving
at suggestions and judgment on quality and consistency of
the transactions [7]. According to Farag Azzedin and
Muthucumaru Maheswaran [3], reputation of an entity is
defined as an expectation of its behavior based on other
entities’ observations or information about the entity’s
past behavior at a given time.

4. Secured Resource Selection for
Scheduling Jobs

 This section fine points the proposed approach
for resource selection deliberated for secure scheduling of
independent and individual jobs to grid sites. The wide
range of resources and the strangeness of entities serve
as difficulties during the process of resource selection.
Owing to the fact that a high-proficient society is not
capable of getting along with a high-trustworthy social
relationship, it is impossible to attain efficient resource
sharing in Grid without certain trust relationship core. It is
possible for entities to rely on other entities for the
information regarding a particular entity while arriving at
trust based decisions. This can be achieved by a
reputation mechanism. With due concern over the
aforesaid conditions, we have proposed an approach by
incorporating both trust and reputation.

 The proposed approach aims for secure
scheduling of incoming jobs to the available resource sites
based on the Trust Factor value. The Trust Factor (TF)
value of each resource site is determined with the aid
of its self-protection capability and reputation
weightage acquired from user community regarding its
past behavior. There are two essential postulations that
are made: (a) all resource sites have prior agreements to
participate in the Grid operations; and (b) the Grid sites
truthfully report their self- protection capability to Grid
organization manager (GOM). Selfish Grids [8] have not
been dealt with, in the proposed scheme.

4.1 Self-Protection capability

 The self-protection capability of the entities in a
grid organization is determined by the grid organization
manager. Now and then, every entity reports its self-
protection capability trustfully and truthfully to the GOM.

Int'l Conf. Grid Computing and Applications | GCA'10 | 13

 An aggregation of the values of the security
factors given below is employed in determining the self-
protection capability of an entity. The value of these
factors differs in the range between 0 and 1.

 Based on the security, a weightage is allocated to
all the security factors and at the final point is aggregated
to calculate the self-protection capability. Table 1
provides the weightage allocated to security factors.

TABLE 1. Weightage of Security Factors

Security Factors Weightage (W)
IDS Capabilities 0.825
Anti-virus Capabilities 0.85
Firewall Capabilities 0.9
Authentication Mechanism 0.8
Secured File Storage Capabilities 0.7
Interoperability 0.6
Secured Job Execution 0.75
Authorization Mechanism 0.87

 The self-protection capability is calculated using
the following formula

 ∑

=

=
n

i

iAiWSPC
1

)(*)((1)

 where, n is the total number of factors, W is the
weightage and A (i) is the value of the factor.

4.2 Reputation Computation

 Given that, reputation is a versatile concept [9],
there are numerous aspects in it, for instance truthfulness,
honesty and the like. The reputation weightage of an
entity is determined on the basis of the feedback provided
by both the user community and other entities in the
grid, regarding the entity’s security characteristics and
their previous experiences. On completion of a job, the
user will offer feedback on the attributes to the Reputation
manager (RM) according to their experience. Similarly,
the entities in the grid provide feedback to the RM on a
timely basis. The value of feedback lies in the range
between 0 and 1. The feedback given by the users and the
entities are aggregated and employed in the proposed
approach. In addition, an effective approach for assessing
the feedback given by the user is presented. The
reputation weightage is determined by using the algorithm
given in section 4.2.1. The RM in grid organization
contains the reputation weightage of every entity.

4.2.1 Algorithm for Reputation weightage
calculation

 The aggregated feedback of all the security
attributes of an entity is denoted in the form of a
Reputation Vector (RV),

],........,,[21 nv SASASAR =

 where n is the total number of security attributes.

 The aggregated feedback of all the entities in the
Grid domain is represented as a Reputation Matrix (RM)
given as follows. Every row in RM denotes the reputation
vector (RV) of an entity.

=

iji

j

j

M

SASA

SASA

SASA

R

......SA SA

......SA SA

.......SA SA

i3i21

2232221

1131211

 where i denote the number of entities and j
denotes the number of attributes.

 The reputation weightage of each entity is
determined by considering its relativity with other entities
in the Grid domain through the construction of a relativity
matrix. The relativity matrix is formed as follows.

=

),(),(E),(E),(E

),(),(E),(E),(

),(),(E),(E),(

),(E),(E),(E),(E

 Re

3i2i1i

3332313

2322212

1312111

ii

i

i

i

Mat

EEEEE

EEEEEE

EEEEEE

EEEE

l

ϕϕϕϕ

ϕϕϕϕ
ϕϕϕϕ
ϕϕϕϕ

LL

MMMM

LL

LL

LL

 where i is the number of entities and

),(ba EEϕ denotes the relativity between the entities aE

and bE . The relativity between two entities aE and bE

is determined by correlating the security attributes of that
entities. Equation (2) is used to determine the relativity
between the securities attributes of the two entities:

=

<

>

=

nm

nm

nm

nm

AA

AA

AA

AA

 ,5.0

 , 0

 , 1

),(1ϕ (2)

14 Int'l Conf. Grid Computing and Applications | GCA'10 |

 Subsequently, the relativity between the entities
),(ba EEϕ is computed using the following equation

(3).

()
j

AA
EE

j

f
Ef)(Ef

ba

ba
∑
== 1

)(1 ,
),(

ϕ
ϕ (3)

 Ultimately the reputation weightage is
determined with the aid of the following equation (4).

∑
=

=
n

b
baa EEERW

1

),()(ϕ (4)

 A greater value of RW signifies that the entity
has a better reputation and a smaller value denotes that the
entity has a minimal reputation.

4.3. Trust Factor calculation and Resource
selection

 The trust factor (TF) of every entity is
determined by means of the self – protection Capability
(SPC) and Reputation Weigtage (RW) computed in the
above sections, by employing the following equation.

)()()(aaa ERWE SPCE TF += (5)

 The following algorithm is employed in the

selection of the resource for the secured execution of
incoming jobs.

 Initially, the Trust Factor (TF) is computed for

all the entities in the grid. Then, the calculated TF values
are sorted in descending order along with the index.
Finally, based on the sorted index values, the jobs are
allocated to the respective entities.

i to 1h for =
 GOM from SPCObtain
 RM fromRW Obtain
 TF Calculate
end

)(],[TFDescSortIndSTF =

N to 0k for =

kJ job to[Ind[k]] Entity Allocate

end

 where N is the total number of jobs.

4.4 Novel approach for User's feedback
evaluation

 Once the job ends, the users will be impelled to
supply a feedback about the entity that consummates their
job. If the user is not a trusted person, the feedback given
by the user may be wrong. Sometimes, by fault, the users
may enter immoral values. The above factors affect the
calculation of the entities’ reputation weightage and are
likely to result in wrong selection of resources for
job execution. This has necessitated the need for
evaluating user’s feedback before taking it into
consideration.

 The feedback values of an entity given by the
users are evaluated based on the aggregated feedback
available for that entity. If the current feedback given by
the user deviates from the existing feedback, the
current feedback values are not taken into
consideration. Moreover, the users are prompted to check
the feedback values given by them. The steps in the novel
approach proposed for evaluating the user’s feedback are
described below.

 The existing feedback values and the current
feedback provided by the user are denoted as follows:

 Existing feedback,] [321 fnfffF EEEEE L=

 Current feedback,]C [321 fnfffF CCCC L=

 where n = 10

 Initially, the mean FE of the existing feedback

values (FE) is computed using the following equation
(6).

 ∑
=

=
n

i

iF
F n

E
E

1

)(
 (6)

 The individual values in the current feedback

(FC) are subtracted from the mean value (FE) to

obtain FEC . The above process is stated in equation (7).

 (7)

 The deviated values in the current feedback FC ,
provided by the user, are identified by the following steps.
Initially, a correlation matrix MC is formed for FEC as
follows:

)(][)(iFFF CEabsEC −<<

Int'l Conf. Grid Computing and Applications | GCA'10 | 15

=

ijiii

j

j

j

j

M

dddd

dddd

dddd

dddd

dddd

C

L

M

L

L

L

L

210

3323130

2222120

1121110

0020100

where ())()(jFiFij ECECabsd −=

 Afterwards, the value pairs in the correlation
matrix MC , for which the difference is greater than a

threshold value are selected and represented as pS . The

threshold value is computed by multiplying the mean

value FEC with 2. The aforesaid procedure is
formulated in equations (8) and (9).

2×= FECThresh (8)

)}(:),{(zpyxS p = (9)

where ThreshCzp

ijM >=)(

 Finally, the frequent value in the formed set
Sp is chosen and the feedback value corresponding to
it is identified as the deviated value. If any deviated value
is identified, the users are prompted to check the values
given by them. On the basis of the user’s response, the
feedback is either considered or discarded.

5. Conclusion

 The proficient utilization of Grid computing
facilities vitally necessitates highly sophisticated and
secured resource management systems. Moreover,
accessing and sharing of resources necessitate the
assurance of high trustworthiness as an inevitable factor.
Reputation mechanisms provide a way for creating trust
through social control with the assistance of feedback
concerning the past experiences. In this paper, we have
proposed an efficient approach for the selection of the
appropriate resource for the secured execution of the job.
Security for the resource selection procedure is offered by
the proposed approach by combining trust and reputation.
We have presented a novel approach for evaluating the
feedback provided by the users. The approach proposed
has been proved to be efficient in choosing a secured
entity from a pool of available ones.

References

[1]F.Berman,G. Fox and T. Hey (eds.), Grid Computing:
Making the Global Infrastructure a Reality. Wiley, 2003.
[2] M. Cosnard and A. Merzky, “Meta- and Grid-
Computing”, in Proceedings of the 8th International Euro-
Par Conference, August 2002, pp. 861–862.
[3] Farag Azzedin, Muthucumaru Maheswaran,
"Towards Trust-Aware Resource Management in Grid
Computing Systems," ccgrid, p. 452, 2nd IEEE/ACM
International Symposium on Cluster Computing and the
Grid (CCGRID'02), 2002.
[4] R. Buyya and S. Venugopal, The Grid bus Toolkit for
Service Oriented Grid and Utility Computing: An
Overview and Status Report, Proceedings of the First
IEEE International Workshop on Grid Economics and
Business Models (GECON), 2004.
[5] Shanshan Song and Kai Hwang, Dynamic Grid
Security with Trust Integration and Optimized Resource
Allocation, Internet and Grid Computing Laboratory,
University of Southern California, Los Angeles, CA.
90089 USA.
[6] R. A. Malaga. Web-based reputation management
systems: Problems and suggested solutions. Electronic
Commerce Research, 1(4), 2001.
[7] P. Resnick, R. Zeckhauser, E. Friedman, and K.
Kuwabara. Reputation Systems. Communications of the
ACM, 43(12), December 2000: 45–48.
[8] Y.-K. Kwok, S. Song and K. Hwang, “Selfish Grid
Computing: Game-Theoretic Modeling and NAS
Performance Results”, in Proceedings of CCGrid 2005,
Cardiff, UK, May 2005.
[9] Yao Wang and Julita Vassileva: Trust and
Reputation Model in Peer-to-Peer Networks. In
Proceedings of the 3rd IEEE International Conference on
Peer-to-Peer Computing. Linkǒping: IEEE Computer
Society (2003), 150–158.
[10] E. Damiani, S. De Capitani di Vimercati, S.
Paraboschi, P. Samarati and F. Violante, “A Reputation-
Based Approach for Choosing Reliable Resources in
Peer-to-Peer Networks”, in Proceedings of ACM CCS
2002.
[11] C. Liu, L. Yang, I. Foster and D. Angulo, “Design
and Evaluation of a Resource Selection Framework for
Grid Applications”, in Proceedings of HPDC-11, 2002.
[12] Vijayakumar, V. And Wahidha Banu, R. S. D.,
"Trust and Reputation Aware Security for Resource
Selection in Grid Computing," International
Conference on Security Technology (SECTECH '08), pp:
121-124, Dec 13-15, 2008.
[13] V.Vijayakumar and R.S.D.Wahida Banu, "Security
for Resource Selection in Grid Computing Based On
Trust and Reputation Responsiveness", International
Journal of Computer Science and Network Security
(IJCSNS), Vol.8, No.11, pp. 107-115, November 2008.

16 Int'l Conf. Grid Computing and Applications | GCA'10 |

[14] Foster, I., Kesselman, C., Nick, J., Tuecke, and S.:
The Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration.
Technical Report, Open Grid Service Infrastructure WG,
Global Grid Forum, 2002.
[15] Pautasso, C., Alonso, G.: Parallel Computing
Patterns for Grid Workflows. In: the HPDC2006
Workshop on Workflows in Support of Large-Scale
Science. France, 2006.
[16] V.Vijayakumar and R.S.D.Wahida Banu, "Secured
Resource Selection in Grid Computing: Trust and
Reputation Sentient Scheme", Communications in
Computer and Information Science (CCIS), Vol. 27,
Springer, 2009.
[17] J. H. Abawajy and A. M. Goscinski, "A Reputation-
Based Grid Information Service ," Lecture Notes in
Computer Science (LNCS), Springer, Vol. 3994/2006, pp.
1015-1022, 2006.
[18] Nadia Ranaldo, Eugenio Zimeo. A Framework for
QoS-based Resource Brokering in Grid Computing. In 5th
IEEE ECOWS, the 2nd Workshop on Emerging Web
Services Technology, Halle, Germany, 2007.
[19] Zhiguo Shi, Yeping He, Xiaoyong Huai, Hong
Zhang. Identity Anonymity for Grid Computing
Coordination based on Trusted Computing. Proceedings
of the Sixth International
Conference on Grid and Cooperative Computing. pp.403-
410, 2007.
[20] Lohr, H. Ramasamy, H. V. Sadeghi, A.-R. Schulz, S.
Schunter, M. Stuble, C., Enhancing Grid Security Using
Trusted Virtualization, Lecture Notes in Computer
Science, pp. 372-384, Springer, 2007.
[21] I. Foster. Globus toolkit version 4: Software for
service-oriented systems. In Proc. of the IFIP
International Conference on Network and Parallel
Computing, 2005.
[22] J. R. D. Dyson, N. Griffiths, H. N. Lim Choi Jeung,
S. A. Jarvis, and G. R. Nudd, Trusting Agents for Grid
Computing, in Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics (SMC
2004), pp. 3187-3192, IEEE Press, October 2004.
[23] S.D. Kamvar, M.T. Schlosser and H. Garcia-Molina,
“The Eigentrust Algorithm for Reputation Management in
P2P Networks”, in Proceedings of ACM WWW 2003.
[24] L. Xiong and L. Liu, “PeerTrust: Supporting
Reputation-based Trust to P2P E-Communities”, IEEE
Trans. Knowledge and Data Engineering, July 2004, pp.
843–857.
[25] F. Azzedin and M. Maheswaran, “A Trust Brokering
System and Its Application to Resource Management in
Public- Resource Grids”, in Proceedings of IPDPS 2004.
[26] S. Song, K. Hwang and M. Macwan, “Fuzzy Trust
Integration for Security Enforcement in Grid Computing”,
in Proceedings of IFIP International Conf. on Network
and Parallel Computing, (NPC-2004), Wuhan, China,
October 18–20, 2004, pp. 9–21.

[27] Chunqi Tian, Shihong Zou, Wendong Wang,
Shiduan Cheng, An Efficient Attack-Resistant Trust
Model for P2P Networks, IJCSNS, Vol. 6 No. 11 pp.
251-258, 2006.
[28] Baolin Ma, Jizhou Sun, Ce Yu, Reputation-based
Trust Model in Grid Security System, Journal of
Communication and Computer, Volume 3, No.8 (Serial
No.21), 2006.
[29] F. Berman, R. Wolski, H. Casanova, W. Cirne, H.
Dail, M. Faerman, S. Figueira, J. Hayes, G. Obertelli, J.
Schopf, G. Shao, S. Smallen, N. Spring, A. Su and D.
Zagorodnov, “Adaptive Computing on the Grid Using
AppLeS”, IEEE Trans. on Parallel and Distributed
Systems, Vol. 14, April 2003.
[30] V.Welch, F. Siebenlist, I. Foster, J. Bresnahan, K.
Czajkowski, J. Gawor, C. Kesselman, S.Meder, L.
Pearlman and S. Tuecke, “Security for Grid Services”, in
Proceedings of the HPDC-12, 2003.
[31] Foster, I., Kesselman, C., Tsudik, G. and Tuecke, S.
A Security Architecture for Computational Grids. ACM
Conference on Computers and Security, 1998, pp: 83-91.
[32] J. Basney, W. Nejdl, D. Olmedilla, V. Welch, and M.
Winslett. Negotiating trust on the grid. In 2nd Workshop
on Semantics in P2P and Grid Computing, New York,
May 2004.

Int'l Conf. Grid Computing and Applications | GCA'10 | 17

A Min-Min-based Job Scheduling Algorithm for Fault-
Tolerant Large Scale Computational Grid Systems

Chao-Chin Wu, Lien-Fu Lai, and Jia-Xian Lai

Department of Computer Science and Information Engineering
National Changhua University of Education, Changhua City, Taiwan, R.O.C.

Abstract - Previously, we proposed a security-aware genetic
algorithm for job scheduling to address the problem of the
heterogeneity of fault-tolerance mechanisms in a
computational grid, where the risk nature of the grid
environment is also taken into account. This paper proposes a
new job scheduling algorithm having the following features.
The algorithm is Min-Min based rather than genetic
algorithm. The fault-tolerance mechanisms considered are the
retry, the migration without checkpointing, the migration with
checkpointing and the replication mechanisms. In the new
algorithm, each computational node supports all four
mechanisms. The access to the storage node for data input is
modeled in the new algorithm, which is ignored in the
previous algorithm. Simulation results show that the security-
aware Min-Min-based algorithm outperforms the original
Min-Min and the sufferage algorithms. The proposed
algorithm can reduce not only the makespan but also the
failures.

Keywords: Min-Min, job scheduling, security aware, fault
tolerance, grid system.

1 Introduction
 A computational grid is a hardware and software
infrastructure that pro-vides dependable, consistent, pervasive,
and inexpensive access to high-end computational
capabilities [1]. However, a large-scale grid system is
inherently unreliable by nature. The jobs are subject to
system failures or delays caused by infected hardware,
software vulnerability, network failure, overloaded resource
conditions, non-availability of required software components,
and distrusted security policy. To address these problems, a
variety of fault-tolerance mechanisms and supports have been
proposed for Grid systems [2-5].
 Despite the fact that many heuristics have been
suggested for large-scale job scheduling [6-10], as pointed
out by Song et al. [11], they are not applicable in a risky
environment. Therefore, Song et al. developed security
assurance and risk-resilient strategies and proposed eight job-
scheduling algorithms for use under various risky conditions
to address these problems. Their proposed security-assured
job scheduling strategies consider the risk relationship

between jobs and nodes using the security demand (SD) and
the trust level (TL).

 Although Song et al. proposed eight job-scheduling
algorithms for use under various risky conditions [11, 12], all
of these algorithms ignore the heterogeneity of fault-tolerance
mechanisms supported in grid systems, where the scheduler
assumes that all computational nodes adopt the same fault-
tolerance strategy. In fact, different computational nodes are
usually protected by different fault-tolerance mechanisms
because distributed computational nodes are managed by
different autonomous domains in a realistic large-scale
computational grid. In such a grid environment, all the job
scheduling algorithms proposed by Song et al. are not
applicable. Therefore, previously we proposed a security-
assured grid job-scheduling strategy considering the
heterogeneity of fault-tolerance mechanism support [13]. In
this algorithm, we considered four kinds of fault-tolerance
mechanisms, including the job retry (JRT), the job migration
without checkpointing (JMG), the job migration with check-
pointing (JCP) and the job replication (JRP) mechanisms. The
scheduler will decide which kinds of fault-tolerance
mechanisms will be applied to each individual job for more
reliable computation and shorter makespan. To encode mixed
kinds of fault-tolerance mechanisms into a single
chromosome, we also proposed a new chromosome encoding
approach. The proposed genetic algorithm has shorter
makespan and provides more excellent efficiencies on
improving the job failure rate than Min-Min and Sufferage
algorithms [14].
 In this paper, we consider a different grid model and
propose a Min-Min based algorithm for job scheduling in a
fault-tolerance large-scale computational grid. The new
algorithm is Min-Min based, resulting in a lower computation
complexity than that for the genetic algorithm. The
previously proposed genetic algorithm adopts a Space-Time
method to accelerate the convergence speed. The method
relies on the scheduling history of each job to convergent the
scheduling process efficiently. The proposed genetic
algorithm may require longer scheduling time or have poor
solutions when there are too many jobs that are submitted for
the first time in a system. To address the problem, the new
algorithm is not revolutionary approach. Instead, it is Min-
Min based. For the system model, we assume that each
computational node supports all the four fault-tolerance

18 Int'l Conf. Grid Computing and Applications | GCA'10 |

mechanisms. Each job will be protected by at least one of
JRT, JMG and JCP. Moreover, JRP can be also applied for a
job to provide a more reliable computation. When scheduling
one job, in addition to the failure probability determined by
the job security demand and the node trust level, we also
consider the additional execution time required for the
overhead of the applied fault-tolerance mechanism. The
newly proposed algorithm aims to shorten the makespan of
executing all the jobs by assigning a suitable computational
node and an appropriate fault-tolerance algorithm for each
job. Furthermore, the access time for reading data from
storage nodes is also taken into account in the system model,
where the contentions for network bandwidth and storage
node bandwidth are modeled. Simulation results demonstrate
that the proposed Min-Min algorithm can shorten the
makespan and reduce the failure rate.
 The rest of this paper is organized as follows. Section 2
introduces the related work. Section 3 presents the system
model and the proposed job scheduling algorithm. Section 4
demonstrates the experimental results. Finally, Section 5
concludes the paper.

2 Related work
 A variety of job scheduling strategies have been
proposed for computational grids. Xiao et al. proposed an
incentive-based scheduling scheme that investigates how to
maximize the success rate of job execution and minimize the
fairness deviation among resources by allowing resource
providers and resource consumers to make autonomous
scheduling decisions [15]. Doulamis et al. proposed a fair
scheduling algorithm that will fairly reduce the CPU rates
assigned to the tasks when the resources are insufficient so
that the share of resources that each user gets is proportional
to the user’s weight [6]. Viswanathan et al. proposed a
resource-aware dynamic incremental scheduling that handles
large volumes of computationally intensive, arbitrarily
divisible loads submitted for processing at cluster or grid
systems [7]. Lee and Zomaya proposed two algorithms for
bag-of-tasks applications, one for data-intensive tasks and
one for computation-intensive tasks, which adopt task
duplication for scheduling without requiring accurate
performance prediction information [8]. Bertin et al. proposed
a fully decentralized algorithm that can achieves both optimal
path selection and flow control only requiring local
information at each slave computing task and at each bu.er in
the network links [9]. Nobrega et al. proposed scheduling
heuristics that investigate the tradeoff between two factors:
the challenging requirement of complete and accurate
information about the applications and the grid environment,
and the extra consumption of resources incurred by task
replication [10]. Li et al. proposed a predictable and grouped
genetic algorithm where a job workload estimation algorithm
is designed to evaluate a job workload based on its historical
execution records and the divisible load theory is employed to
predict an optimal fitness value by which the convergence
process can be shortened in searching for a large scheduling

space [16]. Chang et al. proposed an ant-based algorithm that
aims at balancing the entire system load while trying to
minimize the makespan of a given set of jobs [17]. In
addition, Chang et al. also proposed a job scheduling
algorithm that dispatches a job to the site where the needed
data are present to reduce data access time and the amount of
inter-cluster-communications [18].
 Some scheduling strategies especially emphasized the
importance of security awareness. Azzedin and Maheswaran
[19] proposed a trust model that incorporates the security
implications into scheduling algorithms. Humphrey and
Thompson [20] proposed usage models for security-aware
Grid computing but they did not elaborate on how to design a
scheduler by incorporating the security concerns into
collaborative computing over distributed cluster environment.
Abawajy [21] suggested replicating jobs at multiple sites to
guarantee successful job executions in a Grid environment.
 Song et al. [12] thought that a job distributed to a
remote node may suffer from some infections or malicious
attacks. Therefore, a job scheduler must consider the risk
when dispatching jobs to remote nodes [12]. They proposed a
job failure model to represent the risk level in job scheduling.
There were two parameters in this model: the security
demand (SD) and trust level (TL). SD represents a job’s
security requirement level, higher SD value represents this
job has higher security requirement, so the job needs a more
reliable node for job execution. TL represents a node’s secure
level, higher TL value represents this node can provide a
more reliable environment. So different jobs assigned to
different nodes would have different risk levels. Base on the
job failure model, they proposed three schedule strategies
based on different risk level: (1) Secure mode: jobs were only
scheduled to those nodes which can ensure security. (2) Risky
mode: jobs were scheduled to any available nodes without
considering the risks between jobs and nodes, so it took all
possible risks. (3) F-risky mode: jobs were scheduled to
available nodes to take at most f risk, where f was a
probability.
 Moreover, in [11], Song et al. proposed four types of
scheduling strategies: (1) Risky mode: jobs were scheduled to
any available nodes without considering risks between jobs
and nodes, so it took all possible risks. (2) Preemptive mode -
failed jobs would be moved to another node, and then
restarted from the beginning. (3) Replicated mode: in order to
accomplish jobs safely, a job would be duplicated to multiple
nodes for better success rate of job execution. (4) Delay-
Tolerant mode: we would wait for a period of time to allow
the nodes to have more time to deal with job execution. The
simulation results mentioned that most fault tolerance
algorithms are better than those algorithms without fault
tolerance techniques in makespan, except Replication. The
Replication approach produced too much workload for the
node, so it had low makespan performance.
 In [22], Chtepen et al. proposed several heuristics to
enhance the efficiencies of two fault-tolerant techniques: job
checkpointing and job replication. They dynamically adapted
the checkpointing frequency and the number of replicas to

Int'l Conf. Grid Computing and Applications | GCA'10 | 19

strong variations in grid availability based on monitored grid
state, job characteristics, and collected historical information.
Moreover, in order to combine the advantages of both
techniques, they also proposed a hybrid scheduling strategy
that switches at runtime between checkpointing and
replication depending on the system load. In [23], Hwang and
Kesselman proposed a failure detection service (FDS) and a
flexible failure handling framework (Grid-WFS) as a fault
tolerance mechanism on the Grid. The FDS enables the
detection of both task crashes and user-de.ned exceptions
without requiring any modification to both the Grid protocol
and the local policy of each Grid node. The Grid-WFS, built
on top of FDS, uses workflow structure as a high-level
recovery policy specification enables support for multiple
failure recovery techniques, including the retrying on another
available Grid resource strategy, the retrying on the same
resource strategy and the restarting with checkpointing on the
same resource strategy.

()

0 ,

 .1 i j

i ji
j SD TL

i j

if SD TL
NP

if SD TLe λ− −

≤⎧⎪= ⎨ >−⎪⎩

 Each job has to access to one input file for its execution
and each input file is replicated in more than one storage node.
Whether a job can successfully access to its required input
file or not depends on two parameters: connection failure and
network contention. Each link from a computational node to a
storage node is associated with a connection failure
probability. Each storage node and each link has its own
maximum transmission bandwidth. Computation nodes
compete for storage node and network bandwidths before
they can access to the required data for the assigned jobs.
 The batch scheduling scheme was adopted in our model.
In realistic Grid environment, users would transmit their jobs
in anytime, so different jobs would have different arrival
times. We set a scheduling cycle which has a fixed interval
time, when a scheduling cycle begins we will schedule all
jobs which were arriving in this scheduling cycle by one of
our proposed job scheduling algorithms. 3 Proposed algorithm
 We propose a Min-Min-based job scheduling algorithm
as follows. In the original Min-Min algorithm [14], the
scheduler assigns jobs one at a time to the computational
nodes. At each step, first it selects the unscheduled job with
the smallest size and then assigns that job to the
computational node having the earliest completion time after
executing that job. In our proposed Min-Min-based
scheduling algorithm, the required execution time considers
two additional factors: the execution failure probability and
the fault-tolerance mechanism.

 The grid system considered in the work consists of
geographically dispersed computational sites having different
administrative polices and heterogeneous resources. Any
computational node supports the following fault tolerance
mechanisms for more reliable computation.

 Job retry (JRT) mechanism. The JRT mechanism
is the simplest fault tolerance technique, which
will re-execute the failed job from the beginning
on the same computational node.

 Job migration without checkpointing (JMG)
mechanism. The JMG mechanism will move the
failed job to another computational node and re-
execute the job from the beginning on the latter
computational node.

 Assigning one job to a different computational node and
a different storage node has not only a different execution
time but also a different failure probability. In addition,
applying a different fault-tolerance mechanism for executing
a job on a computational node adds up a different overhead to
the total execution time. Consequently, we propose the
following equations to estimate the expected execution time
for executing a job, requiring to access to a storage node for
data input, on a computation node protected by a fault-
tolerance mechanism. We list the notations, used in the
equations, in Table 1.

 Job migration with checkpointing (JCP)
mechanism. The JCP mechanism will record the
state of the job periodically at rum time. If the job
fails, it is moved to another computational node
and resumed the execution from the last
checkpoint.

 Job Replication (JRP) mechanism. The JRP
mechanism replicates a job to multiple
computational nodes such that the job has higher
success rate. If one of those replicas has already
completed, then all other replicas should stop their
execution to save the computing power.

 If JRT is applied for executing Job i on Computational
Node j when Storage Node R is used for data access, we
calculate the expected execution time as follows.

2 3

,
1 1 1() (1)
2 2 2 { ,

i i i i Ri i
j R j j j j

j j

SZ DSE T NP NP NP DP WT
C min B

= + + + × + × +
}RRB

 The job failure model adopted is similar to [11, 12, 13].
In this model, the risks between jobs and nodes are
considered. The SDi represents the security demand for the
job i. The higher the SDi value, the higher the security
requirement for the job. TLj represents the security guarantee
for the node j, the higher the TLj value, the higher the node
reliability. The job failure probability is an exponential
distribution as follows.

 If JMG is applied for executing Job i on Computational
Node j when Storage Nodes R is used for data access, we
calculate the expected execution time for the initial node as
follows.

 , ,
1() (1)
2 {

i i i i Ri i
j R j j j k j , }j j R

SZ DSE T NP NP MC DP WT
C m

= − × + × + × +
in B RB

where

20 Int'l Conf. Grid Computing and Applications | GCA'10 |

,
,

, , , .i i
x y

x y

DMC i
BW

= ∀ x y

)

 If JCP is applied for executing Job i on Computational
Node j when Storage Node R is used for data access, we
calculate the expected execution time for the initial node as
follows. The expected execution times for the two backup
nodes k and q are calculated similarly.

 If JMG is adopted, the expected execution times for the
two backup nodes k and q are calculated similarly except the
followings. The first backup node will execute the job only
when the job is failed in the initial node. The job will be
executed in the second backup node only when the job is
failed in the initial node and the first backup node.

2
, ,() (1) () (

2

{ , }

i i

j j

SZ SZ
C Ci i ii i)j R j j j j

j j

R i
j

j R

SZ SZE T NP OH NP OH MC
C PR C PR

DSDP WT
min B RB

×
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= − × + × + × + × +

×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+ × +

j k

where

Table 1. Natations used in the equations for calculating the
expected execution time

() 2, ,
i

j

SZ
Ci

j i jRM j k q SZ PR C
PR
×

⎢ ⎥
⎢ ⎥= − × ×
⎢ ⎥⎣ ⎦ .

,(i

j RE T : the expected execution time for running job i

on computational node j.

iSZ : the workload of job i.

jC : computing capacity of computational node j.

i
jNP : the failure probability of running job i on

computational node j.

R
jDP : the failure probability of downloading the input

data from storage node R for job j.

jB : the bandwidth of computational node j.

RRB : the remaining bandwidth of storage node R.

i
jaft : average completion time if a failure occurs when

running job i on computational node j.

iDS : the input data size for job i.

WT : the waiting time for re-connection.

i
jawt : average waste time if a failure occurs when

running job i on computational node j.

,
i
j kMC : the migration cost from computational node j to

computational node k.

PR : the period time of the checkpointing operation.

jOH : the overhead of performing the checkpointing

operation each time for computational node j.

(, ,i
jRM j k q

 If JRP is applied, the expected execution time of each
computational node executing a replica is calculated
according to which of JRT, JMG and JCP is adopted by the
node.
 In our proposed scheduling algorithm, the job to be
scheduled with the smallest size will be selected for next
node assignment. For the job to be scheduled next, the
expected execution times for executing it on each
computational node supporting difference fault-tolerance
mechanisms will be all calculated. The job will be assigned to
the computational node that has the earliest completion time
after executing the job. In addition, the selected
computational node will adopt the fault-tolerance mechanism
that provides the earliest completion time for executing the
job on the node. To simplify the decision procedure at each
scheduling step, only the expected execution time for the
initial computational node is calculated according to the
following equation.

,
1() (1)
2 {

i i i i
j R j

j j

SZ DSE T NP
C min B RB

= + × + ,
, }R (1)

Once the computational node and the storage node are

determined, we consider both the job size and the failure
probability to decide which fault-tolerance mechanism will be
adopted for the job. We set three thresholds to help select an
appropriate fault-tolerance mechanism. They are JRT, JCP
and JRP thresholds and the threshold values are between 0
and 1. The JCP threshold is calculated by the following
equation.

(The largest job size in this scheduling cycle – the smallest
job size) × JCP_rate + the smallest job size

 where JCP_rate denotes the predefined value, ranging
from 0 to 1. The detailed algorithm is shown in Fig. 1. First,
we test whether the failure probability is smaller than the JRT
threshold, the JCP threshold and the JRP threshold in turn.
Accordingly, an appropriate fault-tolerance mechanism will
be selected for the job. Before scheduling the next job, we
use our proposed equations mentioned above to update the
expected execution times for the assigned computational node
and the bandwidth allocation for the assigned storage node
for the job. If backup nodes are required, their expected
execution times have to be updated according to the equations.

) : the remaining workload of running job i

on node j after checkpointing. The two backup nodes are
Nodes k and q.

Int'l Conf. Grid Computing and Applications | GCA'10 | 21

Fig. 1. The proposed security-aware Min-Min based algorithm.

Security-Aware Min-Min based Algorithm()
{

while (Any jobs have not been scheduled yet)
{
 select the unscheduled job that has the smallest size;

assign the job to the computational node and the storage node that has the earliest
completion time by equation (1);

if (the failure probability is smaller than the JRT threshold)
 use JRT for the job;
else
{

 if (the normalized job size is smaller than the JCP threshold)
 {
 use JCP for the job;
 select two backup nodes based on the earlier completion time;

 if (the failure probability is smaller than the JRP threshold)
 {

use JCP for the replicated job;
select three computational nodes randomly for the replicated job;

 }
 }
 else
 {
 use JMG for the job;

select two backup nodes based on the earlier completion time;
if (the failure probability is smaller than the JRP threshold)

{
 use JMG for the replicated job;

select three computational nodes randomly for the replicated job;
 }

 }
 }
 for the scheduled job, update the earliest completion times according to the proposed

equations for the assigned computational nodes and the bandwidth allocation for the
assigned storage node.

 }
}

4 Simulation results We used the following three cases for performance

comparison. In Case A, the number of instructions of a job is
between 50 and 100 billion instructions. In Case B, the
number of instructions of a job is between 50 and 500 billion
instructions. In Case C, the number of instructions of a job is
between 50 and 1000 billion instructions.

 To evaluate our proposed job scheduling algorithm, we
have constructed a simulator written in the C language. The
simulation parameter settings are listed in Table 2.
 We compare our proposed scheduling algorithm with
the Min-Min and Sufferage algorithms [14]. The sufferage
algorithm selects the unscheduled job that has the largest
sufferage value at each step, where the sufferage value of a
job is the difference between its second earliest completion
time and its earliest completion time. The selected job will
then be assigned to the computational node that has the
earliest completion time for that job. For the Min-Min and
Sufferage algorithms, each job will be randomly assigned one
of the four fault-tolerance mechanisms.

 Our proposed algorithm outperforms the other two
algorithms in all these three cases, as shown in Fig. 2. When
the job sizes are distributed in a larger range, the makespan
can be reduced more by our proposed algorithm, as shown in
Fig. 2. The reason can be explained by the number of failures
occurred in different algorithms as shown in Fig. 3. Our
algorithm can reduce the failure rate because the high-risk
jobs are allocated to more reliable computational nodes.
Interestingly, although the Min-Min and the sufferage
algorithms have almost the same failure rate, the sufferage

22 Int'l Conf. Grid Computing and Applications | GCA'10 |

algorithm is better than the Min-Min algorithm when the job
sizes are distributed in a larger range.

0

200

400

600

800

1000

1200

Case A Case B Case C

N
um

be
r o

f f
ai
lu
re
s

Min‐Min

Sufferage

Proposed algorithm

Table 2. Simulation parameter settings

Number of jobs 2000

Number of computational
nodes

50

Number of storage nodes 6

Job size 40 ~ 240 (Mb)

Job arrival time 0.0278 jobs/min/node

Job workload 50 ~ 100 (billion
instructions)

Node processing speed 20 ~ 200 (million
instructions/sec)

Node bandwidth 100 ~ 200 (Mb/sec)

Number of storage nodes 5

Storage node bandwidth 1000 ~ 1500 (Mb/sec)

Input data size 50 ~ 100 (Gb)

Connection failure probability 5% ~ 10%

Job security demand 0.6 ~ 0.9 (uniform dist.)

Node trust level 0.3 ~ 1.0 (uniform dist.)

Failure coefficient λ= 3

Schedule cycle 4 hours

Checkspan 1200 sec

JRT threshold 0.4

JCP_rate 0.4

JRP threshold 0.55

Fig. 3. Comparison of the number of failures.

5 Conclusions
 In this paper we propose a job scheduling algorithm to
address the problem that a large-scale grid system is
unreliable by nature. This new job scheduling algorithm
considers the following aspects different from our previous
work. (1) The algorithm is Min-Min based, rather than
genetic algorithm. Therefore the computation complexity of
the new algorithm is less than that of the previously proposed
genetic algorithm. Furthermore, the new algorithm has no
need to rely on the scheduling history of each application to
accelerate the convergence speed in the previously proposed
space-time genetic algorithm. (2) The fault-tolerance
mechanisms considered are the retry, the migration without
checkpointing, the migration with checkpointing and the
replication mechanisms. In the new algorithm, each
computational node supports all four mechanisms. Our
previous work assumed that each computational node
supports the replication mechanisms and one of the rest three
mechanisms. (3) The access to the storage node for data input
is modeled in the new algorithm, which is ignored in the
previous algorithm.
 To provide a more reliable computation, each
computational node can apply one or more fault-tolerance
mechanisms to protect the execution of a job. The proposed
Min-Min-based algorithm can effectively and efficiently
decide which computational node(s), which data node and
which fault-tolerance mechanism(s) is the best combination
for executing a job. After applying the proposed algorithm,
the makespan and the failure rate can be cut down
significantly.

0

1000

2000

3000

4000

5000

6000

7000

8000

Case A Case B Case C

M
ak

es
pa

n

Min-Min

Sufferage

Proposed algorithm

Acknowledgement
 The authors would like to thank the National Science
Council, Taiwan, for financially supporting this research
under Contract No. NSC98-2221-E-018-008-MY2.

References
 Fig. 2. Comparison of makespan.

Int'l Conf. Grid Computing and Applications | GCA'10 | 23

[1] I. Foster, E.C. Kesselman, The Grid: Blueprint for a
New Computing Infrastructure, Morgan Kaufmann, San
Fransisco, 2004.

[2] Globus. http://www.globus.org/.

[3] Netsolve. http://icl.cs.utk.edu/netsolve/pubs/index.html/.

[4] Condor-G. http://www.cs.wisc.edu/condor/condorg/.

[5] T.M. Project. http://www.cs.virginia.edu/~mentat/.

[6] N. Doulamis, A. Doulamis, E. Varvarigos, T.
Varvarigou, “Fair Scheduling Algorithms in Grids”, IEEE
Transactions on Parallel and Distributed Systems, Vol.18,
No.11, pp. 1630–1648, 2007.

[7] S. Viswanathan, B. Veeravalli, T. Robertazzi,
“Resource-aware Distributed Scheduling Strategies for
Large-scale Computational Cluster/Grid Systems”, IEEE
Transactions on Parallel and Distributed Systems, Vol.18,
No.10, pp.1450–1461, 2007.

[8] Y. Lee, A. Zomaya, “Practical Scheduling of Bag-of-
tasks Applications on Grids with Dynamic Resilience”, IEEE
Transactions on Computers, Vol. 56, No.6, pp. 815–825,
2007.

[9] R. Bertin, A. Legrand, C. Touati, “Toward a Fully
Decentralized Algorithm for Multiple Bag-of-tasks
Application Scheduling on Grids”, Proc. 9th International
Conference on Grid Computing, pp. 118–125, 2008.

[10] N. Nobrega, L. Assis, F. Brasileiro, “Scheduling CPU-
Intensive Grid Applications Using Partial Information”, Proc.
37th International Conference on Parallel Processing, pp.
262–269, 2008.

[11] S. Song, Y.-K. Kwok, K. Hwang, “Risk-resilient
Heuristics and Genetic Algorithms for Security-assured Grid
Job Scheduling”, IEEE Transactions on Computers, Vol. 55,
No. 6, pp. 703-719, 2006.

[12] S. Song, Y.-K. Kwok, K. Hwang, “Security-driven
Heuristics and a Fast Genetic Algorithm for Trusted Grid Job
Scheduling”, Proc. 19th IEEE International Parallel and
Distributed Processing Symposium, pp.65.1–65.1, 2005.

[13] C.-C. Wu and R.-Y. Sun, “An Integrated Security-aware
Job Scheduling Strategy for Large-scale Computational
Grids”, Future Generation Computer Systems, Vol. 26, No. 2,
pp. 198-206, 2010.

[14] T. Braun, D. Hensgen, R. Freund, H. Siegel, N. Beck, L.
Boloni, M. Maheswaran, A. Reuther, J. Robertson, M. Theys,
B. Yao, “A Comparison of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto Heterogeneous

Distributed Computing Systems”, Journal of Parallel and
Distributed Computing, Vol. 61, No. 6, pp. 810-837, 2001.

[15] L. Xiao, Y. Zhu, L. Ni, Z. Xu, “Incentive-based
Scheduling for Market-like Computational Grids”, IEEE
Transactions on Parallel and Distributed Systems, Vol. 19,
No. 7, pp. 903-913, 2008.

[16] M. Li, B. Yu, M. Qi, “PGGA: A Predictable and
Grouped Genetic Algorithm for Job Scheduling”, Future
Generation Computer Systems, Vol. 22, No. 5, pp. 588-599,
2006.

[17] R.-S. Chang, J.-S. Chang, P.-S. Lin, “An Ant Algorithm
for Balanced Job Scheduling in Grids”, Future Generation
Computer Systems, Vol. 25, No. 1, pp. 20-27, 2009.

[18] R.-S. Chang, J.-S. Chang, S.-Y. Lin, “Job Scheduling
and Data Replication on Data Grids”, Future Generation
Computer Systems, Vol. 23, No. 7, pp. 846-860, 2007.

[19] F. Azzedin, M. Maheswaran, “Integrating Trust into
Grid Resource Management Systems”, Proc. Intl Conf.
Parallel Processing, pp. 47-54, 2002.

[20] M. Humphrey, M. Thompson, “Security Implications of
Typical Grid Computing Usage Scenarios”, Proc. High
Performance Distributed Computing, pp.355-362, 2001.

[21] J. Abawajy, “Fault-tolerant Scheduling Policy for Grid
Computing Systems”, Proc. IEEE Intl Parallel and
Distributed Processing Symp. , p. 238, 2004.

[22] M. Chtepen, F. Claeys, B. Dhoedt, F.D. Turck, P.
Demeester, P. Vanrolleghem, “Adaptive Task Checkpointing
and Replication: Towards Efficient Fault-Tolerant Grids”,
IEEE Transactions on Parallel and Distributed Systems, Vol.
20, No. 2, pp. 180-190, 2009.

[23] S. Hwang, C. Kesselman, “A Flexible Framework for
Fault Tolerance in the Grid”, Journal of Grid Computing, Vol.
1, No. 3, pp. 251_272, 2003.

24 Int'l Conf. Grid Computing and Applications | GCA'10 |

 An Artificial Immune System for Task scheduling in Grid
Computing With Task balancing

Amir Massoud Bidgoli1, Mehdi FarokhTabar2, A mir Masoud Rahmani3

1Islamic Azad University Tehran North Branch. Tehran,IRAN
2Islamic Azad University Science And Research Khozestan Branch. Ahvaz, IRAN

3Islamic Azad University Science And Research Tehran Branch. Tehran, IRAN

Abstract : This article covers a new approach
in discussion of grid scheduling. This means an
economy grid using a new algorithm which from
now on we call it Artificial Immune System
Balancing (AISB). This algorithm combines the
methods of clonal selection, negative selection and
also uses a completely new technique for
generating the first generation such as commun-
ication to computation ratio (CCR), ability of
computational resources and prioritized tasks.
Hence the algorithm can obtain acceptable results
in reduced time and costs. Also, with this
technique, similar results can be obtained with
generation of fewer antibodies in comparison with
 Conventional clonal selection method.
Key words: Grid Economy, Task Scheduling, AIS
Algorithm, Clonal Selection, Negative Selection.
1 Introduction

Grid computing environment is a promising
platform for solving large-scale computing
intensive problems. In this environment, resources
are distributed geographically but in logical point
of view, they are as a unit resource [1, 2]. The main
goal of grid is using of various equipments with
higher reliability, which is inexpensive and
compatible [1]. For highest efficiency, we need a
useful and right scheduler, where it's aim is to
relate optimum tasks to resources. Hence
heterogeneity, shared resources [3] and various
users requests, will result in a complicated grid
scheduling.

In 2001, buyya [4] introduced an economical
framework for grid. This framework causes grid
users to pay for resources used by them to the
resource owners. This framework emphasizes
financial cost and profits to resource owners and
users. Therefore financial cost and profits plays an
important role in most scheduling algorithm [5].
However, the problem is that for improving
finished timing and execution costs of task, a
scheduler uses different policies and goals. For
economic scheduling only a few techniques have
been proposed [4, 6, 7]

There are suggestions for improving scheduling
in grid, using metaheuristics techniques inspired
from natural rules [5,12,14,15], such as genetic,
simulated annealing, ant colonies, tabu search,
artificial immune systems (AIS) and some
composite techniques. In recent years AIS have
been used in many computing fields.

The AIS algorithms, inspired from natural
immune systems, use a new computational and well
defined recognition patterns which can be used on
unusually cases. The AIS algorithms are
categorized into different models which are:
negative selection, clonal selection theory, network
theory and danger theory. In recent years these
techniques were used efficiently [13].

The proposed technique in this paper is based
on directed acyclic graph (DAG) which uses three
steps. The first step is based on communication to
computation ratio (CCR), computation ability of a
resource and also priority of nodes via PETS [8]
technique which takes into account the time and
cost parameters to produce the first generation. In
the second step clonal selection algorithm [10] is
used to improve results. Finally, the third step is to
use negative selection algorithm [11] to create a
balanced load between computational resources.
Using the three steps will produce reasonable
results for scheduling based on time and cost.

 The remainder of the paper is organized as
follows: In section 2, the necessary introduction
theories for DAG scheduling are discussed. In
section 3 the principles of AIS are discussed. In
section 4 the proposed algorithm with details are
discussed. In section 5, evaluation, performance
and comparison of proposed algorithm with several
other conventional algorithms are discussed by
simulation. Finally produced results are discussed
with details in section 6.
2 Scheduling Problem

 The directed acyclic graph (DAG) is introduced
with G = (V,E), Where V is a set of graph nodes
and E is set of graph edges showing the
relationship between the nodes in a graph. For
example (i,j) ∈ E shows the relationship between
the node ni and nj. To start the task of nj, at first ni
should be completed. Assigned to each edge a
weight to show the required time for transferring
the output results from node ni to nj.

Every DAG has entry node, nentry, and an exit
node, nexit. In resource scheduling problem, a start
node as entry node and an end node as exit node
exists. However if more than one entry node and
exist, a hypothetical node will be specified as entry
node or exit node with zero weight.
In this grid, M = {Mj; j= 1...m} is defined as
available computational resources set for tasks
execution. The matrix ,Wi×j, shows the execution
time of graph nodes on computational resources in

Int'l Conf. Grid Computing and Applications | GCA'10 | 25

M set. An element , Wij ,shows the execution
time of ni on Mj computational resource. iW Shows
the average execution time of node on
computational resource and is defined by:

∑
=

=
m

j

ji
i

m
W

W
1

, (1)

Matrix MCm×m shows transfer rate of data
between two computational resources. The vector L
(m-dimensional) shows the required time for start
of communication with computational resources.
The function WCij is transfer timing of data
between two nodes ni (on machine Mp) and nj (on
machine Mq) is defined by:

qp

ji
pji MC

Data
LWC

,

,
, += (2)

Where Datai, j is rate of data transfers from node
ni to nj. If the two nodes are on one computational
resource, the transfer rate is ignored and therefore
WCi,j would be equal to zero. The function ji,WC is
average time of data transfer between two nodes (i,
j) and is defined by:

MC

Data
LWC ji

ji,
,+= (3)

Where MC is the average transfer rate of data
between computational resources and L is the
average starting time of computational resource.

The matrix, Ci×j , defines the execution cost of
graph nodes on existing computation resources in
M set. The Ci,j specifies cost of executing node ni
on the computational resource Mj. The iC specifies
the average cost of executing node ni on
computational resource which is defined by:

∑
=

=
m

j

ji
i

m
C

C
1

, (4)

The MCCm×m is a Matrix, showing data
transmission costs per second between two
computational resources and the LC vector
showing the rate of cost for communication
initiation with computational resources. CCi,j is cost
of trasferring data between two nodes ni (placed on
Mp) and nj (placed on Mq) that is defined by :

)*()*(,
,

,
, qp

qp

ji
ppji MCC

MC
Data

LCLCC += (5)

Average cost of relation between two nodes (i, j)
is calculated by:

)*()*(,
, MCC

MC

Data
LCLCC ji

ji += (6)

MCC Is average cost of data transmission per
second and LC is average cost of communication
initiation with computational resources.

The EST(ni,Mj) and EFT(ni,Mj) are the earliest
execution start time and earliest execution finish
time of task ni on computational resources Mj
respectively. The two functions EST(ni,Mj) and
EFT(ni,Mj) are shown in relations (7) and (8).

)})((],[max{

),(

,
max

)(ippnpredn

ji

WCnAFTjavail

MnEST

ip
+

=

∈

(7)

),(),(, jijiji MnESTWMnEFT += (8)
If ni is entry node:

0),(=jentry MnEST (9)
Where avail[j] is the earliest time at which

computational resource Mj is ready for task
execution and pred(ni) is the set of immediate
predecessor tasks of task ni. The inner max block
in the EST equation returns the ready time. (i.e.,
the time when all data needed by nj has arrived at
computational resource Mj).

The actual earliest start time and finish time of
task ni on computational resource Mj is equal to
AST(ni) and AFT(ni). Finish time of scheduling is
AFT(nexit) that shows end of scheduling and
displayed by SL and also sum of cost scheduling
showing with SC. Equations (10) and (11) shows
these:

)}(max{)(exitnAFTSLnghtScheduleLe = (10)

)()(
,

)(,

∑
∈

= =
+= ∑ p

ip

ip

CC

npredn

kscountoftas

i
resource

selectedj
ji

1
CSCstScheduleCo (11)

The communication to computation ratio (CCR)
is a measure that indicates whether a task graph is
communication intensive, computation intensive or
moderate. If CCR is calculated based on time it is
called CCRW and if it is calculated based on cost it
is called CCRC. The calculation of CCRW is
carried out as average communication time divided
by average computation time and calculation of
CCRC is carried out as average communication
costs divided by average computation cost.
3 Particles of Immune Systems
AIS are distributed adaptive systems for problem
solving using models and principles derived from
the Human Immune System. The Immune System

is the defense system of our body, which can
produce and secrete antibodies used to protect us
against infection through an antigen recognition
process. Many different AIS algorithm models
have been built, including bone marrow models,
thymus models, clonal selection algorithms,
negative Selection, and immune network models
[13].
3.1 Negative Selection Algorithm

The main purpose of negative selection technique
is determination of a limited affinity threshold for
detection of self cells. The way it is done is that
when cells called T cells are produced and mutated

26 Int'l Conf. Grid Computing and Applications | GCA'10 |

by thymus, those T cells that are capable of
detecting self antigens are separated from the
colony and the rest of T cells for detecting non-self
antigens are entered into blood stream. The above
process is called negative selection. Figure (1)
shows function of negative selection algorithm
[11]:

Fig. 1. Detector Set Generation of a Negative
Selection Algorithm [11]
3.2 Clonal Selection Algorithm

When a cell called B cell is stimulated, it will
quickly duplicate itself. While it is duplicating , a
gene mutation proportional to the inverse degree of
affinity is produced which causes the production of
cells with higher degree of affinity. This process is
called clonal selection. Figure (2) shows function
of clonal selection algorithm. In this algorithm,

(1) Generate a set (P) of candidate solutions,
composed of the subset of memory cells (M) added
to the remaining (Pr) population (P = Pr + M);

(2) Determine (Select) the n best individuals of
the population (Pn), based on an affinity measure;

(3) Reproduce (Clone) these n best individuals of
the population, giving rise to a temporary
population of clones (C). The clone size is an
increasing function of the affinity with the antigen;

(4) Submit the population of clones to a
hypermutation scheme, where the hypermutation is
proportional to the affinity of the antibody with the
antigen. A maturated antibody population is
generated (C*);

(5) Re-select the improved individuals from C*
to compose the memory set M. Some members of P
can be replaced by other improved members of C*;

(6) Replace d antibodies by novel ones (diversity
introduction). The lower affinity cells have higher
probabilities of being replaced [10].

Fig. 2. Diagram of Clonal Selection Algorithm [10]

4 Artificial Immune Systems with
Balancing (AISB)

The Suggested algorithm in this article, AISB,
includes three steps as follows: (1) prioritizing
tasks and computational resources for the primary
generation production, (2) clonal selection and (3)
balancing by selection negative algorithm.
4.1 Priority Step

In this step, The PETS algorithm is combined
with cost and time parameters for tasks priority and
the two parameters can be adjusted by user. Also,
prioritizing of computational resources based on
cost and time is carried out.
4.1.1 Task Priority Step
Each graph divided to several levels, entry node in
first level and exit node in last level. generally, the
node ni is placed in K-level provided for all edges
(ni,nj), the node nj was placed in a lower level than
k and there should be a minimum of one edge
between ni and nj and lower level must be one level
below the level k(i.e. level k-1).

In PETS algorithm, for assigning priority to a
node three parameters called Average Computation
Cost (ACC), Data Transfer Cost (DTC) and Rank
of Predecessor Task (RPT) are defined. In this
paper by manipulating the above mentioned
parameters, new formulae with better efficiencies
are obtained. From now on, the above parameters
are called Average Computation Cost and Time
(ACCT), Data Transfer Cost and Time (DTCT).
The parameter ACCT is defined as evaluation of
cost and time of a node on computational resource
M which is calculated as:

maxmax
**)(

C
CC

W
WTnACCT i

p
i

pi += (12)

Where Tp and Cp are coefficient of time and cost
importance in a user view which can have a value
between 0 and 1. Wmax and Cmax are maximum time
and cost of a finished task on a computational
resource. The parameter DTCT is defined as
evaluation of time and cost of communication
related to data transfer of a node to all the
immediate nodes. This parameter is calculated in
level 1 as:

max

,

max

, **)(
CC
CC

C
WC
WCTnDTCT ji

p
ji

pi += (13)

Where, WCmax and CCmax are the maximum time
and cost of node communication. The parameter
RPT is defined as the highest degree of predecessor
nodes and calculated by:

)}(...)(max{)(1 hi nranknranknRPT ++= (14)
Where n1, n2,…, nh are immediate predecessor

nodes. For the entry node the value of RPT is zero
(i.e. RPT(nentry)=0). The degree of priority for a
node ni is based on RPT, DTCT and ACCT values
and calculated by:

))()()(()(inRPTinDTCTinACCTroundinrank ++= (15)
Each level has its own degree of priority for its

nodes and a node with the highest degree of

Int'l Conf. Grid Computing and Applications | GCA'10 | 27

priority, has the highest priority on its level. This
procedure is repeated for all levels in a graph. For
example the gragh of figure (3) shows the priority
of tasks in table 1.
4.1.2 Computational Resource Priority

Step
Priority of computational resources will cause the

most suitable computational resource (time and
cost efficient) be assigned to a special node. For
priority determination of a computational resource
the parameters, time and cost of execution, Tp, Cp,
CCRW and CCRC are used.

The new Matrix EMi×j is defined as the
evaluation of tasks on computational resources. So
that EMi,j shows the evaluation of executing ni on
computational resource Mj and calculated by:

max

,

max

,
,

**

1

WC
WC

C
W
W

T
EM

ji
p

ji
p

ji

+
= (16)

The new ECCR coefficient is defined as the
evaluation of communication and computation
intensity with respect to Tp and Cp parameters and
calculated as:

CCRCTCCRWTECCR cp ** += (17)
Finally, the matrix of computational resource

priority coefficient, EMCi×j, with condition of
ECCR>=1 and ECCR<1 are respectively calculated
as:

))min((*(..1,,,, mijijiji EMEMECCREMEMC −+= (18)

))min((*)1((..1,,

,,

miji

jiji

EMEMECCR

EMEMC

−−

−=
 (19)

The output matrix EMCi×j shows the priority of
computational resource per task so that the highest
priority computational resource is most probably
will be chosen.

Fig. 3. (a) A sample graph with 10 tasks (First
Number is Average of Time CommunicationWC ,
Second Number is Average of Cost
Communication CC). (b) Time matrix and priority
of tasks on resources. (c) table of computation cost.
User coefficient (Tp = 0.5, Cp=0.5)
4.2 Clonal Selection Step

To improve time and cost of tasks in grid, the
suggestive clonal selection algorithm is used and
implemented. This proposed algorithm is shown in
figure (4).
 1: Compute priority for tasks
 2: Compute priority for resource
 3: Generate initial antibody population, AB Base
on Priority
 4: for each generation (Ng) do
 5: Select a subset of AB with the highest
calculated affinity as AB*

 6: for each antibody abi in the antibody
population AB* do
 7: Clone abi proportional to its affinity and Ng
 8: for each clone cij in the clone set Ci do
 9: Generate a set M inversely proportional to
abi’s affinity and Ng
10: for each random schedule mk in M do
11: Mutate cij with mk
12: Sort the tasks of cij according to the
tasks priority
13: Compute the affinity of cij:
14: end
15: end
16: Set abi to its best clone whose affinity is
higher than abi’s
17: end
18: Replace Highest AB* with antibody
population, AB
19: Replace worst b% of antibodies in AB by
randomly generated ones
20: end
Fig.4. Proposed technique based on clonal selection
 Algorithm

In figure (4), lines 1 and 2 show the priority of
tasks and computational resources based on
previously defined relations. In line 3, the primary
generation based on priorities is produced. For
selection of computational resources, the method of
roulette wheel is used such that the resources with
higher priorities are most probable to be selected.
In the line 5, a subset of the best antibodies with
respect to limited threshold affinity based on the
newly defined function given blow is selected.

}*)(,*2.0max{ AB
NG
N

ABselect
S

G= (20)

In the formula (20) the set of antibodies are
assumed to be sorted according to the threshold
affinity. In the formula, NG shows the current
generation of computations and NGs shows the
number of generations produced by clonal selection
algorithm. The parameter, |AB|, determines the
total number of antibodies. In the select formula
(20), as we get near to final generations, the
number of selected antibodies will be reduced
which causes the algorithm to be more
concentrated on the best antibodies and also will
cause the algorithm running time to decrease

28 Int'l Conf. Grid Computing and Applications | GCA'10 |

considerably. In line 7, the number of clone (NC)
calculates the antibodies based on the number of
current generation and rate of its threshold affinity
which is shown in equation (21).

))}1)(,(1(*)

)
*)*25.0(

((,2max{

−−

+=

i

S

G

abSLSSLAffinityAB

ABNG
NNC

 (21)

Where SSL parameter determines the best
threshold affinity (i.e. best in terms of time and cost
of execution) in equation (21), as the rate of
threshold affinity and number of generation is
increased the number of antibody clone will be
increased. In the line 9, the total number of idle
slots in computational resources are determined and
then the number of mutations, NM, based on the
idle slots are calculated which is shown in equation
(22).

))}1)(,((*)2

)
*)*33.0(

((,4max{

−

+
−

=

i

S

GS

abSLSSLAffinityAB

ABNG
NNGNM

 (22)

Where SSL parameter determines the best
threshold affinity (i.e. best in terms of time and cost
ofexecution.

In equation (22), as rate of threshold affinity and
number of generations increases, the number of
mutations decreases. The rate of threshold affinity
is calculated by the time and cost of current
antibody relative to the best antibody as shown in
equation (23).

))(*())(*()(
best

i
p

best

i
pi SL

SLT
SC

SCCabAffinity += (23)

In lines 11, 12 and 13, mutations were made on
antibodies and the antibodies are sorted based on
priority of tasks and then the threshold affinity are
calculated. In lines 16, 18 and 19, the best mutated
antibodies replaced the previous ones and then
about b% (default 20%) from the worst antibodies
of each generation are replaced with new ones
which are produced randomly.
4.3 Use Of Negative Selection For

Balancing
To balance tasks execution on computational
resources using negative selection, the worst
computational resources movement are chosen and

then by replacement (e.g. the computational
resources which has the highest tasks running on it)
and placing current tasks on idle slots of other
computational resources, a balance between
computational resources are produced. This
algorithm is shown in figure (5).

 1: Select Best s% of antibodies in AB by highest
affinity as AB*

 2: for each antibody abi in the antibody population
AB* do
 3: for each Resource ri in abi do

 4: if affinity ri is higher than affinity threshold
then
 5: for each Task ti in ri do
 6: Replacement ti with task that same level
 7: Insert ti in the best place of other resources
 8: Insert ti in the idling slots of resources
 9: end
10: end
11: end
12: end
13: Replace Highest AB* with antibody population,
AB
Fig.5. Proposed technique based on negative
selection algorithm

In figure (5), lines 1, S% (default 25%) of total
number of antibodies are selected based on
threshold affinity. In lines 3, 4 and 5, for every
antibody most busy computational resource whose
affinity is more than an average threshold affinity,
is selected. In this algorithm, affinity threshold
means the average time or cost of computational
resource usage. And in lines 6,7 and 8, the ordered
operations of selected task is exchanged with same
level tasks, placing the selected task in the best
place amongst computational resources and
inserting a selected task in the idle slots of
computational resources. The lines 6, 7 and 8 for
each task in selected computational resource is
repeated. The last line shows the best antibodies are
chosen based on threshold affinity and is replaced
by the main generation. This operation is repeated
for every generation of clonal selection algorithm.
5 Simulation Performance results

In this section, the classic AIS clonal selection
algorithm is compared with our proposed modified
AIS clonal selection algorithm and then, the
simulation result of proposed algorithm ,AISB ,for
task scheduling on grid computation are presented
.With respect to the dependency of functions on
cost and time, the obtained results based on cost
and time are compared with two other methods.
The first scheduler is HEFT [9] and the second
scheduler is classic clonal selection algorithm.

Here, result related to compare of efficiency of
algorithms based on time and cost are obtained by
using normalized schedule length (NSL) and
normalized schedule cost (NSC). The normalized
schedule length and schedule cost is defined to be
schedule length and schedule cost obtained by a
particular algorithm over schedule length and
schedule cost obtained by the HEFT algorithm.

 The values of parameters used for our
experiments are: number of generations {3, 5 and
10}, number of antibodies {5, 10 and 20},
elimination rate 20%, number of computational
machine was {3,6,16,24} and used with 100,200
and random speed, number of task

Int'l Conf. Grid Computing and Applications | GCA'10 | 29

{10,30,45,80,180} and CCR coefficient was with
rate of {0.1,1,10}. Also as cost and time parameters
are optional for a user, for comparison purposes we
need to compare with cost (i.e. Tp=0 and Cp=1)
once and compare with time (i.e. Tp=1 and Cp=0)
once.

In figure (6), a simulation results between classic
AIS running algorithm and our modified AIS
running algorithm is shown. As can be seen from
figure (6), the modified clonal selection algorithm
with control over the number of antibodies, clonal
and mutation based on the number of generations
and also task and computational resource
prioritization, could produce better results because
of reduced number of antibodies production
(Hence, the running time of the algorithm reduces).
The result shown in figure (7) indicates the better
performance of proposed algorithm in comparison
with AIS and HEFT algorithms for the execution
timing of tasks. This is because in periods when
communication intensity is increased, the type of
tasks and computational resources prioritization
and insertion of tasks in idle slots are carried out.
Also when computational intensity is increased, the
used balancing algorithm produce the above
mentioned better performance.

In figure (8), the result of execution costs is
shown which are better than other algorithms. The
reason for better results are the use of balanced
algorithm and control of threshold affinity relation.
6 Conclusion And Recommendation

In this article, a new algorithm ,AISB ,for task
scheduling based on DAG is presented. The
proposed algorithm, with respect to user
requirements, determines the importance of cost
and time. The purpose of proposed scheduler is to
reduce execution time and cost based on mentioned
parameters. In this scheduler, priority of
computational resources and tasks are determined
by time and cost parameters and then for
scheduling optimization, the clonal selection
algorithm is used. Next, by using the negative
selection algorithm, balancing between
computational resources based on cost and time
parameters are carried out. Finally the simulation
results of three schedulers are compared. The result
obtained show that the proposed algorithm in
situations where CCR coefficient is low
(computational intensity) or is very high
(communication intensity) have a better
performance.

It can be recommended to use the scheduler in
situations where the rate of intensity of processing
and communication are similar to see if
optimization can be achieved.

Fig.6. Average Running Time a particular
algorithm over AIS Classic

Fig.7. Average NSL of random DAGs

30 Int'l Conf. Grid Computing and Applications | GCA'10 |

Fig.8. Average NSC of random DAGs

7 Refrences

[1] I. Foster and C.Kesselman (editors), The Grid
2: blueprint for a new Computing
Infrastructure, Morgan Kaufmann Publishers,
USA, 2004.

[2] Baker M., Buyya R., and Laforenza D., "The
Grid: International Efforts in Global
Computing”, Proc. Of International
Conference on Advances in Infrastructure for
Electronic Business, Science, and Education
on the Internet, Rome, Italy, 2000.

[3] M, Arora, S.K.Das, R. Biswas, A Decentralized
Scheduling and Load Balancing Algorithm for
Heterogeneous Grid Environment, in Proc of
International Conference on Parallel Processing
Workshops (ICPPW'02),pp.:499-505, Vancouver,
British Columbia Canda, August 2002.

[4] R. Buyya, J. Giddy, D. Abramson, "A case for
economy grid architecture for service-oriented grid
computing", in: 10th IEEE internet Heterogeneous
Computing Workshop (HCW 2001), San
Francisco, CA,April 2001.
[5] L. Young, S. McGough, S. Newhouse, and J.

Darlington, Scheduling Architecture and
Algorithms within the ICENI Grid Middleware,
in Proc. Of U"K e- science All Hands Meeting,
pp. 5-12, Nottingham, UK, September 2003.

[6] R. Sakellariou, H. Zhao, E. Tsiakkouri, M. D.
Dikaiakos. "Scheduling Workflows with Budget
Constraints". In S.Gorlatch, M.Danelutto (Eds.),
Integrated Research in Grid Computing, CoreGrid

series,
Springer-verlag, to appear 2005.
[7] J. Yu,R.Buyya C. Khong Tham. "Cost-based

scheduling of scientific workflow applications
on utility grids",vic.,Australia;,e-Science and
Grid Computing, 2005 First International
Conferece on,Dec 2005.

[8] E. Ilavarasan and P.Thambidurai. "Low
Complexity Performance Effective Task
Scheduling Algorithm for Heterogeneous
Computing Enviroments". Journal of
Computer Sciences 3 (2):94-103,2007

[9] H. Topcuoglu, S.Hariri, and M. Wu.
"Performance-effective and low-complexity task
scheduling for heterogeneous computing". In IEEE
Transactions on Parallel and Distributed Systems,
volume 13(3) 2002.
[10] L.N. de Castro and F.j. Von Zuben. "The

Clonal Selection Algorithm with Engineering
Applications". In Proceedings of the Genetic
and Evolutionary Computational Conference,
pages 36 – 37, 2000.

[11] J.Kim and P.J. Bentley. "An Evaluation of
Negative Selection in an Artificial Immune System
for Network Intrusions Detection". In Proceedings
of the Genetic and Evolutionary Computation
Conference, pages 1330-1337, 2001.
[12] Young Choon Lee and Albert Y.Zomaya, "An

Artificial System for Heterogeneous
Multiprocessor Scheduling with Task
Duplication", IEEE International Parallel and
Distributed Processing Symposium,
2007.IPDPS 2007.

[13] L. N. de Castro, J. L Timmis "Artificial

immune systems as a novel soft computing
paradigm" soft computing 7 (2003) 526-544
springer-verlag2003.

[14] R. Braun, H. Siegel, N. Beck, L. Boloni, M.
Maheswaran, A. Reuther, G. Robertson, M. Theys,
B. Yao, D. Hensgen and R. Freund, A Comparison
of Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed
Computing Systems, in J. of parallel and
Distributed Computing, vol.61, No. 6, pp. 810-837,
2001.
[15] Anna Swiecicka, Franciszek Seredynski, and

Albert Y. Zomaya, "Multiprocessor
Scheduling and Rescheduling with Use of
Cellular Automata and Artificial Immune
System Support", IEEE Transactions on
Parallel and Distributed Systems, Vol 17, No.
3,March 2006.

Int'l Conf. Grid Computing and Applications | GCA'10 | 31

Towards a Neuro-Dynamic Technique for Optimal Scheduling

and Allocation of Resources in a GUISET Enterprise Grid.

Ekabua, Obeten O., Dzawo, Gilbert and Soganile, Ndabezinhle.

Department of Computer Science and Information Systems

University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa.

{obeten.ekabua@univen.ac.za, dzawog@univen.ac.za, ndabezinhle.soganile@univen.ac.za}

Abstract: Allocation and scheduling of resources

within a Grid infrastructure is an NP-Complete

optimization problem. Combinatorial optimization

problems are either NP-hard or NP-Complete and

the theory of NP-Completeness has reduced hopes

that NP-hard problems can be solved within

polynomial bounded computation times. Deciding

which jobs are allocated to which resources has

continued to generate serious concerns and

challenges to researchers in the field, and the task

of scheduling computing resources remains very

difficult. This is because resources are

geographically distributed and owned by

individuals with different access and cost policies.

More so, the existing static allocation mechanisms

are inept to handle the dynamically changing

characteristics of the grid resources. Therefore, the

need for new resource allocation methods or

modification of the existing ones is inevitable. In

this paper, we propose a service management

model with a neuro-dynamic programming

technique, for optimal resource allocation and

scheduling in a Grid-based utility infrastructure for

SMME’s Enabling Technology (GUISET).

Keyword Words: Scheduling, Optimal Resource

Allocation, Service Management, Grid Computing.

GUISET, Neuro-Dynamic programming.

1. Introduction.

With an increasing technology evolution that is

combined with web revolution, new challenges in

the context of service provisioning has also

emerged. Moreso, with an increasing use of the

internet as a distributed environment for service

provisioning, human interaction with computers

has changed as they relate to their point of presence

within the service provisioning environment [1].

Computational Grids have become an

interesting environment for the execution of large-

scale resource demanding applications. One key

motivating issue for constructing Grids is to create

a neuro application-level environment, between

various distributed systems, so that resources and

services supported by these individual systems can

be shared globally [2].

Grid [3,4,5] are resource sharing and

coordination infrastructures for building

dynamically constructed problem-solving

environments using geographically and

organizationally dispersed, high-performance

computing and data handling resources. Grid

computing eliminates the resource islands in the

application level and makes computing and

services ubiquitous. The widespread adoption of

the Grid computing paradigm has made the Grid an

enabler for many scientific, engineering, industrial

as well as commercial enterprises to create a

common IT infrastructure that can be shared by

business processes, delivering a higher quality

service at much lower cost [6].

The task of scheduling resources is very

difficult as resources are geographically distributed

and owned by individuals or organizations with

different access and cost policies. Scheduling and

Resource management remains one of the major

areas of research among others that the Global Grid

Forum (GGF) [7] is actively pursuing a standard.

The research groups of the GGF working

on Scheduling Optimization [8] led by V. Di

Martino and E. Talbi, and Grid Resource

Allocation Agreement Protocol [9] led by J.

Maclaren, V. Sander and W Ziegler have

respectively proposed defining measures of

scheduling algorithm performance to foster the

development of Grid-wide scheduling

32 Int'l Conf. Grid Computing and Applications | GCA'10 |

mailto:%7bobeten.ekabua@univen.ac.za
mailto:dzawog@univen.ac.za
mailto:ndabezinhle.soganile@univen.ac.za

methodology. This is in addition to available

schedulers and defining interactions between a

higher level service and a local resource

management system. The main goal of these is to

facilitate the allocation and reservation of

resources.

Several researches that has been done in

relation to resource allocation, considered

centralized resource and task admission control

[10, 11, 12]. Dynamic task assignment to

heterogeneous computing resources is studied in

[13, 14]. Neural computing (a paradigm of artificial

intelligence) is a concept that lends itself well to

the heuristics of learning from experience. This is

because of its ability to imitate the skill of human

experts by capturing knowledge, generalizing non-

linear functional relationship, and provides a

flexible way of handling complex and intelligent

information processing problems. Artificial Neural

Networks (ANNs) have been shown to be effective

as computational processors for various tasks

including combinatorial optimization problems.

Developing a neuro-dynamic approach for optimal

scheduling and allocation of resources is an NP-

Complete problem.

2. Related Work

The Master-Worker paradigm [16] addresses the

problem of scheduling master-worker applications

on computational grid, and presented a framework

that allows the development of a tailored

scheduling strategy. The idea reported in this work

is said to be a simple but effective scheduling

strategy that measures execution times of task

dynamically and uses the information to also

dynamically adjust the number of workers to

achieve a desired efficiency.

Matchmaking [17], a distributed resource

management mechanism, which includes several

components of a resource discovery mechanism,

was developed based on the idea that resources

providing services and clients that request services

should use a classified advertisement to advertise

their characteristics and requirements. The work

introduced a new class of data dissemination for

resource discovery in grid systems.

NetSolve [18], a client-agent-server

enhances a remote approach for users to compute

complex scientific problems, as agents does the

scheduling by searching for those resources that

offers the best performance in a network.

AppLes [19], focuses on scheduling at the

application level through the development of

scheduling agents for parallel metacomputing

applications where, in order to determine

schedules, agents must consider the requirements

of the application, the predicted load and

availability of the system resources at scheduling

time.

GUISET [20] is a Grid-based utility

infrastructure that emanated from the product-line

reference architecture (see fig. 1) of the M-

commerce software infrastructure project currently

under development at the Department of Computer

Science, University of Zululand as an enabling

technology for SMME‟s. The SMME‟s are here

seen as ensemble of virtual organizations (VOs),

reflecting dynamic collection of individuals,

cooperative institutions and computational

resources. One of the major goals GUISET seeks to

achieve is the reduction or minimization of

operating overhead cost. This goal is envisaged

achievable in this proposed model by integrating

utility and service management principles into our

proposed optimization module.

In the context of Grid resource control, a

„service‟ is defined as any entity that exposes a

useful function to its client [16, 20]. The effective

management of resources and services is therefore

imperative and holds substantial benefits. In view

of the envisaged increasing requirements for

Int'l Conf. Grid Computing and Applications | GCA'10 | 33

resource sharing of computational resources,

distributed over a wide area of networks within the

GUISET framework, we propose an optimal

resource allocation and scheduling module

implementing a neuro-dynamic programming

paradigm (see fig 2) within GUISET for efficient

service management.

Fig. 1: Reference architecture for the Mobile Commerce Product Line [20]

Fig. 2 GUISET Architecture with an optimization module [20].

It is believed by many researchers in the field that

neural network models offer the most promising

unified approach to building truly intelligent

computer systems; and that the use of distributed,

parallel computations as performed in ANNs is the

best way to overcome the combinatorial explosion

associated with symbolic serial computations when

using Von Neuman Computer Architecture[21].

ANNs have been used to solve a number of

problems that require finding optimal solutions.

Low Level
Resources

Knowledge
 resources

Services

RESOURCE REPOSITORY

OPTIMIZATION

WAP Application ..NET Application Applet J2EE Client

Enabling Information Bus for Dynamic
Service selection

SMEE ENABLERS

UTILITY BROKER

Response Request with QOS

Multi-modal

 Interfaces

Middleware
 Layer

Grid Infrastructure

 Layer

Optimization
Archive

Preference

Archive

CLIENT

PL Services

Information

Technology
 (augmented with

utility services)

Services

Third party
Services, TPS

Transaction

34 Int'l Conf. Grid Computing and Applications | GCA'10 |

Marbach et al 22] used a Neuro-Dynamic Network

to solve a “Call Admission Control and Routing

Network problem”. In [23] Tank and Hopfield used

a Dynamic Recurrent Neural Network to solve the

traveling salesman problem.

3. Neuro-Dynamic programming

problem formulation

Definition: Given a set of P jobs where job pi has

length li and Q available number of resources, how

do we allocate or what is the minimum possible

time required to schedule all the jobs in P on Q

resources?

Formulation: In order to formulate the objective

function and task allocation constraints, it is

necessary to define the following useful notations.

P = Number of jobs

Q = Number of available resources

to = System start time

tb = Current time before allocation

ta = Time after allocation

ja = Job arrival rate

ap(t) = Available processing capacity of resources

at time t

ab(t) = Available processing capacity of a

particular resource at time t

js = The set of jobs to be allocated to resources

Ds = Duration needed to perform js

Si = The set of task to be allocated to a particular

resource

If the set of jobs js can be successfully allocated to

the Q available resources, then the following

relationship holds:

1. i

N

i
s sJ

1

 , Ensuring that all tasks are allocated

2. ji

N

ji

ss Nji, Every task is

uniquely assigned to a resource.

This resource allocation problem can be

represented as a linear programming (LP) model. If

we let Cij to be the cost associated to assigning task

i to resource j, we can define the LP model as:

n

i

m

j

ijij PCzMin
1 1

 (1)

Subject to the following constraints:

i. schedulability constraint

ap(t) ≥ niP
m

j

ij ,...,2,1,1
1

 (2)

ii. bounds on available resource

 ab(t) ≥ njP
n

i

ij ,...,2,1,1
1

 (3)

the LP model can be reduced to the matrix form

bAp which can be solved iteratively using

neuro-dynamic programming for optimal solution.

Fig. 3 is a typical feedforward network capable of

handling such problem.

Figure 3: An example of a single layer feedback Neural

Networks [22].

4. Our Proposed Approach
In order to adequately address issues of allocation

and scheduling, we propose to employ the

following steps in tackling the problem:

Step 1: Model formulation of problem domain.

Modeling is a critical step to problem solving and

good models will yield good and efficient problem

solving strategy [16].

Step 2: Use of fact-finding technique. This is

required because resource sharing within a grid

infrastructure or virtual organizations (VO)

requires the availability of rich information support

system and service discovery mechanism to

facilitate a very good decision making process. The

findings will embrace resource availability,

Int'l Conf. Grid Computing and Applications | GCA'10 | 35

performance, usage and management of

heterogeneous resources.

Step 3: Activation of GGF techniques involving 3

phases. In this step, the ten steps for Job

scheduling proposed by GGF [7] (fig. 3) shall be

critically analyzed, and built into our conceptual

mathematically optimized model.

Fig. 4: Ten steps for job scheduling [7].

Step 4: Development of neuro-dynamic

Algorithm. This involves the application of

optimization and service management principles in

each level of implementation of the various

building blocks in the optimized GUISET

framework shown in fig 4.

Step 5: This involves simulating and performing

appropriate comparative evaluations at three

different levels:

Level 1: GUISET Portal- This is the job

submission point for the end-user. It is

multimodal in nature, however, job monitoring,

grid resource information provisioning will

begin at this point.

Level 2: Deployment and Management-

is responsible for providing optimal job

generation tool and service management tool

for optimal results

Level 3: Coordination and Resource

Management –This module is responsible for

Grid resource allocation, coordination and

services management.

Phase 1. Resourse Discovery

1. Authorization Filtering

2. Application Definition

3. Min. Requirement

 Filtering

Phase 2. System Selection

4. Information Gathering

5. System Selection

Phase 3. Job Execution

6. Advance Reservation

7. Job Submission

8. Task Preparation

9. Monitoring Progress

10. Job Completion

Clean-up Task

36 Int'l Conf. Grid Computing and Applications | GCA'10 |

 Job Submission

Decision &

Provision of Tools/

resources

Coordin

ation &

Mgt

Fig 4. Building blocks for the optimal resource allocation and scheduling model of GUISET [20].

5. Conclusion
In this paper, we have proposed a neuro-dynamic approach

for optimal scheduling and allocation of resources in a

GUISET Enterprise Gird which is described as an NP-

Complete problem. We formulated the resource allocation

problem and propose a neuro-dynamic programming and

service management solution approach for GUISET.

References
[1]. Ekabua, O. O. and M. O. Adigun: Experienced Report

on Assessing and Evaluating Change Impact Analysis

through a Framework and Associated Models. Journal of

Information Science and Engineering. Vol. 25, No. 2,

March 2009.

[2]. Burya, R., Abramson, D., and Giddy, J.: An Economy

Driven Resources management Architecture for Global

Computational Grids. The 7
th

 International Conference on

Parallel and Distributed Processing Techniques and

Applications (PDPTA 2000), Las Vegas, USA, June 26-

29, 2000.

[3]. Foster I, and Kesselman, C (eds) The Grid: Blueprint

for a new computing infrastructure, San Francisco, CA

Morgan Kaufamann(1998) http://www.mkp.compbooks-

catalog/1-55860-475-8.asp

[4]. Foster I, Kesselman, C and Tuecke, S (2001) The

anatomy of the Grid: Enabling scalable virtual

organizations. International Journal of Supercomputer

Applications 15(3) pp. 200 –

222,http://www.globus.org/research/papers.html1#anatom

y

[5]. Hai Jin (2004) ChinaGrid: Making Grid Computing a

Reality,Cluster and Grid Computing Lab, Huazhong

University of Science and Technology, 430074, Wuhan,

China.http://www.lib.sjtu.edu.cn/chinese/digital_library/ca

j_file/i_Jin-Hai-ChinaGrid-Jin.doc

GUISET Portal

Deployment and Management Toolkit

Job generation

tools

Service Management

tools

Service Manager Domain Manager

 Job Manager Data Manager Security

1. Job Submission

2. Job Scheduling

3. Job Status

Monitoring

4. Job workflow Mgt

1. Resource

Access Control

2.Security Mgt of

service

 Storage Resource Mgt

1. Service Mgt

2. Resource Mgt

3. Service matching

4. Service Taxonomy

1. User Mgt

2. Status Monitoring

3. Negotiating Policies Mgt

4. Domain Info Mgt

Int'l Conf. Grid Computing and Applications | GCA'10 | 37

http://www.mkp.compbooks-catalog/1-55860-475-8.asp
http://www.mkp.compbooks-catalog/1-55860-475-8.asp
http://www.globus.org/research/papers.html1#anatomy
http://www.globus.org/research/papers.html1#anatomy
http://www.globus.org/research/papers.html1#anatomy

[6].http://www.oracle.com/technology/tech/grid/index.htm

l last accessed [01/07/06]

[7]. The Global Grid Forum, www.gridforum.org

[8]. Global Grid Forum, Proposed Scheduler Optimization

Research Group, Scheduling and Resource Management

Area, http://www.mcs.anl.gov/~jms/ggf-sched/WG/opt-

wg.html

[9]. Global Grid Forum, Grid Resource Allocation

Agreement Protocol Working Group, Scheduling

Resource Management Area,

http://people.man.ac.uk/~zzcgujm/GGF/graap-wg.html

[10].Huh E, et al (2000) Accommodating QoS prediction

in an adaptive resource

management framework in “parallel and distributed

processing” Rolim J. et al (eds) Lecture notes in computer

science, Vol 1800, pp 792 – 799, Springer – Verlag, New

York.

[11]. Fernandez-Baca D (1989), Allocating modules to

processors in a distributed system,

IEEE Transaction on software engineering, Vol SE-15, pp.

1427 - 1436

[12]. Nemhauser G and Wolsey L (1999), Integer and

Combinatorial Optimization, Wiley-Interscience, New

York

[13]. Ali S. et al (2002) Greedy Heuristics for Resource

Allocation in Dynamic Distributed Real-Time

Heterogeneous Systems, in the proceedings of the

International Conf. on Parallel and Distributed Processing

Techniques and Applications (PSPTA „20), Las Vagas,

Navaga

[14]. Maheswaran M. et al (1999), Dynamic mapping of a

class of independent tasks onto heterogeneous computing

systems, Journal of Parallel and Distributed Computing,

Vol. 59, pp. 107-131.

[15]. Adigun M (2004) Software Infrastructure for e-

commerce and e-business research working paper, Res-

CSD-01 Centre for Mobile e-Services, University of

Zululand.

[16]. Heymann, E., Senar, M., Luque, E. and Livny, M.:

Adaptive Scheduling for Master-Worker Applications on

the Computional Grid. Proceedings of the First

IEEE/ACM International Workshop on Grid Computing,

2000.

[17]. Raman, R., Livny, M. and Solomon, M.:

Matchmaking: Distributed Resource Mangement for High

Throughput Computing, 7
th

 IEEE International

Symposium on High Performance Distributed Computing,

1998, pp. 28-31.

[18]. Casanova, H. and Dongarra, J.: NetSolve: Network

enabled solvers, IEEE Computational Science and

Engineering, 5(3) pp. 57-67, 1998.

[19]. Shao, G., Wolski, R. and Berman, F.: Performance

Effects of Scheduling Strategies for Master/Slave

Distributed Applications. Technical report TR-CS98-598,

University of California, San Diego, September 1998.

[20]. Adigun, M. O.: Software Infrastructure for e-

Commerce and e-Business research working paper, Res-

CSD-01, Centre for Mobile e-Services for Development,

University of Zululand, South Africa.

[21]. Tank D.W and Hopfield J.J (1987) Neural

computation by time compression. Proceedings of

National Academy of Science, USA, 84: 1896–1900

[22]. Garry J. (1987) BYTES ; Neural Network

Heuristics. pp 183 – 191

[23].. Marbach P, Milhatsch O and Tsistsiklis J (2000),

Call Admission Control and Routing in Integrated

Services Networks using Neuro-Dynamic Programming,

IEEE J. select. Areas Commun, Vol 18, no 2 pp 197-208.

Acknowledgements

This research is a contribution to an ongoing e-commerce software infrastructure project being developed at the Dept of

Computer Science, University of Zululand. RSA and it is supported by Huawei-Telkom Centre of Excellence for Mobile e-

services, NRF and THRIP.

38 Int'l Conf. Grid Computing and Applications | GCA'10 |

http://www.oracle.com/technology/tech/grid/index.html
http://www.oracle.com/technology/tech/grid/index.html
http://www.oracle.com/technology/tech/grid/index.html

Optimize Condor-G Matchmaker Service with

 IP Address

L. Mohammad Khanli
1
, H. Mohammadi

2

1
 Assistance Professor, Computer Science, University of Tabriz, Iran

2
 Islamic Azad University – Tabriz Branch, Tabriz, Iran

Abstract - The matchmaker mechanism is looking for the

resource in base according to requester's orders, that

contains details of the machine, for example CPU, memory

and etc. In this paper, we add IP field to the matchmaker's

database fields to increase speed of search in database and

decrease time of search.

Keywords: Condor-G, IP Address, Matchmaker, Grid

1 Introduction

 Grid is a geographically distributed system that enables

integration of heterogeneous resources needed for execution

of complex, demanding scientific and engineering

applications. Integration of resources beyond boundaries of a

single organization also enables easier cooperation among

diverse scientists who work in different geographical

locations.

Grid middleware (GMW) is a set of services and protocols

that enable seamless integration of resources in grid. It

provides a layer of abstraction that hides differences in

underlying technologies (e.g. computer clusters, storage

managers, application services, etc.). Numerous standards are

being defined for grid protocols and services, majority of

them within Global Grid Forum (GGF) [1] organization. Basic

functionalities of grid middleware are security, information,

job and data management. Most widely used solutions that

provide these basic functionalities are Globus Toolkit [2] and

UNICORE [3]. Grid scheduling (also called super scheduling,

meta scheduling and grid brokering) is one of the advanced

features of grid middleware. It is defined as the process of

scheduling jobs where resources are distributed over multiple

administrative domains [4]. Up to date, there is no grid

scheduling system that fully meets the requirements that will

be described in following sections.

Execution of jobs in grid is shown in Figure 1.

Fig. 1. Grid scheduling architecture

It consists of the following activities:

 Users submit their jobs described by using a

description language to the grid scheduler (1),

 Scheduler uses grid middleware’s information

systems to discover and evaluate resources (2),

 Once the scheduler has defined where the job will be

executed, execution is started and managed by using

available grid middleware components (e.g. job and

data management systems) (3).

Grid scheduling differentiates from classical cluster batch

scheduling in many ways. In case of grid, a scheduler does not

have full control over resources, information about resources

is usually unreliable and stale, application behavior is difficult

to predict. All these reasons make grid scheduling far more

difficult to realize.

2 Condor and Condor-G Mechanism

 The fundamental structure of the system has remained

constant while its power and functionality has steadily grown.

The core components are known as the kernel.

Fig. 2. The Condor Kernel

Briefly, the kernel works as follows: The user submits jobs to

an agent. The agent is responsible for remembering jobs in

persistent storage while finding resources willing to run them.

Agents and resources advertise themselves to a matchmaker,

which is responsible for introducing potentially compatible

agents and resources. Once introduced, an agent is responsible

for contacting a resource and verifying that the match is still

valid. To actually execute a job, each side must start a new

process. At the agent, a shadow is responsible for providing

all of the details necessary to execute a job. At the resource, a

sandbox is responsible for creating a safe execution

environment for the job and protecting the resource from any

Int'l Conf. Grid Computing and Applications | GCA'10 | 39

mischief. Let us begin by examining how agents, resources,

and matchmakers come together to form Condor pools [1].

Fig. 3. A Condor pool

An agent (A) is shown executing a job on a resource (R) with

the help of a matchmaker (M). Step 1: The agent and the

resource advertise themselves to the matchmaker. Step 2: The

matchmaker informs the two parties that they are potentially

compatible. Step 3: The agent contacts the resource and

executes a job. The agent makes the same information

available to the community. A single machine typically runs

both an agent and a resource daemon and is capable of

submitting and executing jobs. However, agents and resources

are logically distinct. A single machine may run either or

both, reflecting the needs of its owner. Furthermore, a

machine may run more than one instance of an agent. Each

user sharing a single machine could, for instance, run its own

personal agent. This functionality is enabled by the agent

implementation, which does not use any fixed IP port

numbers or require any super user privileges.

Each of the three parties – agents, resources, and matchmakers

– is independent and individually responsible for enforcing

their owner’s policies. The agent enforces the submitting

user’s policies on what resources are trusted and suitable for

running jobs. The resource enforces the machine owner’s

policies on what users are to be trusted and serviced. The

matchmaker is responsible for enforcing community policies

such as admission control.

As the Condor software developed, pools began to sprout up

around the world. In the original design, it was very easy to

accomplish resource sharing in the context of one community.

A participant merely had to get in touch with a single

matchmaker to consume or provide resources. However, a

user could only participate in one community: that defined by

a matchmaker. Users began to express their need to share

across organizational boundaries.

3 Resource Ontologies

Resource ontologies are a critical component of the

matchmaking framework. The ontology is an explicit

specification of a conceptualization and a conceptualization is

an abstract and simplified view of the world that we wish to

represent for some purpose. The ontology defines a common

structure that facilitates the sharing of information. It includes

machine-interpretable definition of the basic concepts in a

domain and their relations. Entities in the matchmaking

framework, i.e. the providers, the requesters, and the

matchmaking services, which are generally not in the same

domain, must share the same ontology structure.

Fig. 4. The hierarchical relationship among grid resource

classes.

The structure of a category of entities is described as a class in

Protégé knowledge base [6]. Fig. 4 shows the hierarchical

relationship among some grid resource classes. Fig. 5 shows

the structures of the Workstation, Cluster, MPP, and SMP

classes. A class consists of one or more slots. A slot describes

one attribute of the class and consists of a name and a value.

An instantiation of a class is called an instance of that class.

The type of a slot value may be simple types, such as integer,

float, Boolean, and string. For example, in Fig. 5, the value

type of the slot NumberOfNodes of the class Cluster is an

integer. The type of a slot value may also be an instance of a

class. For example, in Fig. 5, the value type of the slot CPU of

the class Cluster is an instance of the class CPU. A class may

be extended from another class and inherit all the slots of that

class. Fig. 6 shows the set of classes for software and

hardware resources that are common in grid systems.

Fig. 5. The Workstation, Cluster, MPP, and SMP classes. The

arrows to the right of some slots indicate that the values of

these slots are instances of other classes.

40 Int'l Conf. Grid Computing and Applications | GCA'10 |

Fig. 6. Program, Library, and Package classes (top). Service,

Data, and Storage classes (middle). CPU, Memory, Hard

disk, NIC, and OS classes (bottom).

4 Searching for Resources

Grid Index Information Service (GIIS) is a Lightweight

Directory Access Protocol (LDAP) server that collects the

information related to every Grid Resource Information

Service (GRIS) server available in the organization. This can

be seen as a basic broker resource. It allows users or processes

to find, if available, those computing resources and their

particular features, such as memory and number and speed of

processors.

GRIS then acts as a super scheduler. Computational resources

can be periodically queried about their features and status if a

server is running Globus. This is because a GRIS is listening

on a port. GRIS is a small LDAP server that stores static (and

semi static) information, as well as dynamic information about

available Grid hardware and the system software associated

with it. GRIS can be looked at as an active index that allows

for the simple central retrieval of a machine’s main features.

GRB or any other resource broker can tap into this

information and make use of it when looking at what

resources to schedule for any given batch or real-time job.

5 IP Address

An Internet Protocol (IP) address is a numerical identification

(logical address) that is assigned to devices participating in a

computer network utilizing the Internet Protocol for

communication between its nodes. Although IP addresses are

stored as binary numbers, they are usually displayed in

human-readable notations, such as 192.168.100.1 (for IPv4),

and 2001:db8:0:1234:0:567:1:1 (for IPv6). The role of the IP

address has been characterized as follows: "A name indicates

what we seek. An address indicates where it is. A route

indicates how to get there."

IPv4 uses 32-bit (4-byte) addresses, which limits the address

space to 4,294,967,296 (232) possible unique addresses.

However, IPv4 reserves some addresses for special purposes

such as private networks (~18 million addresses) or multicast

addresses (~270 million addresses). This reduces the number

of addresses that can be allocated as public Internet addresses,

and as the number of addresses available is consumed, an

IPv4 address shortage appears to be inevitable in the long run.

This limitation has helped stimulate the push towards IPv6,

which is currently in the early stages of deployment and is

currently the only offering to replace IPv4.

Classful network design allowed for a larger number of

individual allocations. The first three bits of the most

significant octet of an IP address came to imply the "class" of

the address instead of just the network number and, depending

on the class derived, the network designation was based on

octet boundary segments of the entire address. The following

table gives an overview of this system.

Fig. 7. IP Classes

6 Optimize Matchmaker

IP Address like a postal code that shows address of connected

machine to the network. Considering that, we can locate the

local, city, state and country of the resource requester. Now a

better idea for the matchmaker's search is, add a new field to

matchmaker's database that contains IP address of resource.

when a requester, order a resource matchmaker search that in

his database according to the closer IP Rang to the requester's

IP that to the classifieds of IP first looking in local so on

search in city, state and country. So the first Premiership in

matchmaker algorithm's search is find the closest IP to the

requester's IP.

We know that each country have a particular IP range that in

it we can separate each state, city and even local. For

example: There is a requester is in Local A with 62.72.8.0 IP

address that order a machine from a matchmaker, matchmaker

first must search in requester's local in IP range from

62.72.8.1 to 62.72.8.255 then in requester's city that contains

Int'l Conf. Grid Computing and Applications | GCA'10 | 41

IP range from 62.72.8.x to 62.72.10.x and then search in state

and country and in the end search in the world for obtain the

resource.

60.72.8.0

Country M

State A State B

State C

60.x.x.x 61.x.x.x

62.x.x.x

Country M

Country N Country P

62.x.x.x
61.x.x.x
60.x.x.x

72.x.x.x
71.x.x.x
70.x.x.x

82.x.x.x
81.x.x.x
80.x.x.x

State A

City c

City a City b

60.72.x.x 60.73.x.x

60.74.x.x

City a

a

c

b

60.72.8.0
Requester’s IP

60.72.9.x

60.72.10.x

60.72.8.x

Matchmaker

Fig. 8. New Algorithm

Assumption we have 10000 record in the bank for available

resource and 1000 record is locate in the requester country

that need the resource, for looking the requirement resource

we first search it in the requester country and we search in

only 1000 record.

If the requested resource finds our speed going up by 10

because we looking up in 1000 record and the records for

search is less by 10 percent.

Uses the resource in the requester country has following

ascendency:

 Use almost isotope topology and hardware.

 Speed of the internet in whole of country is almost

isotope.

 The geographic distance between requester and

resource is shorter than can have more security for

connection.

 Time of search in database is minor and speed of

search is higher.

7 Conclusions

 In this paper we release a new table of match maker's

database that this table contains of resource's IP for better use

and rapid access to the resources.

8 References

[1] J. Frey, T. Tannenbaum, M. Livny, F. Foster, S.

Tuecke, Condor-G: A Computation Management

Agent for Multi-Institutional Grids, Cluster

Computing 2002, 5(3), pp. 237–246.

[2] Globus Alliance, http://www.globus.org

[02/28/2008].

[3] UNICORE, http://unicore.sourceforge.net/

[02/28/2008].

[4] J. NOVOTNY, S.TUECKE, V.WELCH, An Online

Credential Repository for the Grid: MyProxy. In:

IEEE International Symposium on High Performance

Distributed Computing; 2001 Aug 7-9; San

Francisco, USA. pp. 104–114.

[5] Douglas Thain, Todd Tannenbaum, and Miron

Livny, "Condor and the Grid", in Fran Berman,

Anthony J.G. Hey, Geoffrey Fox, editors, Grid

Computing: Making The Global Infrastructure a

Reality, John Wiley, 2003. ISBN: 0-470-85319-0

[6] ttp://protege.stanford.edu/

[7] April J. Wells : Grid database design, 2005 by Taylor

& Francis Group

[8] RFC 760, "DOD Standard Internet Protocol".

DARPA Request For Comments. Internet

Engineering Task Force (January 1980).

[9] RFC 791, "Internet Protocol". DARPA Request For

Comments 6. Internet Engineering Task Force

(September 1981).

[10] Xin Bai, Han Yu, Yongchang Ji, Dan C. Marinescu:

Resource Matching and a Matchmaking Service for

an Intelligent Grid. International Conference on

Computational Intelligence 2004: 262-265

[11] Emir Imamagic, Branimir Radic, Dobrisa Dobrenic

: An Approach to Grid Scheduling by Using Condor-

G Matchmaking Mechanism, Journal of Computing

and Information Technology, Vol 14, No 4 (2006)

42 Int'l Conf. Grid Computing and Applications | GCA'10 |

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/m/Marinescu:Dan_C=.html
http://www.informatik.uni-trier.de/%7Eley/db/conf/ijit/icci2004.html#BaiYJM04
http://www.informatik.uni-trier.de/%7Eley/db/conf/ijit/icci2004.html#BaiYJM04
http://www.informatik.uni-trier.de/%7Eley/db/conf/ijit/icci2004.html#BaiYJM04

SESSION

GRID COMPUTING + CLOUD COMPUTING +
INTERNET AND WEB COMPUTING +

COMMUNICATION ISSUES

Chair(s)

TBA

Int'l Conf. Grid Computing and Applications | GCA'10 | 43

44 Int'l Conf. Grid Computing and Applications | GCA'10 |

Automatic Workflow Management System in Grid
Web-Based OS Environment with Advanced Scheduling

Module

Yi-Lun Pan 1, Chia-Yen Liu1, Chang-Hsing Wu1, Hsi-En Yu1, Kuo-Yang Cheng1 and Weicheng Huang1

1National Center for High-Performance Computing, Hsinchu, Taiwan
E-mail：serenapan@nchc.org.tw, chris@nchc.org.tw, hsing@nchc.org.tw, yun@nchc.org.tw,

kuoyang@nchc.org.tw, whuang@nchc.org.tw

Abstract - In a Grid Computing environment, there are
various important issues, including information security,
resource management, workflow management, routing, fault
tolerance, and so on. Among these issues, the workflow
management has emerged as one of the most important
issues in past few years. Therefore, the research team of
NCHC developed a workflow management system. The
workflow management system can incorporate the
properties of autonomic computing and exhibit the ability to
reconfigure itself to the changes in the Grid environment.
And, it can discover, diagnose, react to the disruptions of
workflow execution, and monitor Grid resources
automatically. And we also developed a workflow widget in
Grid WebOS. The Grid WebOS is a web site that combined
the Web-based Operating System (WebOS) platform with
the Grid Computing environment to offer users a friendlier
Grid environment. Currently, it joins the Grid, WebOS, and
automatic resource selection mechanism to build a virtual
computer in distributed environment. This progress helps to
lower the barrier for using Grid Computing Environment.
The research team of NCHC develops the Grid WebOS.

Keywords: Widget, WebOS, Workflow, Grid Computing

1 Introduction
In the beginning of the 1990’s, there was a brilliant

success in Internet technology because of the birth of a new
computing environment - Grid, which is composed by huge
heterogeneous platforms, geographical distributed resources,
and dynamic networked resources [1]. The infrastructure of
Grid Computing is the intention to offer a seamless and
unified access to geographical distributed resources
connected via Internet. Thus, the facilities can be utilized
more efficiently to help application scientists and engineers
in performing their works, such as the so called “grand
challenge problems”. These distributed resources involved
in the Grid environment are loosely coupled to form a
virtual machine and each of these resources is managed by
their own local authority independently, instead of centrally
controlled. The ultimate target is to provide a mechanism
such that once the users specify their requirement of
resource. The virtual computing sites will allocate the most

appropriate physical computing sites to carry out the
execution of the application.

As a result, it has become necessary to provide Grid
users with an interface that is both user-friendly and more
straightforward. In this research, we combine the
Web-based Operating System (WebOS) platform with the
Grid Computing environment to offer users a friendlier Grid
environment. By integrating Grid technologies – Globus
Toolkit [2] and WebOS technologies, the National Center
for High-performance Computing (NCHC) Grid
development team has come up with a new and extremely
lightweight approach to acquiring Grid services via Grid
Widgets. As part of this research and to illustrate how useful
our Grid Widgets are, we applied the technology to the
development of a Laser-Plasma Simulation Widget and
Obstructive Sleep Apnea Widget via automatic Workflow
management system.

Besides, the current implementation also adopts the
Asynchronous JavaScript and XML (AJAX) as part of the
base of the WebOS. In order to enable and drive the core
Grid middleware, the Globus Toolkit, the development team
designed Grid Widgets with Java-PHP Bridge technology,
which can improve the response and communication time of
Grid Service. The major task of Grid WebOS and designed
Grid Widgets can be easily customized and configured
based on the end users needs. With these widgets, the Grid
services implemented in this system then dynamically
identifies the resources required by the end users with
characterized resources. The jobs will then be submitted to
local scheduler of the Grid resource selected and the job
status will be monitored properly.

The NCHC Grid development team not only built Grid
WebOS platform, along with the framework of EyeOS [3],
but also incorporated self-developed Grid Widgets into the
Grid WebOS platform. These Widgets are Resource Broker
(RB) [4], Automatic Workflow, Information Retrieval, and
so on. These Grid Widgets allow seamless and scalable
access to Grid resources. This platform combines the Grid,
WebOS, and automatic resource allocation mechanism to
build a virtual computer in distributed computing
environment. The technology of WebOS is the virtual
operation system based on World Wide Web against

Int'l Conf. Grid Computing and Applications | GCA'10 | 45

mailto:serenapan@nchc.org.tw
mailto:chris@nchc.org.tw
mailto:hsing@nchc.org.tw
mailto:yun@nchc.org.tw
mailto:kuoyang@nchc.org.tw
mailto:whuang@nchc.org.tw

traditional desktop systems. The utilization of the resources
in heterogeneous Grid computing environment will be
raised up because these Grid Widgets provide Grid users
with an easy way of accessing integrated computing
resources. In addition, an application-specific widget, such
as Laser-Plasma Simulation Widget that integrates specific
scientific research with distributed computing resources is
implemented to ease the barrier of using the Grid computing
environment for high-energy physicist.

Further, we also designed an advanced dynamic
loading prediction-scheduling algorithm and implement it
on scheduling module. It is developed according to each
different required job criteria. The scheduling algorithm
uses the dynamic loading prediction and adaptive resource
allocation functions to meet users’ requirements. The major
task of the proposed multi-cluster resource manager is to
dynamically identify and characterize the available
resources, correctly monitor the queue status of local
scheduler. Finally, the presented scheduling algorithm helps
to select and allocate the most appropriate resources for
each given job. The aim of the presented scheduling
algorithm is to minimize the total time to delivery for the
individual users’ requirements and criteria.

The rest of the paper is organized as follows. Section 2
presents related works. In Sections 3, we propose workflow
management system and describe the system architecture of
Grid WebOS Platform. In Section 4, these Research Results
of the Designed Grid Widgets are presented. Finally, the
conclusion and future directions are presented in Section 5.

2 State of the Art

2.1 Existing Web-based Application Projects

When it comes to the graphical user interface (GUI)
for Grid computing environment, GridSphere Portal
Framework [5] is one of the most popular options. It is
evolving to support a wide variety of applications that can
be easily plugged into the portal by adopting the portlet API.
With its success in the user management and portlet
management, additional efforts related to the independent
operation space, control thread, and applications are still to
be tackled. Recently, there is a famous web application
developed based on AJAX technique implementation, which
is GMail by Google [6]. Its success in the file transfer and
rich text editing illuminates that the development of Grid
WebOS platform via AJAX technique become practicable.
However, it does not provide on-demand requirements for
applications, especially for Grid applications. Even though
users can customize their personal homepage in Google, all
the customizations are limited to the plain text and images.

Web-based Operating System (WebOS) project started
at the University of California, Berkeley in 1996 as part of
Network of Workstations [7]. So far, there are several
typical commercial representatives of WebOS, such as

YouOS [8], XIN [9], and so on. YouOS and XIN are online
OS with Ajax and PHP techniques. However, these projects
are not open source and also short of the management of
distributed resources. To further enhance such an approach
to meet the demands of Grid Computing, Grid Web-based
Operating System (WebOS) platform, along with the
framework of EyeOS has been developed. This development
follows the spirit of open source, open standard and
GNU/GPL license.

2.2 Existing Grid Workflow Projects

Over the last few years, a number of Grid Workflow
Management systems such as Pegasus [10], Triana [11],
Taverna [12], Condor DAGMan [13], Kepler [14], Gridbus
[15] and Askalon [16] have been developed by projects
around the globe. These systems focus on various aspects of
workflow management including workflow expression
language, graphical environment for workflow composition
and execution monitoring, workflow scheduling heuristics,
data management, legacy applications and fault-tolerant
mechanisms.

Among these systems, Triana supports decentralized
Peer-to-Peer (P2P) based workflow management. However,
the P2P communication in Triana is implemented by JXTA
protocol that uses broadcast technique. In our previous work
[17], we use a DHT (such as Chord, Pastry, CAN) based
P2P system for handling resource discovery and scheduling
coordination. The employment of DHT gives the system the
ability to perform deterministic discovery of resources and
produce controllable number of messages in comparison to
using JXTA.

With regards to Autonomic Computing paradigm,
several research efforts have focused on enabling the
autonomic properties into the system by addressing four
main areas: self-healing, self-protection, self- configuration,
and self-optimization. Projects in both industry and
academia such as OceanStore [18], Storage Tank [19], have
addressed autonomic behaviors at all levels such as
hardware, software systems and applications. At the
hardware level, systems may be dynamically upgradeable,
while at the operating system level, active operating system
code may be replaced dynamically. Moreover, at the
application level, self- optimizing databases and web servers
may be dynamically reconfigured to adapt service
performance. In contrast, our work proposes to address these
autonomic behaviors into the workflow management system.

2.3 Existing Resource Broker and Scheduling
Algorithm

A general architecture of scheduling for resource
broker which is defined as the process of making scheduling
decisions involving resources over multiple administrative
domains [20]. There are three important features, which are
resource discovery, resource selection, and job execution

46 Int'l Conf. Grid Computing and Applications | GCA'10 |

from the previous research of a grid resource broker. As we
know, several famous researches on resource broker are
providing an integrated interface of accessing resources for
different applications, such as Condor – G, EDG Resource
Broker, AppLes, and so on [21], [22]. The resource
brokers above also provide the capabilities of monitoring
computing resources information and then allocate resources
according to this information. Nevertheless, in some actual
situations, the bottleneck of efficiency is not on the
computing power but on the queues belonged to processors.
Most of resources brokers as we know now did not take the
information of real-time queuing status into consideration
while making decisions of allocating resources, either to
make precise and effective scheduling policy. On the
scheduling algorithm scenario, the dynamic job scheduling
is a crucial and fundamental issue in Grid Computing
environment. The purpose of job scheduling mechanism is
to find the optimal solution of resources allocation. A job
scheduling strategy might not perform well in realistic
environment if it allocates computing resources based on
static information only, such as list heuristic and the listing
scheduling (LS) [23]. Our presented research focuses on
addressing this problem by means of implementing the
algorithm contained the real-time queuing status calculation
method additionally and integrating it to the Grid WebOS.

Furthermore, we design an automatic workflow
management system since a finely designed algorithm
usually will usually implement in a useful application or
system. The automatic workflow system ingrates with the
resources broker capable with new feature of mentioned
above. It also helps scientists who need to run large-scale,
complex-composed jobs in a multi-cluster or grid
environments.

3 Proposed Grid WebOS & Workflow
Widgets

3.1 Research Objective

By integrating Grid technologies and WebOS, we have
come up with an approach to acquiring Grid services via
Grid Widgets in Grid WebOS environment. The designed
Grid WebOS has become necessary to provide Grid users
with an interface that is both user-friendly and
straightforward. In order to develop an autonomic workflow
management system based on decentralized resource
discovery architecture, we propose the workflow engine
based on Grid WebOS. This research focuses on managing
computing resources with an interactive graphical user
environment.

3.2 Grid WebOS System Architecture

We develop several grid widgets for the purpose of
providing a lightweight approach for users to acquire grid
services that they wants to use. As the figure 1, when the
NCHC Grid WebOS in the middle of this figure receives a

grid job request from the users via the web browser, and
then the job will be sent to the fittest cluster in the backend
to process. The resource broker will help users to choose
and allocate the resources and the workflow management
system will help users to organize and submit their tasks
using a graphical interface.

Figure 1. The System Architecture of Grid WebOS
Platform

3.3 The Workflow Management System
Architecture

In this section, we will explain the composing of our
workflow engine including the functions of every
component. As the figure 2 shows, users design their tasks
and then constitute them to a single “workflow project” via
the workflow widget on Grid WebOS. The workflow widget
supports that users are allowed to customize the
dependencies among tasks. In other words, users can decide
the execution sequence of tasks. Furthermore, the system
will also help users to decide if the output file of the source
task is the input file of destination task while defining the
dependency between two tasks. After finishing of defining
the tasks and their dependencies, the workflow project will
contain the descriptions of every single task in XML format
or in other script format. After the “workflow project”
submitting, then the Workflow Control Manager will create
a thread to execute this “workflow project”. Next step, the
Request Module will receive the “workflow project” from
the workflow control manager. It will manage the job
submission with proper job attributes. The Request Module
will convert the job’s requirements into an object format and
put the object into the Job Queue.

Following the Request Module, the Job Manager
Module invokes the Resource Allocation Module to
generate a best resource list. This resource list is based on
the criteria posted by the job and the resource status. The
Resource Information Module is responsible for providing
the Resource Allocation Module with instantaneously
resource status. The Information Module updates the
objective of cluster resource status periodically. With the
resources suggestion from the Resource Allocation Module,

Int'l Conf. Grid Computing and Applications | GCA'10 | 47

the job is then dispatched to the backend machines. The Job
Manager Module receives the job from Resource Allocation
Module. It will then send the job to the Execution Adapter
to execute. As a consequence, the scientists can simply
submit their “workflow project” to the Grid environment,
and find the best physical computing site to dispatch and
execute jobs. Thus, the users who even do not understand
grid cluster very well, they can easily submit a series tasks
and these tasks will be finished efficiently.

From users’ scenario, users just drag-drop their jobs
with Workflow widget, and then it will generates a
workflow specification. The designed Workflow engine can
parse this workflow specification in Figure 3. Finally, the
following Grid Middleware will dispatch jobs to the
backend computing resources.

Figure 2. The Internal Architecture of Workflow Engine

Figure 3. Workflow Management System

4 Research Results - The Designed
Grid Widgets and Workflow Widget
In addition to the basic Grid Widgets, more advanced

genetic computing widgets are attempted as well. One of the
most important results in this paper is that we have
developed many grid widgets with friendly graphical user
interface, especially the workflow widget. All of these
widgets can be easily used that users do not have to spend
too much time learning it. Besides, the workflow widget is
allowed users to customize and to arrange their complex
tasks according to their requirements. These grid widgets for
specific scientific applications are named the Workflow
Widget, Resource Broker, Laser-Plasma Simulation Widget,
and Obstructive Sleep Apnea (OSA) Widget.

The main function of the Workflow widget is to
provide features of load prediction, adaptive resource
selection, and characterization of the available resources,
monitoring of the queue status of local scheduler, and
automatic allocation of the Grid resource for job submission.
All of these functionalities can be easily achieved with the
drag-drop user interface. In figure4, users use Workflow
Widget to create tasks and to define their attributes at first.
Second, users then define the dependencies of tasks through
workflow widget, as the figure 5 is illustrated.

48 Int'l Conf. Grid Computing and Applications | GCA'10 |

Figure 4. Workflow Widget – Create Tasks

Figure 5. Workflow Widget – dependency of Tasks

As the figure 6 depicted, Resource Broker (RB)
Widget provides the functionalities of load prediction,
adaptive resource selection, and characterization of the
available resources, monitor of the status queues of local
scheduler, and automatic resource allocation which are
integrated with the workflow widget.

The Laser-Plasma Simulation Widget provides
specialized Grid services including Workflow to the
high-energy physics community. It was used to solve
relativistic high-harmonic generation problems formed
when intense laser pulses interacted with an overdense (i.e.
1028m-3) plasma slab. The simulation domain was
composed of 1500x500x500 cells that corresponded to a

the snapshots
of the solid target plasma density result. The surface of the
solid target was vaporized and ionized until it became a
layer of overdense plasma.

The Obstructive Sleep Apnea (OSA) Widget combines
three-domain knowledge, including medical science,
engendering, and Grid technology. Finally, the Grid users
can read the 3D visualization, and even download the
computed output via Grid WebOS directly, in Figure 8.

Figure 6. Resource Broker Widget

Figure 7. Customized Widget: Laser-Plasma Simulation
Widget

Figure 7. Customized Widget: Obstructive Sleep Apnea
Widget

5 Conclusion and Future Work
The most important result in this paper is that we

design and implement the integrated grid widgets on Grid
WebOS. These grid widgets make users, especially
scientists, who want to submit their complex tasks become
easier and faster. The Grid WebOS and designed Grid
Widgets can be customized and configured freely by the end
users. It also possesses the abilities to dynamically identify,
characterize available resources, and correctly monitor the
queue status of local scheduler. These Grid Widgets are
used to establish a virtual computing facility for the
computing Grid services. The Grid Resource Broker and
Workflow engine can automatically select the most
appropriate physical computing resource, which pushes the
Grid services a step further toward the world application.
The Grid users do not have to manually select the

Int'l Conf. Grid Computing and Applications | GCA'10 | 49

computing resources any longer when they try to submit
computing jobs. Our research can help grid users focus on
developing their program without spending too much time
learning and configuring the grids.

Such development is illustrated by a customized grid
widget which focuses on the Grid service for the
laser-plasma simulation via commercial package
VORPAL©. With Workflow Widget, the physicists can
submit their simulation job to the Grid environment simply
by upload their input files and submit the job without
worrying to where should the job be dispatched. In the
future, other HPC-related researches such as
Meta-computing via Grid environment and Grid-aware
numerical algorithm will be investigated.

6 References
[1] R. AI-Khannak, and B. Bitzer, "Load Balancing for
Distributed and Integrated Power Systems using Grid
Computing," International Conference on Clean Electrical
Power (ICCEP), 22-26 May, 2007, pp. 123-127.

[2] http://www.globus.org/

[3] http://eyeos.org/en/

[4] Yi-Lun Pan, Chang-Hsing Wu, and Weicheng Huang,
"A Grid Resource Broker with Dynamic Loading Prediction
Scheduling Algorithm in Grid Computing Environment,"
the International Conference on Grid Computing
Applications (GCA), Las Vegas, NV, July 2008

[5] J. Novotny, M. Russell, and O. Wehrens, “GridSphere:
a portal framework for building collaborations”, IEEE
Concurrency and Computations: Practice and Experience,
16 (5), April 2004, pp.503-513.

[6] http://www.gmail.com

[7] Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,
David E. Culler, Joseph M. Hellerstein, and David A,
Patterson, “Searching for the Sorting Record: Experiences in
Tuning NOW-Sort,” The 1998 Symposium on Parallel and
Distributed Tools (SPDT '98), Welches, Oregon, August 3-4,
1998.

[8] https://www.youos.com/

[9] http://www.xinteleport.com/default.asp

[10] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
S. Patil, M. H. Su, K. Vahi, M. Livny, “Pegasus: Mapping
Scientific Workflow onto the Grid”, Across Grids
Conference, Cyprus, 2004.

[11] I. Taylor, M. Shields, and I. Wang, “Resource
Management of Triana P2P Services”, Grid Resource
Management, Netherlands, June 2003.

[12] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M.
Greenwood, T. Carver and K. Glover, M.R. Pocock, A.
Wipat, and P. Li, “Taverna: a tool for the composition and
enactment of bioinformatics workflows”, Bioinformatics,
20(17): 3045-3054, Oxford University Press, UK, 2004.

[13] M. Litzkow, M. Livny, and M. Mutka, “Condor-A
Hunter of Idle Workstations”, In Proceedings of 8th
International Conference of Distributed Computing Systems,
IEEE CS Press, USA, June 1988.

[14] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E.
Jaeger, M. Jones, E. A. Lee, J. Tao, and Y. Zhao, “Scientific
Workflow Management and the KEPLER System”,
Concurrency and Computation: Practice & Experience,
Special Issue on Scientific Workflows, 2005.

[15] J. Yu and R. Buyya, “A novel architecture for realizing
grid workflow using tuple spaces”, In Proceedings of 5th
IEEE/ACM Workshop on Grid Computing, IEEE CS Press,
USA, 2004.

[16] T. Fahringer et al., “ASKALON: a tool set for cluster
and Grid computing”, Concurrency and Computation:
Practice and Experience, 17:143-169, Wiley Inter- Science,
2005.

[17] R. Ranjan, M. Rahman, and R. Buyya, “A
Decentralized and Cooperative Workflow Scheduling
Algorithm”, In Proceedings of 8th IEEE International
Symposium on Cluster Computing and the Grid, France,
May 2008.

[18] J. Kubiatowicz, “OceanStore: Global-Scale Persistent
Storage”, Stanford Seminar Series, Stanford University,
Spring 2001.

[19] J. Menon, D. A. Pease, R. Rees, L. Duyanovich, and B.
Hillsberg, “IBM Storage Tank–A Heterogeneous Scalable
SAN file system”, IBM Systems Journal, 42(2):250–267,
2003.

[20] J. M. Alonso, V. Hernandez, and G. Molto, "Towards
On-Demand Ubiquitous Metascheduling on Computational
Grids," the 15th Euromicro Conference on Parallel,
Distributed and Network-based Processing (PDP), February
2007, pp 5.

[21] J. Schopf, "A General Architecture for Scheduling on
the Grid, "Journal of Parallel and Distributed Computing,
special issue, April 2002, p. 17.

[22] A. Othman, P. Dew, K. Djemame and I. Gourlay,
"Toward an Interactive Grid Adaptive Resource Broker,"

50 Int'l Conf. Grid Computing and Applications | GCA'10 |

http://www.globus.org/
http://eyeos.org/en/
http://www.gmail.com
www.youos.com/
http://www.xinteleport.com/default.asp

Proceedings of the UK e-Science All Hands Meeting,
Nottingham, UK, September 2003, pp. 4.

[23] M. Grajcar, "Strengths and Weakness of Genetic List
Scheduling for Heterogeneous Systems," Application of
Concurrency to System Design, 2001. Proceedings. 2001
International Conference, 25-29 June 2001, pp. 123-132.

Int'l Conf. Grid Computing and Applications | GCA'10 | 51

Phantom Toolkit: A Grid-Enabled Implementation for

Autonomic Cluster Computing in Computerized

Classrooms

Shuen-Tai Wang, Chin-Hung Li, Chang-Hsing Wu, and Chih-Wei Hsieh

National Center for High-Performance Computing, Taiwan

Abstract - Due to the successful achievement in current

processor design and fabrication, the computing power of

Personal Computer (PC) has become noticeable. Today, even

the performance of individual laptop exceeds that of previous

mainframe. Lots of high-throughput type of applications can

be satisfied using desktop PCs like the ones found in

computerized classroom. In this paper, we present a grid-

enabled toolkit for cluster computing to utilize the computing

power such as resides in computerized classrooms. The PCs in

computerized classroom are usually setup for education and

training purpose during the daytime, and shut down at night.

After well development, these PCs can be transformed into a

pre-configured cluster computing resource immediately

without touching the existing education/training environment

installed on these PCs. Thus, the training activities will not be

affected by this additional activity to harvest idle computing

cycles.

Keywords: Personal Computer, cluster computing,

computerized classroom

1 Introduction

 Scientific computing has become the key player in

advancements of modern science and technology. Over the

years, the constant demand for computing power from "grand

challenges" has resulted in the dramatic growth of

supercomputing power. Also, the growth in computing power

of the PC is a direct result of recent advances in computer

science. Many high through-put types of applications can be

satisfied by using the current desktop PCs, especially for those

in computerized classrooms [1], thus, leaving supercomputers

to perform the work of large-scale parallel computations.

 Today, the computerized classroom is an unheeded

resource or underutilized in academic institutes and colleges,

but it is a potential computing resource to support some

computations. The PCs in computerized classroom are usually

setup during the daytime for education and training purposes

and then shut down at night. One interesting topic can be

raised is how to exploit the computing resource of the power-

off PCs, and without touching the existing education/training

environment installed on these PCs. Thus, the training

activities will not be affected by this additional activity to

harvest idle computing cycles.

 In this paper, we propose a grid-enabled toolkit -

"Phantom Toolkit" to solve the idling issue by deploying pre-

configured cluster computing environment that can utilize the

existing computing power residing in computerized

classrooms. Phantom Toolkit was developed by National

Center for High-performance Computing (NCHC) [2]. It

includes two major components: Phantom Cluster and

Phantom Grid. Phantom Cluster can transform the PCs into a

cluster-computing resource immediately that can be used at

night when the PCs are normally not in use without touching

the existing education/training environment. This can be

achieved by "Root over NFS" [3] diskless environment. So it

does not touch the client hard drive, therefore, existing

Operating Systems, along with all the software and

applications installed on them, are preserved. In addition to

automation and manageability, many middleware are

packaged into Phantom Toolkit, such as resource management

system, accounting system, monitoring tools, and the Message

Passing Interface (MPI) [4] libraries for parallel program.

Phantom Grid is responsible for collaborating the

geographically distributed Phantom Clusters. We integrated

some related grid middleware into Phantom Toolkit to

perform reliable and efficient sharing of computing resources,

and provide single entry interface for users for submitting,

monitoring and controlling jobs in grid environment.

 This paper presents a grid-enabled toolkit for autonomic

cluster computing in wide-area computerized classrooms. It

works well especially for computationally bound applications.

The rest of this paper is organized as follows. Section 2 gives

a description of hardware/software architecture. Section 3

gives some details of Phantom Cluster. Section 4 discusses the

integration of grid middleware. Performance evaluation and

analysis will be presented in section 5. Finally, section 6

presents the conclusion and future work.

2 System Architecture

 Figure 1 shows the system architecture of Phantom.

NCHC has three business units located at three science parks

in Taiwan, and each business unit has two computerized

52 Int'l Conf. Grid Computing and Applications | GCA'10 |

classrooms. We built a Phantom Grid that consists of six

Phantom Clusters which are widely distributed in

computerized classrooms of NCHC over Taiwan. There is a

front node in Phantom Grid. The front node is a login node

located in the top of Phantom’s architecture for users to

provide a single entry interface for submitting, monitoring and

controlling jobs. Again, there is a head node in Phantom

Cluster. Each head node has two Ethernet interfaces. One is

assigned a public IP address and connected to the front node

via internet. The other is connected to the local classroom

switch. Both front and head node are installed the same

operating system to avoid the shared library files missing

problem.

Figure 1. System Architecture

 Figure 2 shows the software stack of Phantom Toolkit. It

can be divided into two major parts: Diskless Module and

Phantom Module. At the first, the Phantom Module depends

on the proper setups of diskless environment. During the

deployment of Diskless Module, the administrator needs to

power on PCs one by one and gather their MAC addresses.

The diskless module will collect MAC addresses and generate

the associated configuration file for DHCP and PXELINUX

[5] services. Furthermore, the list of MAC addresses will be

the target of power management mentioned in the following

section. After diskless environment being valid, the head node

will become a powerful server, which provides initial RAM

disk, IP address for PXE boot, NFS and NIS service for a

computerized classroom. Above the diskless layer, many

software are packaged into the Phantom Module for Phantom

system, such as local queuing system, accounting software,

monitoring tools, power management module, grid-enabled

extension and MPI libraries. Most of the software are widely

accepted and are tailored and tuned for helping automation

and manageability. We also wrapped these pre-configured

software into a package for some Linux distributions,

including CentOS, Fedora, and Red Hat. With this one-size-

fits-all solution staged, we can greatly eliminate Phantom

system building efforts.

Figure 2. Software Stack

 After well deployment, all PCs in the computerized

classrooms could be scheduled. Users can login the front node

and submit their jobs to resource broker anytime. The

resource broker will fetch the jobs and send to the applicable

Phantom Cluster by its scheduling policy. And then even

when the work horses of the Phantom Cluster is not available

at the moment. Submitted jobs will be queued and wait for

computing resources to become available, typically during

night time when the classroom PCs are free from their duty

assigned to perform. When the PCs are available, the Phantom

will fetch the suitable jobs, parse the requirements, and

remote power on exact number of the PCs. After jobs are

completed, the outputs will be sent back to the front node.

While the Phantom with no further job request, it will power

off the PCs that arranged by queuing system automatically.

These features greatly reduce the management effort and time

required to build a cluster as well as power consumption.

3 Phantom Cluster

 Phantom Cluster is the base of Phantom system. It

provides a pre-configured cluster-computing environment for

utilizing the computing power resides in a computerized

classroom. The special characteristics of Phantom Cluster as

described in the following.

3.1 Power Saving

 To echo today's energy saving issues, we also developed

an approach to reduce energy utilization in Phantom Cluster.

We do this work on the integration of resource management

system and remote power management system [6] that aims at

reducing power consumption such that they suffice for

meeting the minimizing quality of service required by

Phantom Cluster. In particular, our approach relies on

recalling services dynamically onto appropriate amount of the

PCs according to user's job request and temporarily shutting

down the computers after finish in order to conserve energy.

As shown in Figure 3, Phantom will wake up every minute to

check job queue if there exist jobs, and make sure the PCs

become available, Phantom then will fetch the applicable jobs,

Int'l Conf. Grid Computing and Applications | GCA'10 | 53

parses the requirements, and remotely powers on the correct

number of PCs by Wake-on-LAN [7] protocol. After the job

completes, Phantom powers the PCs down. Our

implementation currently relies on checking the local queuing

system (i.e. Torque [8,9]) job pool and then decides to shut

down which compute nodes when no new job was submitted.

By powering off idle PCs, it can significantly save more

energy than always keeping all PCs running.

Figure 3. Scenario of Power Saving Mechanism

3.2 Classroom Management

 In order to enable Phantom services work tightly with

computerized classrooms in different locations. It is necessary

to develop environmental controlling tools. In each

computerized classroom in NCHC, it has already installed

Clonezilla [10] for OS image cloning and deployment for

education and training course. The Clonezilla has its own

DHCP service to clone or backup OS images. But due to the

DHCP protocol constrains, it is not allowed to have two

DHCP servers under the same subnet at one time.

Accordingly, we have to let the head node has the ability to

start/stop the DHCP service of Clonezilla server automatically.

The workflows of our classroom management are depicted in

Figure 4 and Figure 5. On front node, we have arranged a

central database storing the weekly education/training time

table data. The Classroom-Ctrl tool client-side

implementation on each head node will query this database

every hour. This helps role of a classroom to change over time

and facilitates our lecturers to give full-day or half-day

courses. In other words, we could schedule the accessibility of

each classroom.

 Figure 5 illustrates the more detail workflow about how

we control the DHCP service in a classroom. Before

switching for cluster computing, the Classroom-Ctrl tool will

shut down all PCs via UDP datagram, and stop the Clonezilla

server's DHCP service. A few minutes later, Classroom-Ctrl

tool will start head node's DHCP service to handle the boot-

time installation requests from diskless clients. Each time slot

for computing or training activity will last at least for two

hours. In the same way, five minutes before the expiration on

computing, the head node will power off its diskless nodes

and stop its own DHCP service. The Classroom-Ctrl tool will

try to start the Clonezilla's DHCP service again before time is

up. With this workflow process, not only night time but also

empty time slots, local PC classrooms will be ready for

computing most of time.

Figure 4. Front Node Workflow

Figure 5. Head Node Workflow

4 Phantom in the Grid

 After well deployment of Phantom Cluster in

computerized classrooms, we hope that these distributed

Phantom Clusters can collaborate and form as a whole

resources for users. We refer to Grid architecture to achieve

this work. Unlike the complexity of standard grid middleware,

the Phantom's front and head nodes are all in our

administrative domain, adopted the same operating system

and user/group accounts. So we could bypass the credential

management service in grid environment. For performing

reliable and efficient sharing of computing resources between

Phantom Clusters, we employ the meta-scheduler - GridWay

[11,12] to provide a scheduling functionality.

 GridWay is an open-source community project and it is

highly modular, allowing adaptation to different

infrastructures. We customized the prolog, wrapper, and

epilog behavior in GridWay; moreover, we modified

EM_MAD module to replace Globus [13] GRAM functions.

Security is always the top priority for online services. We've

replaced the GridFTP [14] with general SFTP/SCP service to

migrate user data between front and head nodes. Installing

GridWay makes central job submission and job dispatch to

54 Int'l Conf. Grid Computing and Applications | GCA'10 |

computerized classrooms in different geographical locations

possible. Figure 6 shows how GridWay interacts with local

cluster services. Hosting the GridWay meta-scheduler

prevents us from installing additional software on remote head

nodes. This also means than Phantom has the scalability for

new head nodes to join it. We could add new computerized

classrooms to raise Phantom's total computing capacity in the

future.

Figure 6. GridWay in Phantom

 Like the way using a typical PC cluster, users need to

prepare simple scripts before submitting jobs. Figure 7 lists a

parallel job script example. There is no Queue Name

specification in script any more. Instead, simply specifying the

quantity of processors to NP variable is enough. The

processor demand will be handled by a route type queue

named "default" on the local cluster. Declaring this queue

helps convey each job to the optimal execution one listed in

Torque system.

 GridWay job scripts will be transparently converted to

equivalent Torque job scripts on head nodes. User's job files

will be archived as a tar file and transferred to head node's

working directory for execution when GridWay scheduler

dispatched them. Users can specify their preferred classroom's

head node IP address to the HOSTNAME variable in their

scripts. If users did not overwrite the REQUIREMENTS

variable, GridWay scheduler will choose one of computerized

classrooms for each job by its round-robin ranking policy.

Complicated Grid services sometimes hinder domain

application scientists. For end users, GridWay provide a

LRM-like (Local Resource Manager) console interface for

submitting, monitoring and controlling jobs. Using Phantom

system does not need to care the whole environment. These

remote PCs will work as local resources connected to a cluster.

Initially, Phantom Cluster was designed for temporary, small-

scale computation. If there were some jobs remain running but

the computerized classroom was running out of time, our

customized scheduler will retain unfinished jobs' profile data

on behalf of users. Then the Torque on the head node

continues stopping all jobs to make the classroom available

for education/training. These interrupted jobs will be

automatically submitted again by our GridWay adaptation

when the classroom is ready for computation next time.

#Job Name

NAME = meep_job

#Your Executable Program

EXECUTABLE = file:///work/james/job_meep/meep-mpi

ARGUMENTS = "./bend-flux.ctl"

INPUT_FILES = file:///work/james/job_meep/bend-flux.ctl

#Output Files

STDOUT_FILE = stdout.${JOB_ID}

STDERR_FILE = stderr.${JOB_ID}

#Setting Environment Variable

ENVIRONMENT =

MPI_V1_PATH=/opt/mpich/gnu,P4_GLOBMEMSIZE=99187896

REQUIREMENTS = HOSTNAME = "140.110.125.132"

#Job Type

TYPE = mpi

#Total 4 CPUs

NP = 4

Figure 7. Phantom Parallel Job Script Example

 Currently, we have installed several scientific

applications for online service, such as ABINIT [15], NAMD

[16], Gromacs [17], Meep [18], etc. They were being

successfully tested via the GridWay.

5 Performance Evaluation and Analysis

 In this section, we employ HPL (High Performance

Linpack) [19] to evaluate the performance of Phantom Cluster

in a computerized classroom, and compare results with two

PC clusters in NCHC. The two PC clusters are: the self-made

cluster called Siraya [20] and the IBM 1350 Cluster. The

details of hardware specification are listed in Table 1.

 Phantom Siraya Cluster IBM 1350 Cluster

CPU Intel Core2

Duo 2.83GHz

x 1

AMD Opteron 275

Dual Core 2.2GHz x

2

Intel Woodcrest

3.0GHz Dual-Core x

2

Memory 8G DDR2

SDRAM

8GB DDR400

Registered/ECC

SDRAM

16 GB DDR2 PC2-

5300 FBD ECC

SDRAM

Network Gigabit

Ethernet x 1

Gigabit Ethernet x2,

10Gb/s InfiniBand

Gigabit Ethernet x2,

20Gb/s InfiniBand

Total

Nodes

Desktop PC *

40

1U Rack-mount x

80

1U Rack-mount x

512

Watts 9.6 KW 66KW 238KW

Table.1 Hardware Specification of Three Clusters

 HPL is to solve a dense linear system problem and is the

widely used benchmark for evaluating performance of

supercomputer systems. However, the performance of PC

cluster is largely application-dependent. We also use the

NCHC benchmark suite [21] which contains five benchmarks,

namely hubksp, nonh3d, bem3d, ns3d and jcg3d, picked from

four application domains. The hubksp program comes from

physics, and nonh3d is an atmospheric science case. Both

bem3d and ns3d are applications of parallel computing in the

field of Computational Fluid Dynamics (CFD). The last one,

jcg3d is from computational solid mechanics. These particular

jobs helped us to distinguish the performance in different

problem domains.

Int'l Conf. Grid Computing and Applications | GCA'10 | 55

 Table 2 shows the maximal performance (Rmax) and

efficiency of various clusters on running 80 processors HPL

job. We observe that the IBM cluster presents the best result

among these machines, while Siraya is the worst one.

Although this diskless based Phantom Cluster is not well-

tuned on networking parameters, but it is capable of running

parallel computations.

Cluster

Name (NIC)

Network

Topology

Switch Rmax

GFlops

Efficienc

y (%)

Siraya (IB) Fat-tree Voltaire 9288 271.05 77

Siraya

(GbE)

Star Nortel BayStack

5510-48T

228.8 65

Phantom

(GbE)

Star Cisco SLM2048 271.7 30

IBM Cluster

1350 (GbE)

Star Force10 E600 652.8 68

IBM Cluster

1350 (IB)

Fat-tree Voltaire 9288 758.4 79

Table 2. The Rmax and Efficiency of the Three Clusters

 From sequential elapsed-time results listed in Table 3,

Cluster 1350 excels Phantom while running single core except

the jcg3d project. Phantom Cluster proved that it could

provide capability for scientific computing. According to the

floating point operations per clock cycle information, the Intel

Core2 Duo doubles the AMD Opteron processor. For

sequential jobs, Siraya apparently will be the worst one due to

its less powerful processor. In terms of parallel processing, we

evaluate hubksp and nonh3d jobs on many processors. Figure

8 shows the performance comparison of Siraya and Phantom.

It is a comfort to see that Phantom took less time than Siraya

while executing nonh3d. For parallel hubksp jobs, Siraya

edged out Phantom on 32 cores. There is a plausible reason

for results of Phantom while running the hubksp project

beyond 16 cores. The main cause for a drop in performance is

NFS network contention with the computing channel over the

same switch in the diskless environment. Both Siraya and

IBM Cluster 1350 have separate sub-networks for monitoring,

computing and file-system to avoid conflict. Current desktop

PCs are not dedicated for high performance computing.

However, for non urgent jobs, Phantom will be qualified.

 Considering the results in Figure 10, Phantom has better

potential in performance-power ratio than Siraya, mainly

because of cooperation of a group of inferior desktops.

Generally speaking, one desktop consumes less power than a

rack-mount server.

 bem3d hubksp jcg3d nonh3d ns3d

Phantom 2787 7562 2664 3598 9734

IBM Cluster 1240 1510 3765 1861 2252

Siraya 5690 11343 6121 8976 16335

Table 3. Execution Time (sec.) of NCHC Benchmark Suit

Figure 8. NCHC Benchmark Suit – nonh3d

Figure 9. NCHC Benchmark Suit – hubksp

Figure 10. Performance/Power Ratio Comparison

Figure 11. Power Consumption Comparison

 Figure 11 shows we can reduce power consumption

while Phantom’s power saving mechanism is launched. The

first case is to keep PCs powered on all the time. The other

case is that PCs were powered off when no requests. However,

running other applications or different submission frequencies

will cause distinct results, so we submitted the same workload

(240 HPL jobs; 10 jobs per hour) in three days for testing

cases to sustain objectivity. Using power saving mechanism

roughly saved 1790 watts per hour compared to the always

powered-on case. If we keep running these two cases for

months, the distinction will be more obvious.

56 Int'l Conf. Grid Computing and Applications | GCA'10 |

 Phantom Cluster takes advantage of existing idle time of

computerized classrooms to do computing. It makes sense to

neglect the purchasing cost. Besides, the power consumption

of booting stage will obviously be reduced in diskless mode.

Running Phantom will be more economical than staging a

traditional PC cluster. We can reduce electricity and disk

failure cost for online service. To sum up, C-P ratio of

Phantom Cluster will far surpasses installing brand new

machines.

6 Conclusion and Future Work

 Phantom utilizes the untapped computing power that

resides in computerized classroom PCs. It works especially

for sequential or parallel computationally bound applications

very well. But it does not apply to communication bound

applications which need high-performance file system or local

scratch space on compute nodes. To echo today's energy

saving issues, Phantom toolkit includes a built-in resource

allocation mechanism that wakes up the idle PCs when

computing power is needed and then powers them down when

the job is done. The Grid middleware are also integrated into

Phantom Toolkit to perform reliable and efficient sharing of

computing resource resides in geographically distributed

computerized classrooms. For specific science applications,

the benchmark results indicate that Phantom not only has the

advantage of better cost/performance ratio, but also has the

potential to outperform high-end machines. Phantom Toolkit

also greatly reduces the time required to build and manage a

cluster. In the future, we plan to add Cloud middleware that

Phantom can be extended for Cloud Computing. It also will

soon be planned to deliver freely as one CD/DVD to provide

a Drop & Go cluster/grid computing solution.

7 References

[1] A. Apon, R. Buyya, H. Jin, and J. Mache, "Cluster

Computing in the Classroom: Topics, Guidelines, and

Experiences"

[2] NCHC, National Center for High-performance

Computing, http://www.nchc.org.tw

[3] C.T. Yang, P.I. Chen, and Y.L. Chen, "Performance

Evaluation of SLIM and DRBL Diskless PC Clusters on

Fedora Core 3," In Parallel and Distributed Computing,

Applications and Technologies, 2005.

[4] Message Passing Interface Forum, "MPI: A message-

passing interface standard," International Journal of

Supercomputer Applications 8 (3/4) (1994) 165-414

[5] PXELINUX, Available:

http://syslinux.zytor.com/wiki/index.php/PXELINUX

[6] A. DiRienzo, John A. Medeiros, M. Whitlock, E. Wages,

and J. Highfield, "Concepts for Computer Center Power

Management," International Supercomputing Conference,

2010.

[7] Wake-on-LAN, Available:

http://en.wikipedia.org/wiki/Wake-on-LAN

[8] TORQUE Resource Manager, Available:

http://www.clusterresources.com/products/torque-resource-

manager.php

[9] K. Chadalvada, S. Nidoni, and T. Sebastian, "Efficient

Power Utilization of a Cluster Using Scheduler Queues,"

Available at:

http://www.hipc.org/hipc2006/posters/cluster.pdf

[10] S. Shiau, "The Clonezilla project," Available:

http://clonezilla.nchc.org.tw and

http://clonezilla.sourceforge.net

[11] H. Eduardo, M. Ruben, L. Ignacio M., "An

Experimental Framework For Executing Applications in

Dynamic Grid Environments," ICASE Technical Report

(2002)

[12] P. Armstrong, "Building a Scheduler Adapter for the

GridWay Metascheduler," Faculty of Engineering Summer

2006 Work Term Report

[13] I. Foster and C. Kesselman, "Globus: A Metacomputing

Infrastructure Toolkit," International Journal of

Supercomputer Applications 11 2 (1997), pp. 115-128.

[14] The Globus Project: the GridFTP protocol, Available:

http://www.globus.org/datagrid/gridftp.html

[15] ABINIT, Available: http://www.abinit.org/

[16] NAMD - Scalable Molecular Dynamics, Available:

http://www.ks.uiuc.edu/Research/namd/

[17] Gromacs, GROningen MAchine for Chemical

Simulations, Available: http://www.gromacs.org/

[18] MEEP, Available: http://ab-

initio.mit.edu/wiki/index.php/Meep

[19] A. Petitet, R. C. Whaley, J. J. Dongarra, and A. Cleary.

"HPL - A Portable Implementation of the High-performance

Linpack Benchmark for Distributed Memory Computers,"

Available: http://www.netlib.org/benchmark/hpl/

[20] Siraya Cluster, Available: http://siraya.sro.nchc.org.tw/

[21] K.C. Huang, H.Y. Chang, C.Y. Shen, C.Y. Chou, S.C.

Tcheng, "Benchmarking and Performance Evaluation of

NCHC PC Cluster, "The Fourth International Conference on

High-Performance Computing in the Asia-Pacific Region-

Volume 2, 2000

Int'l Conf. Grid Computing and Applications | GCA'10 | 57

High Performance Cloud Computing: An Emerging
Strategy for Scientific Computing

E. Okorafor

Computer Science, African University of Science & Technology, Abuja, Nigeria

Abstract - Scientific computing often requires the availability
of a massive number of computers for performing large scale
experiments. Traditionally, high-performance computing
solutions and installed facilities such as clusters and super
computers have been employed to address these needs. Cloud
computing provides scientists with a completely new model of
utilizing the computing infrastructure.

The infrastructure services (Infrastructure-as-a-service),
provided by these cloud vendors, allow any user to provision
a large number of compute instances. However, scientific
computing is typically characterized by complex
communication patterns and requires optimized runtimes.
This paper will outline the challenges in exploiting cloud
computing infrastructure and technologies for scientific
computing, and its potential applications, especially, in the
context of parallel applications, system performance,
utilization, overheads and runtimes.

Keywords: Cloud, grid, virtualization, high-performance
computing

1 Introduction
 The unprecedented introduction of the commercial
cloud infrastructure and services have allowed users to
provision compute resources, storage resources, as well as
applications in a dynamic manner on a pay per use basis.
These resources are relinquished when not used and can be
integrated within an existing infrastructure. Some of these
infrastructures and services such as Amazon EC2/S3[1,2],
Gogrid[3], Microsoft Azure [4], Google App Engine [5] and
others, have the effect of improving resource utilization,
decreasing waste, and improving energy conservation. In
addition solutions employing cloud technologies such as
MapReduce[6], Hadoop[7] and Dryad [8] have proved to be
successful.

 The resources provisioned are transparent to the users.
In some cases, the use of virtualized resources actually give
the user much more control over the provisioned resources,
including the ability to completely customize the Virtual
Machine (VM) images, root/administrative access, etc. A
combination of open-source cloud infrastructure software
such as Nimbus [9], Eucalyptus [10] and open source
virtualization software such as Xen Hypervisor [11], allow

organizations to supplement their existing computation
facilities by leasing from commercial cloud infrastructure,
while improving resource utilization, as in the case of private
clouds.

 With all these, an assumption can be made that access to
computational power is no longer a barrier to scientific
computation which usually requires the availability of a
massive number of computers performing large scale
data/compute intensive applications. Scientific computation
typically involves the construction of mathematical models
and numerical solution techniques to solve scientific, social
and engineering problems. Many of these problems tend to be
large and complex in scope that dedicated high-performance
computing (HPC) infrastructures such as grids, clusters or
network of workstations have traditionally been utilized to
address these computing needs.

1.1 HPC clusters, grid and cloud computing
 Grid and cluster computing have opened up many
opportunities and created profound capabilities for innovative
research with an extraordinary advantage of on-demand
computing power as a utility much like electric power. These
capabilities include dynamic resource or service discovery,
and the ability to pool a large number infrastructural
resources belonging to different administrative domains.
Additionally, the intrinsic ability to find the best set of
compute and storage nodes to accomplish a specific scientific
computational task is at core of the success of these HPC
clusters and grid computing. Some of these grids for
scientific computing [12] have become so successful that a
world-wide infrastructure has been established and now
available for computational science.

 With all the above promising features of the cloud, HPC
has not been a good candidate for cloud computing due to its
requirement for tight integration between compute nodes via
low-latency interconnects. In addition, virtualization, which is
often prerequisite for migrating local applications to the
cloud, does not allow for scalability and efficiency in an HPC
context due, to its inherent performance overheads. HPC
clusters usually run fully-utilized and therefore there are no
benefits gained from consolidation. The primary focus of
cloud computing has been geared towards non mission-
critical or non-performance-demanding applications.

58 Int'l Conf. Grid Computing and Applications | GCA'10 |

1.2 Challenges and motivation
 In the context of scientific computation using HPC
these three major preconditions need to be satisfied:

1. There need for tight coupling between the compute
nodes via low-latency interconnects

2. The application needs to be parallizable to utilize the
available resources

3. There should be an appropriate parallel runtime to
implement it

 Therefore, in order to migrate scientific applications to
the cloud, the aforementioned preconditions need to be
satisfied. From the research point of view, initial studies have
been conducted on the feasibility of using the cloud and/or
cloud technologies for scientific computing. Some research
have focused on using cloud computing technologies by
analyzing the performances of HPC scientific applications
[13] or the cost of performing scientific experiments [14] on
cloud infrastructure. Different solutions are potentially
available to move from the traditional science grids and HPC
clusters and embrace cloud computing paradigm. Some
vendors employ hardware level virtualization to provide
compute and storage resources on demand. Another solution
provided by vendors focus on application level virtualization
by enforcing a specific application model that leverage their
large infrastructure and scale up and down on demand. Other
solutions provide end users with a platform for developing
cloud computing applications, resulting in a better Quality of
Service to the end user.

 In this paper, we explore and assess the performance,
overhead, system utilization and runtimes of HPC
applications in the cloud environments. The paper also
addresses the need for virtualization in HPC clouds. We
conclude that HPC can use the cloud concept without an
appreciable decrease in performance, especially in the case of
a private cloud if virtualization is excluded. Achieving native
application performance and scalability in cloud
environments will enable HPC to effectively extend itself in
such environments. This will certainly make it easier for
research centers and universities to utilize high performance
compute resources across the world for better research,
education and product development.

 The rest of the paper is organized as follows: first we
provide an overview of HPC environment and its role in
scientific computing. Next, we present cloud computing by
defining the reference model and the key elements in this
paradigm, followed by the discussion of the feasibility of
using cloud infrastructure for HPC. In section 5, we discuss
the performance issues related to HPC in the cloud and
implications of using virtualized resources. Final thoughts
and key observations about the future directions of cloud
computing, as a valid support for scientific computing, are
discussed at the end.

2 High performance computing
environments

 HPC in scientific computing helps to accelerate speed or
reduce the time to obtain computational results. It provides
significant cost reductions and tremendous flexibility. At the
core strength is the ability to drive the CPU performance
towards its limits. The trend over the past decade has seen
HPC migrate from supercomputers to commodity clusters.
The drivers for this have been the desire to achieve high
performance at lower cost (best cost/performance).

2.1 Node Architecture
 The HPC architecture has a huge influence on the
performance. For example to meet the demands of more
powerful HPC nodes, more execution cores (e.g. dual- and
quad-cores) are being integrated into each processor and
more processors are being tightly connected. The HPC
architecture is characterized by packet-switched, high-
bandwidth, scalable, low-latency point-to-point
interconnection technologies. There are important challenges
in this strategy to keep the power consumption as low as
possible while increasing the computational capabilities of
the HPC nodes.

2.2 Cluster Interconnect
 The networking requirements of each node must match
that of the CPU so that the application can scale accordingly,
without introducing additional network or CPU overheads.
The InfiniBand has emerged as the most deployed high-speed
interconnect because it provides low-latency, high-bandwidth
and extremely low CPU overhead.

2.3 Parallel Processing
 Traditionally, software programs run on HPC clusters

are parallel applications using message passing infrastructures
such as PVM and MPI to achieve fine grained parallelism.
Applications achieve coarse-grained parallelism using
workflow frameworks. The applications can then be
scheduled using software systems such as Platform LSF HPC.
In such an environment the availability of computational
power becomes the focus of resource allocation. The
application and data required needs to be moved to the
available computational power. The efficiency of the overall
system may decrease due to data movement through the
network, highlighting the need for low-latency, high
bandwidth network infrastructure.

3 The rise of the clouds
 Cloud computing is a term used to describe the
infrastructure, platform and type of application. A cloud
computing environment encompasses the ability to
dynamically provision, configure, reconfigure and de-

Int'l Conf. Grid Computing and Applications | GCA'10 | 59

configure servers and services as needed. The servers or
nodes can be physical or virtual machines. The term cloud
computing is too broad to be captured into a single definition.
The key elements include software and hardware available on
demand over the internet.

3.1 Definition and services
 Buyya et al. [15] gives a more structured definition as a
“type of parallel and distributed system consisting of a
collection of interconnected and virtualized computers that
are dynamically provisioned and presented as one or more
unified computing resources based on service-level
agreement”. This definition is apt in that it adequately
captures the ability of delivering both infrastructure and
software as services. The resources that constitute the
physical infrastructure include clusters, datacenters, servers or
desktop machines. The services exposed by the cloud can be
classified into three major offerings available to the end-user.
These are; 1) Infrastructure-as-a-Service (IaaS), 2) Platform-
as-a-Service (PaaS), and 3) Software-as-a-Service (SaaS)

Figure 1: Cloud computing layered architecture and
components

Clouds can be internal (private), managed with an
organization, providing compute resources to the
organization’s employees. When these resources are managed
by a cloud computing vendor, then it is external (public).
Figure 1 shows the complete structure of the cloud, listing the
different layers and components.

3.2 Cloud for HPC
 It is then conceivable that clouds can be built with the
HPC systems’ components, and if this incorporates a low-
latency networking solution, then it is conceivable that the
cloud can provide HPC-as-a-Servive (HPCaaS), or as high
performance cloud computing. The main challenge with using
the cloud for HPC is the performance or productivity. As
earlier mentioned, HPC applications or scientific
computations require high compute power, high performance
interconnects and fast connectivity to the storage or file
systems. Most clouds are built around non-homogeneous

distributed systems, connected by low-performance
interconnects. These solutions do not present optimal
environments for HPC applications or scientific computing. In
addition, virtualization, which enhances the provisioning
process, increases the load on the compute infrastructure and
further degrades cloud performance.

4 High performance cloud computing:
Evaluation & analysis

 Following earlier sections, we can summarize that in
order to use cloud infrastructure for high performance
computing, the cloud needs to meet the following
requirements;

1. design based on HPC components
2. with high performance, low latency, high throughput

interconnects
3. parallizable applications to utilize resources
4. appropriate parallel runtime to implement it.

In order to determine the feasibility, an HPC cloud
environment was built as described in Section III. The system
configuration is summarized in Table 1.

Resources & Infrastructure
Servers • Clusters • Disks • CPU • Memory • Software

Tools; Environment & Programming
Process Automation • Application Management

Configuration Management • Application Streaming
OS Provisioning • Virtualization • Billing

Distributed Programming • Libraries • Scripting

Applications
Social networking • Enterprise/IT services • Scientific

Middleware

System level

User level

The Cloud

Resources & Infrastructure
Servers • Clusters • Disks • CPU • Memory • Software

Tools; Environment & Programming
Process Automation • Application Management

Configuration Management • Application Streaming
OS Provisioning • Virtualization • Billing

Distributed Programming • Libraries • Scripting

Applications
Social networking • Enterprise/IT services • Scientific

Middleware

System level

User level

The Cloud

Table 1 – System configuration

Servers HP ProLiant ML115 G5 64-node
cluster

Processors 2 Dual core 2.2GHz AMD Opteron
processors per node

Memory 4 x 2GB, 667MHzRegistered DDR-2
DIMMs per node

OS CentOS 5.2
Interconnects Mellanox MT25408 ConnectX DDR

InfiniBand OpenFabrics Enterprise
Distribution (OFED) 1.4 software
stack

Application MPI (Matrix Multiplication)
Scheduler Platform LSF HPC v7
Workload Monitor Platform RTM v2
Cluster Management Condor

 For our preliminary evaluations, we measure the
performance of the cloud computing technologies; MPI,
MapReduce and Hadoop applications on the cluster and then
calculate the overhead induced by the different parallel
runtimes using the following formula;

)1()1()(/)*(tttpk p −= (1)

 Where p denotes the number of parallel processes and t
is the time as a function of the number of parallel processors
used. is the time taken for execution on a single process.

The result of this analysis is shown in Figures 2. From the
result, we can observe that the cloud runtimes show
considerable overheads compared to the MPI versions of the
same Matrix multiplication application. This means that for

)1(t

60 Int'l Conf. Grid Computing and Applications | GCA'10 |

iterative and complex classes of applications, high
performance parallel runtimes are definitely needed. Parallel
applications implemented using message passing runtimes can
utilize various communication constructs to build diverse
communication topologies. Typical cloud runtimes are based
on data flow models, and as such, lack the ability to support
this complex communication constructs. However, we expect
that the cloud runtimes will perform competitively well for
task parallel and MapReduce style applications.

Figure 2: Overhead incurred by the different programming

runtime for the matrix multiplication application

5 Results & performance issues
Following the previous observation, we analyzed the

performance implications of cloud computing infrastructure
for parallel applications implemented using MPI as compared
with the traditional HPC clusters. Specifically, the overhead
of virtualized resources, computation and communication
latencies of the applications on cloud resources are of interest.
The infrastructure setup we used is described as follows:

1. Native (Bare-metal) Dedicated Cluster: This consists
of 16 nodes, each of which has a 2 dual core AMD
processor (4 CPU cores) and 8 GB of memory. Each
node runs CentOS 5.2 operating system. We used
OpenMPI version 1.3.2 with gcc version 4.1.2.

2. Virtualized Cluster: Logical cluster provisioned on
the physical cluster describe in Section 3. Each
virtual machine (VM) has 4 CPU cores created from
the native bare-metal image. The number of nodes
deployed is 16.

3. HPC Cloud System: We provisioned a 128-core
HPC private cloud system as summarized in Table 1.

We ran the MPI matrix multiplication application on

these three configurations and measured the performance,
system utilization, runtimes and overheads. Some of the
results of our analysis are shown in Figures 3 through 6.
As observed from the graphs, the native cluster has the best
performance and overhead values compared to the VM and

HPC cloud configurations. The HPC cloud performs better
than the VM in both cases.

 Figure 3: Performance of the matrix multiplication
application using 64 MPI processes

Figure 4: Total overhead of the matrix multiplication

application using 64 MPI processes

It is worth noting that in application where the amount of
data transfer between the MPI processes is extremely low
compared to the amount of data processed by each MPI
process, the effect of virtualized resources on performance
degradation is clearer. The HPC cloud out-performs both
native and VM configurations in system utilization. The main
reason for this effect was the availability of more jobs for the
scheduling mechanism and the increased size of system. The
cloud unifies all compute resources together to maximize
compute capacity. The richer and higher availability of
application jobs provide the scheduler with more choices for
maximizing the system utilization and for matching the jobs
to the available compute resources.

In Figure 6, we observe that the application runtimes in
both the native HPC and cloud configurations are similar and
lower than that of the VM configuration.

Int'l Conf. Grid Computing and Applications | GCA'10 | 61

Figure 5: System utilization chart to compare between the

different environments for the matrix multiplication
application

Figure 6: Total application runtime for the different

infrastructure environments

6 Conclusion and future work
Cloud computing infrastructure and technologies provide

immense opportunities for HPC and scientific computing. A
private cloud, (i.e. a cloud within an organization) provides
the most viable option of moving HPC to the cloud. Cloud
technologies work well for most scientific computations.
Their support for handling large data sets, the data-centric
approach to computation, and the better Quality of Service
provided make it extremely attractive compared to the
traditional systems.

Virtualized resources, (i.e. as provisioned by public cloud
vendors) pose a problem and can be avoided for now.
However, cloud structures can benefit from using VMs for
easier system provisioning. Virtualization solutions aimed at
enabling native application performance has to support high
speed networking such as Infiniband.

Future work will include adding virtualization to the
clouds. The goal will be to provide native interconnect
performance from the VMs. Extending this to the public cloud

will also add challenges which include checkpoint
methodologies.

7 References
[1] Amazon Elastic Compute Cloud (EC2),
http://aws.amazon.com/ecs2/

[2] Amazon Simple Storage Services (S3),
http://aws.amazon.com/s3/

[3] GoGrid Cloud Hosting, http://www.gogrid.com/

[4] Microsoft Azure,
http://www.microsoft.com/windowsazure/

[5] Google App Engine, http://code.google.com/appengine/

[6] J. Ekanayake and S. Pallickara, “MapReduce for Data
Intensive Scientific Analysis,” Fourth IEEE International
Conference on eScience, 2008, pp.277-284.

[7] Apache Hadoop, http://hadoop.apache.org/core/

[8] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,
“Dyrad: Distributed data-parallel programs from sequential
building blocks,” European Conference on Computer
Systems, march 2007.

[9] K. Keahey, I. Foster, T. Freeman, and X. Zhang,
“Virtual Workspaces: Achieving Quality of Service and
Quality of Life in the Grid,” Scientific Programming Journal,
vol 13, No. 4, 2005, Special Issue: Dynamic Grids and
Worldwide Computing, pp. 265-276.

[10] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S.
Soman, L. Youseff, and D. Zagorodnov, “The Eucalyptus
Open-source Cloud-computing System,” CCGrid'09: the 9th
IEEE International Symposium on Cluster Computing and the
Grid, Shanghai, China, 2009.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A.Warfield, “Xen and the
art of virtualization,” In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles (Bolton
Landing, NY, USA, October 19 - 22, 2003). SOSP '03. ACM,
New York, NY, 164-177. DOI=
http://doi.acm.org/10.1145/945445.945462

[12] M. J. Chin, S. Harvey, S. Jha, and P. V. Coveney,
“Scientific Grid Computing: The First Generation,”
Computing in Science and Engineering, vol. 7, 2005, pp. 24–
32.

[13] C. Evangelinos, C. N. Hill, “Cloud Computing for
Parallel Scientific HPC Applications: Feasibility of Running

62 Int'l Conf. Grid Computing and Applications | GCA'10 |

http://doi.acm.org/10.1145/945445.945462

Coupled Atmosphere-Ocean Climate Models on Amazon's
EC2,” Cloud Computing and Its Applications 2008 (CCA-
08), Chicago, IL. October 2008.

[14] E. Deelman, G. Singh, M. Livny, B. Berriman, and J.
Good, “The cost of doing science on the cloud: the montage
example,” Proc. Of the 2008 ACM/IEEE conference on
Supercomputing (SC’08). Piscataway, NJ, USA: IEEE Press,
2008, pp. 1–12.

[15] R. Buyya, C.S. Yeo, and S. Venugopal, Market-
Oriented Cloud Computing: Vision, Hype, and Reality for
Delivering IT Services as Computing Utilities, Keynote
Paper, in Proc. 10th IEEE International Conference on High
Performance Computing and Communications (HPCC 2008),
IEEE CS Press, Sept. 25–27, 2008, Dalian, China.

Int'l Conf. Grid Computing and Applications | GCA'10 | 63

e-Biochem: A Web Based Bioinformatics & Life Science

Job Management System for a HPC Cluster

Jayant Mukherjee
1
, Prabha Garg

2
, and Avadhesh Mittal

3

1
Project Manager, Altair Engineering, Bangalore, Karnataka, India

2
PharmaGrid Lab, National Institute of Pharmaceutical Education & Research, Mohali, Punjab, India

3
Sales Manager, Altair Engineering, Bangalore, Karnataka, India

Abstract - Research Labs & Organizations engaging in a

setup of complex HPC cluster needs to track the usage of HPC

by end users. The complexities & difficulties involved in this

setup for scientists & students are to know the commands

associated to the application as well as HPC environment.

This increases the reluctance of using the grid environment

and user prefers to use standalone applications thus making

the HPC investment highly costly.

This paper provides the feature of e-Biochem, a based

Bioinformatics & Life Science job management portal

integrated with PBS Professional. Users use the portal to

submit their job by selecting applications, cpus, O/S & priority

with pre-defined rules thereby making the HPC setup more

user friendly and cost benefit. It also provides a platform for

universities and labs to provide a BioFarmsAsCloud(BFAC)

environment for other organizations/labs to use the setup

continuously and optimally

Keywords: e-Biochem, PBS, BFAC, MPI, HPC

1 Introduction

 Bioinformatics and Life Science field involves usage of

many computational types of software which are used for

various purposes. In a typical laboratory of these departments,

one can find a HPC setup which could be a grid farm or SMP

boxes.

Users are generally allowed to access the application via

remote connection and use the standard in-built Graphical

User Interface (GUI) and/or command-line argument of the

application for submission of the input file/s. The jobs are

then get generated & submitted to the HPC/SMP boxes.

However, the drawback in this process is that user should

remember the complex commands of the applications, the

First-In-First-Out (FIFO) jobs and hence making all jobs in

thread. This way it reduces the chances of putting high

priority or high CPU jobs unaltered, unless a resubmission

with new criteria is selected.

If the grid farm uses a grid computing software, the

knowledge of understanding the right arguments and

remembering the complex arguments is another vernacular

problem.

In order to handle the above cases, a web based Web 2.0

compliance based solution is developed, called e-Biochem,

which acts as interactive mode of job submission and

management of jobs for the end users thereby avoiding the

complexities involved in the back-end high performance

computing.

 Figure 1: e-Biochem & HPC setup at NIPER

2 About e-Biochem

 Currently e-Biochem is a complete web based solution

using Apache Tomcat as application server, database as

Derby & grid infrastructure software called PBS-Professional

(Portable Batch System). PBS-Professional is an Altair

Product which is in itself handles all kind of complexities

involved in grid computing like queuing, managing grid

farms, job priority, fail-safe mode etc. The detail about the

product can be found out from the official site:

www.altair.com

e-Biochem communicates with PBS-Professional by creating

internal batch commands which PBS can understand and

communicates with PBS to give the desired output to the end

64 Int'l Conf. Grid Computing and Applications | GCA'10 |

user. This way, user need not to worry about the

communication between what happens in a complex hpc setup

and what is the end goal.

2.1 e-Biochem Architecture Details

 e-Biochem is developed using Struts 2.0 Framework

with following components in it:

1. Web Pages on JSP

2. Application/Web Server: Apache-Tomcat 5.0

3. Database: Derby

4. Grid Computing Software: PBS Professional 8.0

Refer Appendix I for the Flow Diagram of e-Biochem

representing the BFAC model.

2.2 e-Biochem Infrastructure Features

 e-Biochem supports following infrastructure features:

2.2.1 Linux Cluster :

 Some applications operate only on a linux environment.

e-Biochem works on Red Hat Linux operating system.

2.2.2 Windows Cluster :

 Some applications operate only on a Windows

environment, varying from Win2003, XP and so on. Also

many biochemical applications need GUI mode on Windows

machine to create input deck for the job. e-Biochem provides

the feature of remote connection through web portal for

creation of the deck and submitting it seamlessly to the

cluster.

2.2.3 Heterogeneous Cluster :

 Applications like OpenEYE needs both Linux &

Windows based support. e-Biochem helps in getting rid of

complexities of finding which grid is available for which OS

for submitting job. e-Biochem achieves this feature by using

the Peer-to-Peer mechanism provided by PBS.

2.2.4 Single-Sign-ON (SSO) {LDAP/ADS Integration} :

 In many organizations, departments have their own

LDAP dedicated to a domain. It is preferable for the end user

to have integration with LDAP and the portal in order to keep

the session on as soon as the user logs in to a workstation. e-

Biochem uses the session management concept and helps in

seamless integration with the existing LDAP system of the

department.

2.2.5 Optimal Utilisation of Bio-Farms :

 e-Biochem gives administration group to access which

nodes are alive and which nodes are in sleep mode in the bio-

farms. In case a node giving problem during job submission,

an administrator can view the report to know which node/s

had failed during job submission on a timely basis and can

take necessary action to rectify the cause.

2.3 e-Biochem Portal Features

2.3.1 Access Control as per Groups/Roles:

o Administrator is given a dedicated admin page for

creation of users and groups and assigning the users

to the respective groups.

o In this case, three groups: Students, Faculty, Director

has been created and users are added to the group.

 Figure 2: Users/Groups Registration on e-Biochem

2.3.2 CPU Dedication Per Role:

 Many laboratories prefer to use the CPUs in optimal

manner and it is always recommended that a rule can be

imposed on the groups on what level of CPUs the users

belonging to that group can request. This way, the CPUs

available in the grid can be used in better way and bio farms

are available for different kind of job submission (Figure 3)

2.3.3 Job Status:

 A job goes through multiple states:: Submitted �

Queued � Started � Terminated � Paused � Restarted

� Finished. It is always useful for end user and admin to

Int'l Conf. Grid Computing and Applications | GCA'10 | 65

know a job status. e-Biochem takes into consideration the job

ID which is a unique identification number for any job and

search the response from PBS about its status in conjunction

with the database about its different parameters to give the

status of the job to the end user. (Figure 4)

 Figure 3: Job Status Search Page

2.3.4 Configuration of MPI Paths:

 Jobs in a cluster environment can be classified as serial

or Parallel job. A Serial job follows a FIFO concept, except

when a queue-priority rule is imposed whereas Parallel job

means a job is broken down into multiple job arrays or

parallel jobs which run on different nodes and gives the final

merged output. MPI (message parsing interface) libraries of

an application provide the feature of breaking down the

requested job into multiple parallel jobs and reunite the same

after job completion.

e-Biochem integrates with the MPI libraries and the

prerequisite is that the respective MPI libraries of the

application must be registered by an administrator in order to

make PBS understand the same. The best example is of Linda

MPI integration with e-Biochem which is a MPI library for

Gaussian application (refer Figure 5).

 Figure 4: MPI Path Registration

2.3.5 Upload/Download Multiple Files:

 Generally, without a HPC setup, users remain

unconnected with the input and associated files for a job.

Even with a HPC setup where there is no GUI for job

submission, users always need to have access to remote file

server to get output files or share output files.

e-Biochem coordinate with the NFS of the HPC setup to give

access to the specific output files associated to the job. These

files could vary from a deck of associated files to just images.

2.3.6 View Log/Output Files from Portal:

 In most circumstances, the job gives output of log file

associated to the input file and application logs, a cluster

software log and user/system specific logs. These logs could

have size varying from KBs to GBs. Locating these files in

the NFS & downloading on the local machine is a painstaking

task.

Using Java APIs of TCP/IP file transfer on need basis, e-

Biochem helps in avoiding the complexities involving in

search and opening the log files.

2.3.7 Restart/Pause Jobs

 When a job is in the queue status, it can always be

altered by first stopping the request given to the HPC

software. However, if the job starts running and user knows

that it will go into an infinite loop or will end up giving

erroneous result, users need to be able to pause the job to see

the possible errors and restart by correcting the parameters.

However this is an application feature and not of the HPC.

e-Biochem relies on this mechanism and if an application

supports restart/pause, e-Biochem calls the respective

commands through PBS to carry out the same action.

66 Int'l Conf. Grid Computing and Applications | GCA'10 |

2.3.8 Support for more than one executable for

application:

 In a workflow kind of execution, where input of one file

goes as output to other (like CPMD 3 stage application),

many executables need to be called in sequential manner and

checkpointing must be done before knowing if the job is

successfully executed or not.

e-Biochem can call different executables for the same job if it

involves a workflow kind of job submission and finally gives

the output to the end user for each executable.

2.3.9 Automatic Scratch File Deletion

 Many jobs result in redundant, unwanted and

intermediate scratch files which occupy larger space in the

NFS. The IT administrator needs to clean up such files and it

is very difficult for them to find out which files need to be

retained and which to be discarded when the output and

scratch files reside in the same location on the NFS.

Sometimes the non-deletion of these files result in future

failures of the jobs as the user might find the unavailability of

the file space in the infrastructure.

e-Biochem has its own epilogue script which is registered on

PBS. On request of the deletion of scratch files, these

epilogue scripts target the unwanted files and free the space

for the next job.

2.3.10 GUI Mode intégration through Active Console

Window on Server Side:

 It is to be noted that applications are not always batch

supported. Some applications need input deck creation and

then submission to the solvers. However in a complex

infrastructure setup with limited licenses of the application,

end users prefer to do remote connection to the server, trigger

the input application software and utilize on need basis.

The disadvantage is that if in case multi users target the same

machine, remote connectivity could be an issue and also role

and user based requested priority can not be avoided with the

proposed situation.

e-Biochem uses xHost concept of calling an active desktop of

the remote server from the web page which gives the user

same look and feel. The user can then create the input deck,

make it ready for submission on the bio farm and open the

portal, browse the recently created input file and submit it to

the grid

3 Applications Integrated with e-Biochem

 Following table shows the list of applications currently

integrated with e-Biochem. These applications are available in

Pharma Grid lab of NIPER and have been tested for all the

cases as per the features mentioned in column number 2.

Table 1: List of Applications integrated with e-Biochem with

Feature

Sl.

No

Application

Name Job Type Cluster Features

Parallel

with MPI

Eplilogue Script for cleanup of

Unterminated MPI Processes

Serial File Upload multiple Files using Zip

File Download Multiple Files using Zip

File View

1 Amber

Parameters Selection for Job Submission

from Web Browser

Parallel Linda Integration

Distributed Automatic Restart of Job

Automatic creation and clearing of

Scratch Directory

Input File Modification before

Restarting

Eplilogue Script for cleanup of

Unterminated MPI Processes

File Upload multiple Files using Zip

File Download Multiple Files using Zip

File View

2 Gaussian

Parameters Selection for Job Submission

from Web Browser

Parallel Integrated with MD Run

Eplilogue Script for cleanup of

Unterminated MPI Processes

File Upload multiple Files using Zip

File Download Multiple Files using Zip

File View

3 Gromacs

Parameters Selection for Job Submission

from Web Browser

Parallel

Eplilogue Script for cleanup of

Unterminated MPI Processes

Serial File Upload multiple Files using Zip

File Download Multiple Files using Zip

File View

4 MATLAB

Parameters Selection for Job Submission

from Web Browser

Int'l Conf. Grid Computing and Applications | GCA'10 | 67

Sl.

No

Application

Name Job Type Cluster Features

Parallel

Eplilogue Script for cleanup of

Unterminated MPI Processes

File Upload multiple Files using

Zip

File Download Multiple Files

using Zip

File View

5 NAMD

Parameters Selection for Job

Submission from Web Browser

Parallel

Eplilogue Script for cleanup of

Unterminated MPI Processes

File Upload multiple Files using

Zip

File Download Multiple Files using

Zip

File View

6 VASP

Parameters Selection for Job

Submission from Web Browser

Parallel

Eplilogue Script for cleanup of

Unterminated MPI Processes

File Upload multiple Files using

Zip

File Download Multiple Files using

Zip

File View

7
CPMD 1st

Stage

Parameters Selection for Job

Submission from Web Browser

Parallel

Eplilogue Script for cleanup of

Unterminated MPI Processes

File Upload multiple Files using

Zip

File Download Multiple Files using

Zip

File View

8
CPMD 2nd

Stage

Parameters Selection for Job

Submission from Web Browser

Parallel Pbs Script and GUI integration

File View 9
CPMD 3rd

Stage
Parameters Selection for Job

Submission from Web Browser

Parallel Initial Input Screen is Ready

PBS Script is integrated 10 TurboMol

Parameters Selection for Job

Submission from Web Browser

4 Conclusions & Further Work

 In this paper, we presented a Web2.0 framework where

Life and Chemical Science and Bioinformatics applications

which are installed and used for job submission on a HPC

cluster with PBS can now be used effectively. The product

installed on NIPER has given the scientists & research

students to now effectively use the Job Portal system without

engaging into complex grid and application commands. The

portal helps to effectively use the cpus, job farms and make

the output faster by realizing the job failures and restart

through web.

Portal feature gives flexibility of job submission from any

mode having secured internet access. It also provides an

environment for Cloud Computing called

BioFarmsAsCloud(BFAC) for other labs to use the feature.

Going forward, the other applications like OpenEYE,

Schrodinger & other well known solvers used in the scientific

world will be integrated. .

5 References

[1] Sites & Support documents of all applications for batch

commands

[2] Sites & Support documents of PBS GridWorks by Altair

68 Int'l Conf. Grid Computing and Applications | GCA'10 |

6 Appendix

6.1 Appendix 1: User & System Interaction Diagram

 User from different departments located in multi-site (or

different external paid labs/organizations) as per their role can

start the URL and select the software for which they want to

submit the job. The input deck can be browsed from local

system or from a mapped network drive.

Portal gives the feature of selection of the o/s environment

like if its Windows or Linux or heterogeneous environment. It

also provides the action of putting high priority job with

dedicated CPU for quicker and optimized utilization of bio

farms. Below figure shows the typical BFAC model:

 Figure 5: Flow Diagram of e-Biochem

Copyright © 2008 Altair Engineering, Inc. All rights reserved. Altair Proprietary and Confidential Information

Flow Diagram (User & System actions)

Life Science

BioInformatics

Chemical Science

Job Submission
Page

Job Details Page
(ex:)

ADM Server

Application/Web Server

Software Name

OS Type

CPUs Need

Job Priority

OK Refresh Logout

Oracle DBServerDatabase Server

Aggregated Data from

Different Nodes

Admin User

End User

Farms Status

Jobs Status

Int'l Conf. Grid Computing and Applications | GCA'10 | 69

A Latency Optimizing Load Distribution Scheme for Grid
Networks

O. A. Rahmeh1, P. Johnson2, and D. K. Saini3

1,3Faculty of Computing and IT, Sohar University, Sohar, Sultanate of Oman
2School of Engineering, Liverpool JMU, Liverpool, L33AF, UK

Abstract - Grid networks aims to utilize a high-performance
computing environment to solve large-scale computational
problems. To achieve such network system, the workload
needs to be efficiently distributed among the computing
resources accessible on Grid network. Therefore, in this
paper, a distributed load balancing scheme for Grid networks
is proposed. Moreover, such computing environment makes
quality of service (QoS) highly desirable, though it is very
complex to achieve due to the large scale of interconnected
networks. The provision of network latency in a Grid
environment is the topic of interest of this paper, and what we
want to do is to develop a latency optimizing load distribution
scheme for Grid networks. We demonstrate that introducing a
latency reduction factor in the random sampling can reduce
the effects of communication latency in the Grid network
environment.

Keywords: Load balancing, Latency, Grid networks, QoS,
optimization.

1. Introduction

For decades, several techniques have been developed to

utilise the wide-area distributed computers for solving large-
scale problems Grid Network is an example of such network
system which uses the network resources of many computers
to solve large-scale computational problems [1]. Therefore, a
proper load distribution and resource discovery protocols are
needed to distribute the workload among the available nodes
in the network to improve the overall system performance.

One of the essential features of the Grid networks is that
the resources accessible in the network are distributed
geographically. However, one of the fundamental challenges
to run Grid applications across geographically distributed
computational resources is overcoming the effects of the
latency between them. While high performance clusters and
supercomputers can deliver data to applications with latencies
of few microseconds, latency across the wide area networks
is measured typically in milliseconds. Therefore, reducing the
effects of communication latency is critical for achieving
good performance with Grid applications that involve
significant amounts of communication. In this paper, an
efficient biased random sampling (BRS) algorithm is shown
to reduce communication latency in Grid networks and thus
enabling the network to achieve load balancing which is
scalable and reliable.

There are large amounts of research deal with different
load balancing methods, and several algorithms have been
proposed to address this issue [2-13]. Though, many of these
methods rely on centralized methods, which can be effective
in small scale networks or on specific properties of load
distribution in larger networks. Also, centralized techniques
are not scalable as they need high computing power and large
bandwidth, network systems that depend on such techniques
are un-scalable [14-15]. In addition, centralized methods are
not reliability since they have a single point of failure.

2. Proposed load distribution mechanism

For efficient usage of resources in Grid networks, one

would want to distribute processes as evenly as possible, so
that no node is more loaded than the others. Therefore,
generating a dynamic network system that provides a
balanced load distribution and effective resource discovery is
required.

To generate this dynamic system, the in-degree
distribution of nodes in the network must be investigated. A
node’s in-degree refers to the free resources of the node. The
job assignment and resource updating processes required for
load balancing are encoded in the network structure.
Therefore, when a node receives a new job, it will remove
one of its edges to decrease its in-degree. Likewise, when the
node finishes a job, it will add an edge to itself to increase its
in-degree.

In [16-18], we proposed a distributed load balancing
framework for large scale networks. The addition and
deletion of node’s edges is performed via Fitted Random
Sampling (FRS). FRS is the process whereby the nodes are
randomly chosen with equal probability. The sampling starts
at some node, and at each step, it moves to a neighbour of the
current node, which is chosen randomly according to an
arbitrary distribution.

Analogous schemes have been used for load balancing
which yielded some considerable results [11, 18]. However,
the proposed load distribution scheme has an improvement as
the generated network structure is dynamically changed to
effectively distribute the workload. Moreover, no monitoring
is needed since it is encoded in the network structure.
In addition, the number of sampling steps will be constrained
to a fixed length, and the nodes will be chosen according to a
predefined criterion.

70 Int'l Conf. Grid Computing and Applications | GCA'10 |

In this paper, a biased random sampling (BRS) load
distribution technique is proposed which improve our
previous technique by introducing a latency reduction factor
in the random sampling to reduce the effects of
communication latency in Grid networks.

The BRS scheme can be easily implemented in Grid
networks. The desired network system can be built directly
on top of the physical transport layer and use the Grid
Network as its underlying network. Consequently, the
network doesn’t need to consist of physical links between
nodes; the edges can be a routing table that provides the
actual physical connections or the feasible routes between the
nodes in the underlying physical layer. Additionally, the
network can be implemented by using fast transport protocols
sockets (such as UDP sockets) to represent the edges of the
network with minimum overhead. Each node will have local
information about its status which can be used for load
distribution and resource allocation.

For simulations, a network system with N nodes is
created. Each node in the network is a computer with power
equal to its maximum degree. One unit of power can process
a unit of load in each unit of time. Two types of simulation
experiments were carried out. The first experiment
considered the CPU power alone as the key factor for load
balancing. In the second experiment, the geographical
distance (communication delay) is added as a second factor
for load balancing. Nodes’ edges will be inserted or deleted to
keep the nodes’ in-degree proportional to its free resources.

Details of the above edge’s addition and deletion process
above can be found in [16, 17]. This edge’s addition and
deletion process will model the change in the network’s load,
and the amount of free resources available for the nodes will
present the network load distribution status. Simulation
results will be used to verify the scalability and reliability of
the proposed load distribution scheme.

3. Evaluation and simulation results

Simulation results have been used to analyse and discuss

the performance of the load-balancing algorithm and to
determine the length of random sampling required to achieve
the required load balancing. Then, we evaluate the scalability
and reliability of the algorithm under several conditions. We
also study the effect of modifying the random sampling by
including localization information on the average
communication latency of the network.

3.1. The Load balancing performance

Here, we discuss the performance of proposed load

balancing mechanism under ideal conditions, where all nodes
have the same resources. The simulation results prove that the
proposed mechanism creates regular networks.

Figure 1 shows the simulation results for the in-degree
distribution of the network plotted as the network evolved
through different time slots (T), which shows the process of
reaching the load balancing. Here the time dynamics of the
in-degree distributions of the network can be clearly seen. In

Figure 1.a, the network is initialised in a completely random
state with variance approx. 46.3. Then, the network starts
reshaping itself by balancing the load distribution among the
nodes, and in-degree variance continues to decrease. Over
time, the network settles down to a nearly regular graph with
variance approx. 0.32 as seen in Figure 1.b. Thus, when all
the nodes have the same capabilities, the network will be
almost a regular graph.

Figure 2 shows the state of the in-degree variance of our
network system with time as the network evolves. The
network is initialised randomly; for example, it starts with an
in-degree variance of approximately 42.6. Then, the network
starts reshaping with time by adding and deleting nodes’
edges to reach an in-degree variance value of around 63.3.
Consequently, the network starts to settle down and the
variance rapidly decreases until the network becomes almost
regular with in-degree variance close to 0.38.

0

0.15

0.3

0.45

0.6

0.75

0 20 40 60
k

P(k)

0

0.15

0.3

0.45

0.6

0.75

0 20 40 60k

P(k)

Figure 1. The in-degree distribution plotted as the

network evolves over different time slots (T).

(a)

(b)

Int'l Conf. Grid Computing and Applications | GCA'10 | 71

0

10

20

30

40

50

60

70

0 1000 2000 3000
Time

Va
ria

nc
e

Figure 2. The variance of the nodes’ in-degree distribution

over Time.

3.2. Latency reduction load distribution

In reality, load balancing is not restricted to the use of

resources or computing power, but also is influenced by the
geographical distance between the nodes. Therefore, we
included locality information into the random sampling
scheme. Thus, the random walk may prefer a geographically
closer node even if it is not the highest degree on the walk.
We implemented this by adding the geographical distance
and communication delay factors in sampling the nodes to
distribute the load balancing.

Simulation results show that adding the locality factor
reduced the overall network latency. We performed two
experiments and recorded the average round trip latencies for
each executed job.

As we can see from Figure 3, the latencies observed in the
offered load using geographic-aware scheme are reduced by
at least 22% on average from that observed for the non-
geographic aware scheme. For example, for networks with
512 nodes distributed with a radius of 1000km, the overall
average latency decreased from 92.58ms to 70.17ms.
Moreover, we observed that latencies for individual loads by
using this algorithm will always remain close to the average
latency with no big overshoots (fluctuations), which make the
network stable and reliable and a suitable environment for
applications that require specific quality of service.

Simulations have been carried out to investigate the
number of steps required to sample the network to reach the
required load distribution. It has been observed that the
performance of the load distribution algorithm improves with
increasing the sampling length. It has been observed that
when the random sampling is very short, the load distribution
is not efficient with high variance. Moreover, when the
sample length is too large, the reduction in the in-degree
variance is too small. Nevertheless, when the random
sampling length is around log(N) on networks with N nodes,
the in-degree variance is near to the variance for balanced
networks [18].

To examine the efficiency of adding locality factor on

load balancing, simulation results were analysed for the
network under consideration over several sampling lengths,
and compared with the original scheme.

As we can see from Figure 4, the Geographic-aware load
balancing requires few additional sampling steps to achieve
the required variance for balanced network. For example, for
a network with 2048 nodes, a random sampling length of 16
was sufficient for the original scheme, while the Geographic-
aware scheme required a random sampling length of 20 to
balance the load distribution, which still in order of log(N).
However, this increase in number of steps is negligible
compared to the size of the network.

50

60

70

80

90

100

110

120

0 100 200 300 400 500 600
Offered Load

La
te

nc
y

(m
s)

Geografic aware
Non-Geografic aware

Figure 3. The average round trip latencies observed for

finished jobs in a network with N=512.

0.1

1

10

100

0 10 20 30 40 50 60 70 80
Random Sampling Length

Va
ria

nc
e

Non-Geographic
Geographic

Figure 4. Comparison of the variance vs. random

sampling length for a network with N=2048.

3.3. Performance Comparison

To evaluate the performance of the proposed biased

random sampling algorithm, we examined two important
performance measurements in distributed systems: the total
job throughput achieved and the bandwidth required by the
load distribution mechanism. Then we compared the

N=2048

72 Int'l Conf. Grid Computing and Applications | GCA'10 |

performance the biased random sampling scheme with the
performance of the centralised mechanism.

Here, we analysed the bandwidth consumed by the biased
random sampling (BRS) algorithm and we compared it with
the centralised algorithm. As we can see from Figure 5, the
central server algorithm requires less total bandwidth than the
biased random sampling algorithm. In the centralised scheme,
the central node has to know the load status in each of the
nodes that in the network. Therefore, the central node needs
to periodically check the status of every node in the network,
and the nodes have to inform the central node if they finished
executing the jobs so that the central node can update
network load status. As a result, the total bandwidth
consumed by the network is in order of O(N).

For the biased random sampling algorithm, each node that
initiates a new job must initiate a random sampling to search
for a node to give it the job. And since the random walk will
be O(logN) length, the total bandwidth of the walk will be in
order of O(logN). Therefore, for N nodes network, the total
bandwidth consumed by the biased random sampling
algorithm will be in order of O(NlogN), which is greater than
the total bandwidth consumed in the centralised scheme.

0
20
40
60
80

100
120
140
160
180
200

0 2048 4096 6144 8192 10240 12288 14336 16384
N

To
ta

l B
an

dW
id

th
 (M

b/
s)

Central
BRS

Figure 5. Simulation results for the total bandwidth

consumed in different network sizes.

However, the biased random sampling scheme decreases the
bandwidth consumed by any node in the network, as shown
in Figure 6. The central node in the centralised scheme is
engaged in all jobs and handshaking transfers. Therefore, the
central node consumes a O(N) bandwidth. For the biased
random sampling algorithm, the bandwidth required for each
node depends on the node in-degree and on the number of
jobs it initiates. Thus, if the N nodes in the network use the
total network bandwidth uniformly, then each node in the
network will consume a bandwidth in order of O(logN).

Although the total bandwidth consumed in the network is
a significant performance measurement, the bandwidth
consumed by any single node in the network can be a major
bottleneck for large-scale networks.

0.00

0.01

0.10

1.00

10.00

100.00

0 2048 4096 6144 8192 1024
0

1228
8

1433
6

1638
4

N

B
an

dW
id

th
 (M

b/
s) Central

BRS

Figure 6. Simulation results for the average bandwidth
consumed by single nodes for different network sizes.

Another important performance criterion in distributed

networks is the system throughput. Throughput is the number
of jobs completed during a specified period of time. The
objective here is to have the maximum amount of completed
jobs (large amount of throughput). Therefore, we analysed
the total throughput achieved by the biased random sampling
algorithm and compared it with the central system.

For the simulations, the nodes in a network have equal
capabilities, and the job sizes and arrival rates are Poisson
distributed. Moreover, we considered the effect of
communication delay on the total throughput performance by
distributing the nodes in a network of 1000 miles radius area
with 10Mbps communication link speed. The throughput
achieved by the biased random sampling scheme is very close
to the throughput achieved by the optimal centralised scheme.
The total throughput for biased random sampling algorithm is
only around 3% worse than the total throughput of the central
algorithm, with the advantage of being a distributed load-
balancing scheme.

To further measure the efficiency of the proposed biased
random sampling mechanism for load balancing in various
situations, the simulations could be extended to include
heterogeneous nodes and cases where jobs may require
certain quality of service such as communications bounded,
distance sensitive, and time bounded services. Examining
how these considerations will affect the efficiency of load
balancing is a topic for future work.

4. Conclusions

A scalable and reliable biased random sampling scheme

for distributing the workload between the nodes on Grid
networks is proposed in this paper. The generated network
system is scalable, self-organised, robust, and depends only
on local information for load distribution and resource
discovery. The developed load-balancing scheme is based on
biased random sampling to assign the jobs and to update
resource’s availability. Therefore, load balancing is achieved
without the need to monitor the nodes for their resources
availability.

Int'l Conf. Grid Computing and Applications | GCA'10 | 73

Achieving a proper quality of service (QoS) in Grid
networks highly desirable. However, it is not easy to be
achieved due to the large scale of interconnected networks in
such large scale systems. Therefore, a latency optimizing load
distribution scheme for Grid networks has been developed
and presented this paper.We demonstrated that introducing
latency reduction factor in the random walk sampling could
reduce the effects of communication latency in Grid network
environments.

A number of improvements to the proposed load
distribution mechanism and generalizations of our model
deserve further study. We plan to extend this work to support
heterogeneous systems and cases where workload may
require special quality of services. This will help us in
understanding how these factors would affect on the nodes’
in-degree and load distribution in the network.

5. References

[1] I. Foster, & K. Kesselman, The Grid: Blueprint for A Future

Computing Infrastructure, Morgan Kaufmann, 1999.
[2] R. Lüling , B. Monien & F. Ramme, “A Study of Dynamic

Load Balancing Algorithms”, Proceedings of the Third IEEE
SPDP, 1991, 686-689.

[3] L. P. Peixoto, “Load Distribution: A Survey”, Technical
Report. Dept. De inf, Escola De Engenharia, Universidade Do
Minho, 1996.

[4] Y. Murata, et al., “A distributed & cooperative load balancing
mechanism for large-scale P2P systems”, SAINT-W, USA,
2006.

[5] M. Mitzenmacher, “The Power of Two Choices in Randomised
Load Balancing”, IEEE Transactions on Parallel Distribution
Systems, 2001, 12(10).

[6] Y. Drougas, T. Repantis, and V. Kalogeraki, “Load Balancing
Techniques for Distributed Stream Proceszing Applications in
Overlay Environments”, ISORC'06, USA, 2006.

[7] J. Bustos, D. Caromel, “Load Balancing: Toward the Infinite
Network”, 12th Workshop on Job Scheduling Strategies for
Parallel Proceszing, France, 2006.

[8] M. M. Theimer, & K. A. Lantz, “Finding Idle Machines in A
Workstation-Based Distributed System”, IEEE Transactions on
Software Engineering, 1989, 15(11).

[9] D. Oppenheimer, J. Albrecht, D. Patterson & A. Vahdat,
“Scalable Wide-Area Resource Discovery”, Technical Report,
CA, USA, 2004.

[10] R. Subramanian, & I. Scherson, “An Analysis of Diffusive
Load Balancing”, Proc. of the sixth Annual ACM Symposium
on Parallel Algorithms & Architectures, ACM Press, 1994.

[11] A. Montresor, H. Meling, & O. Babaoglu, “Messor: Load-
Balancing Through a Swarm of Autonomous Agents”, First
Intl. Workshop on Agents & P2P Computing, Italy, 2002.

[12] M. Litzkow, M. Livny, & M. Mutka, “Condor: A Hunter of
Idle Workstations”, Proceedings of the Eighth International
Conference of Distributed Computing Systems, 1988.

[13] B. Yagoubi, and Y. Slimani, “Task Load Balancing Strategy
for Grid Computing”, Journal of Computer Science, 3 (3),
2007, 186-194.

[14] R. Lüling, & B. Monien, “A Dynamic Distributed Load
Balancing Algorithm with Provable Good Performance”, SPAA
’93, ACM Press, NY, USA, 1993.

[15] O. Kremien, & J. Kramer, “Methodical Analysis of Adaptive
Load Sharing Algorithms”, IEEE Trans. On Parallel
Distribution System, 3(6), 1992.

[16] Rahmeh, O. A., Johnson, P., and Lehmann, S., “A Fitted
Random Sampling Scheme for Load Distribution in Grid
Networks”, the International Journal of Information
Technology, V24, ISSN: 1307-6884, 2007.

[17] Rahmeh, O. A., Johnson, P., “Towards scalable and reliable
Grid Networks”, IEEE/ACS International Conference on
Computer Systems and Applications, 4 April 2008, ISBN: 978-
1-4244-1967-8, Page(s):253–259, Doha, Qatar, 2008.

[18] Rahmeh, O. A., Johnson, P., and Taleb-Bendiab, A., "A
Dynamic Biased Random Sampling Scheme for Scalable and
Reliable Grid Networks", the INFOCOMP Journal of
Computer Science, Vol. 8, No. 1, ISSN: 1807-4545, 2008.

[19] C. Avin, & C. Brito, “Efficient and Robust Query Proceszing
in Dynamic Environments Using Random Walk Techniques”,
Proc. of the third Intl. Symp on Info. Proceszing in Sensor
Networks. ACM Press, 2004.

74 Int'l Conf. Grid Computing and Applications | GCA'10 |

SESSION

GRID UTILITIES, ENVIRONMENTS, TOOLS,
POLICIES, SECURITY ISSUES

Chair(s)

TBA

Int'l Conf. Grid Computing and Applications | GCA'10 | 75

76 Int'l Conf. Grid Computing and Applications | GCA'10 |

A User-Centric Authentication for Advanced Resource
Reservation in Mobile Grid Environments

Cristiano C. Rocha1, Matheus A. Viera1, Miriam Capretz2, Michael A. Bauer3, Iara Augustin4, and

M.A.R. Dantas1
1Department of Informatics and Statistics, Federal University of Santa Catarina, Florianópolis, SC, Brazil
2Department of Electrical & Computer Engineering, University of Western Ontario, London, ON, Canada

3Department of Computer Science, University of Western Ontario, London, ON, Canada
4Informatics Graduation Program, Federal University of Santa Maria, Santa Maria, RS, Brazil

Abstract - In this paper, it is presented an authentication
architecture utilizing a lightweight user-centric approach. The
main goal of this research is to provide mobile users a facility
to perform advanced resource reservation within grid
environments. As a result, the approach requires any user a
previous authentication to utilize a grid resource or service.
Experimental tests indicate that the proposal was successful in
terms of battery power consumption, transparency to mobile
users and providing some level of security to utilize advance
reservation in a grid environment.

Keywords: Mobile grids; user-centric authentication;
advanced reservation

1 Introduction
 Grid computing is characterized by making a variety of
distributed resources, including services, devices and
applications, available to a wide range of users [1]. Various
organizations, both real and virtual, can make different types
of resources available under dynamically changing
availability constraints and with varying policies for access
and use of these resources [2]. Subsequently, the resources
belonging to these organizations can be accessed and
combined by different users to achieve their computational
goals.

In recent years, there has been a movement towards
integrating grid computing environments with mobile
computing environments [3, 4, and 5]. Consequently, mobile
devices within this context are considered as grid interfaces
and as grid resources. Despite the fact that the computing
power of mobile devices has improved significantly in recent
years, the current processing power and storage capacity
found in these devices are still not enough to solve complex
problems. Therefore, the present study considers the use of
mobile devices as interfaces to access the resources and
services of a grid from anywhere, at anytime. Our approach
aims to enable users to utilize mobile devices for access to
advanced reservation services with the objective of
submitting individual tasks and workflows. As is the case
with other access to grid services, the use of mobile devices
also requires a user authentication mechanism, which is a
device that allows users to adopt defined or permitted roles

for access to the services and resources. As studies in area of
mobility suggest, a change in the approach of performing user
authentication via mobile applications, namely, from a
process-oriented paradigm to a user-centered one, must be
accomplished [6]. Specifically, the authentication system
should recognize the user rather than the equipment that the
user possesses. Moreover, because mobile devices have
limited power, authentication schemes that are
computationally intensive or that require substantial
communication are unsuitable. This change to a user-centered
approach, coupled with the limited power resources of mobile
devices, imposes new requirements on the security and
authentication systems for supporting the use of mobile
devices within grid environments.

The current work presents an architecture that provides a
“lightweight” user-centric authentication mechanism for the
use of mobile devices within grid environments. In particular,
its purpose is to provide the user with the full range of mobile
service offered by these environments. Accordingly, our
approach to authentication is in the context of providing the
mobile user with access to resource reservation services.

The paper is organized in five sections. The motivation for
the development of this approach is presented in Section 2.
The proposed architecture is introduced in Section 3, and
Section 4 presents the experimental results. Finally,
conclusions and future research work are shown in Section 5.

2 Motivation
 The research in [3], a previous work of our group, proposes
a framework for submitting and monitoring grid computing
tasks through mobile devices. In that study, there is a
mechanism for managing disconnections that result from a
drop in battery power or from interference in the wireless
network. However, this framework poses a disadvantage in
the case where a user accesses different devices during the
execution of an application. In this situation, each device
must perform the entire authentication process, thus reducing
the battery charge and the system productivity. Furthermore,
this work does not examine access to an advanced resource
reservation facility in the grid environment and uses a
traditional authentication where a username and password are
requested in each interaction.

Int'l Conf. Grid Computing and Applications | GCA'10 | 77

Advanced resource reservation in the grid computing
environment has been the focus of recent research (e.g., [7],
[8] and [9]). By reserving resources, a client has guaranteed
access to a specific resource in the grid for a designated time
period. Accordingly, [7] and [8] present mechanisms for
resource reservation using the concept of co-allocation [10],
which can be defined as the simultaneous use of grid
resources across multi-clusters. The approach described in
[7] provides resource reservation for a single resource or for a
set of resources by using co-allocation. In addition, the work
suggests the use of a ticket for subsequent interaction with the
reservation. In [8], the authors present an approach that uses
the Web Service Resource Framework (WSRF) [11] to
perform resource reservation, along with the introduction of a
two-phase commit protocol. Their objective is to use a non-
blocking mechanism that avoids disconnection problems and
can facilitate the recovery of failed processes. While [7]
suggests the use of co-allocation, [9] introduces the idea of
virtual resources without co-allocation. The elimination of
this mechanism allows the generic integration of different
types of resources and reservations with the use of temporal
and spatial relationships between components.
 Because of the movement from a process-based
paradigm to the user-centric paradigm, some studies present
requirements that must be considered for user-centric security
systems. Therefore, in order to fulfill these requirements, it is
necessary to analyze context-related information, such as the
user’s location, the time in which the interactions occur and
the context-based detection of anomalous transactions [12].
Several works present complex solutions for user
authentication based on the environmental context ([13],
[14]). Most of these studies achieve their objectives by using
several sensors in these environments. However, these
proposals restrict user mobility because they are only
effective within the area covered by the sensor network. For
instance, [13] presents an architecture that aims to
authenticate users based on the context captured by various
sensors and devices present in the “smart homes”
environments. Additionally, [14] proposes an infrastructure
that supports large-scale mobile applications and enables the
execution of these applications in different types of
equipment.

3 Proposed Architecture
 In this section, we propose a user-centered architecture that
enables advanced resource reservation in grid environments.
Our approach is partially based on the research presented in
[3], where the authors propose a framework for the
submission, monitoring and coordination of workflows
executed in grid computing environments. All of the
interaction with the grid is performed through mobile devices
that are used as grid interfaces. In particular, this work
suggests the possibility of adapting the execution flow to
guarantee the consistency of an application in case of a
disconnection occurs. This execution flow will be performed
in a personalized way in the case that the mobile device is
disconnected from the network. Specifically, these features

are performed by Workflow Manager, Agent and Mobile GUI.

The Workflow Manager module is responsible to manage
the requests processes from mobile devices in a transparent
way to the users. In particular, it provides an automated way
of submitting jobs to the grid and it collects information about
the execution of these jobs without user interaction. Thus, this
mechanism contributes to the reduction of battery power
consumption in mobile devices. Also, the architecture
provides a mechanism for fault tolerance, especially in the
case where a voluntary or involuntary disconnection of
mobile devices occurs. The Agent module is responsible for
verifying when the disconnection occurs; if the device is
connected, it uses a specific time interval. Additionally, this
module also manages the faults by detecting the failure and
adapting the application execution flow to the environment.
When a disconnection occurs, The Agent can adapt to the
situation by continuing the execution, waiting for device
establish a connection or aborting. These options are defined
by the user, and the actions are performed according to the
existence of dependencies from the user. Hence, through this
module, the consistency of the application is guaranteed.

All grid computing interactions occur through a Mobile
GUI interface. This interface is responsible for allowing
workflow submission and permitting the visualization of final
and partial results of the application in an optimized way,
since only the parts of the resulting files that are considered
relevant for the user are loaded in the device interface. Also,
the interface contains the ability for users to monitor the
application execution, so that the status of each task can be
traced. In addition, users can monitor the application
execution in a customized manner based on the type of
mobile device and its particular screen size. Finally, the
Mobile GUI is responsible for sending the username and
password to Workflow Manager for authenticating the user on
the grid environment. Consequently, the user has to
authenticate every interaction with the grid through their
mobile device.

Fig 1: Proposed approach.

In addition to Workflow Manager, Agent and Mobile GUI,

as proposed by Rossetto et al [3], the modules of User-centric

78 Int'l Conf. Grid Computing and Applications | GCA'10 |

Authentication and Resource Reservation were added in the
present approach for enabling a more secure and more
efficient interaction in mobile grid environments. The new
modules attempt to take advantage of the mobility offered
by mobile devices while utilizing the resources from grid
environments more safely and effectively. In addition to these
goals, our approach attempts to improve the battery
consumption of mobile devices.
 Figure 1 illustrates the research architecture of [3] with
the addition of the new modules, User-centric Authentication
and Resource Reservation, which are added to the proposed
framework.

3.1 User-centric authentication
Through device independence, which is referred to as user-

centric computing throughout this paper, the user can switch
from an equipment to another without requiring a new
authentication process. Thus, the potential problem of
insufficient battery power can be avoided by device
replacement. Moreover, the user’s interaction with an
application communicating with the grid environment is not
interrupted, nor is it necessary to restart the authentication
process. The authentication module is responsible for the
interception of all service requests, which are workflow
submissions or advanced resource reservations requested by
an individual using a mobile device. This authentication
approach obtains transparency by using a widely
disseminated standard among mobile devices: the vCard
standard [15], which aims at the automation of personal
information sharing frequently found in a regular
identification card. In this standard, the data is presented by
using pre-defined meta-information that is responsible for
receiving data in an organized manner and then facilitating
the utilization of the data. The standard has been maintained
by the Internet Mail Consortium (IMC) since 1996; the vCard
standard is compatible with several existing platforms and is
mainly concentrated on mobile devices, such as cell phones
and PDAs.

Furthermore, the vCard standard permits the extension of
meta-information in order to store other necessary data. Thus,
it permits greater flexibility in the manipulation of user
information and in the adequacy of each required application.
The inserted information does not affect the original standard
because it is ignored by the interpreter. Subsequently, the
unity guarantee is maintained among various applications that
involve the exchange of the same electronic identification
card. Furthermore, this standard provides security for the
stored information, because it offers support for digital
signatures.

Therefore, the authentication system uses the vCard
standard to store system-specific information. This
information, such as environmental access credentials, or
tickets, is represented by strings that are created by the system
and that have a predetermined duration, which depends on the
permissions granted to the user. For a user that has permission
to reserve resources, the ticket could expire at the time of the
reservation. Thus, while the lifetime of the user ticket is

limited, the user can utilize other devices that have the
properly formatted vCard in the system. In other words, the
device has the vCard extended, so that the user does not need
to reinsert his access data in the system. Figure 2 shows an
example of credential represented by the vCard standard.

Fig 2: Example of an extended electronic identification card represented in

the vCard format

The user-centric authentication module and its interactions

with the other system modules are shown in Figure 3. The
authentication process is used to prove the digital identity of
the user. When the user requests a service, the system
accesses the vCard in the device. (I) The Credential Manager
selects the specific credentials of the application that are
contained in the vCard and verifies if the user is on the list of
active users; in other words, it verifies if the ticket is still
valid. If the ticket has expired, (II) the Credential Manager
queries the Device Manager to verify if the user switched to a
different device. If a switch has occurred, (III) the Location
Manager performs the functions illustrated in the activity
diagram in Figure 4. Otherwise, it determines if there is an
association between the user and the device used in the
request. If such an association exists, the Ticket Manager,
which controls the lifecycle of the tickets, creates a new
ticket. Consequently the Credential Manager updates the
vCard with the new ticket, and subsequently, the updated
vCard is stored in the Credential Repository, and it is also
sent to the device. Otherwise, if the user cannot be associated
with the device, the system requests the login and the
password of the user. (IV) If the ticket is still valid, the
Permission Manager is queried in order to verify that the user
has the permission for the requested operation. If the user has
the appropriate permission, (V) the request is sent to execute
the requested operation. This operation is one of the available
services, along with resource reservation, reservation
cancelation and the submission and monitoring of
downloaded application results, the latter of which is also
provided in [3]. Finally, the operation response requested by
the user is returned to him/her (VI).

Moreover, since one of the main goals of the user-centric
authentication module is the securityof the user’s information
in the environment, all messages sent between themobile
devices, Mobile GUI, and the Credential Manager are
encrypted. Therefore,this procedure tries to prevent malicious
users from acquiring unauthorized access togrid services.

In recent years, mobile devices are able to perfom
geometric models used to determine object location with
geographic coordinates. These models are commonly used by

Int'l Conf. Grid Computing and Applications | GCA'10 | 79

location models based on the GPS (Global Positioning
System). Thus, due to the advantages offered by applications
that are able to facilitate location-related queries and manage
accurate information regarding the location of objects, the
latest generation mobile devices is being equipped with GPS
to provide support for these applications. Also, it is possible
to configure the accuracy of the location in order to safe
battery of mobile devices. Therefore, the integration of these
two popular technologies, vCard and GPS, which is still
under development in the authentication system, is
responsible to improve the security offered to users in the
environmnent .The next section describes the functionalities
of the authentication system regarding the user’s location.

Fig. 3: Authentication module architecture and its interaction with the others

modules

3.1.1 Spatio-temporal analytical model
In order to provide more reliability to the mobile grid

environment as well as to minimize and detect fraudulent
activities, the authentication system considers the capacity of
the mobile devices to capture information regarding the
spatio-temporal context of the environment where they are
inserted. Thus, the Location Manager can classify the
performed activity (event) regarding the geographic location
and the time frame of occurrence of this event
simultaneously. In order to formally define an event, we
assume that an event is an interaction (activity) of the user
with the application or environment in a certain location and
at a particular time frame. Then, an event is described as:

Therefore, the observed events in the execution of activities
form a database (Location Repository) for the process of
detecting information clusters, which translates to the
behavior of users. These clusters can be classified into three
broad categories: purely spatial, purely temporal or spatio-
temporal. In purely spatial clusters, the occurrence is higher
in some regions than it is in others, and purely temporal
clusters feature the occurrence of events as being greater in a
certain period than it is in others. Finally, spatio-temporal
clusters occur when events are temporarily higher in certain
regions than they are others. Among the models used to
predict events in a spatio-temporal context, we propose the

use of spatio-temporal permutation, which allows the
incorporation of covariate information found in other contexts
within the pervasive space. The Poisson model, which is
applied to purely temporal contexts, and the Bernoulli model,
which is preferably applied to spatial contexts, were both
rejected because they do not consider both the location of the
user and the time frame during an occurrence of an event.

According to Kulldorff [16], the spatio-temporal
permutation model is based on three characteristics: i)
detecting data clusters in space and time simultaneously; ii)
working with only events or cases; and iii) applying the
probabilistic model in a null hypothesis to conclude that the
events follow a hypergeometric distribution.

In order to determine the regions of the clusters, it will be
used the SaTScan tool developed by Kulldorff [16] and the
statistical significance will be validated by using the
hypothesis test of Monte Carlo.

Fig 4: Fraud detection activity diagram

The conditional probability of the user P(Ea) allows the

system to estimate what kind of activity the user was
performing and what one he is currently performing when he
moves from a mobile device to another one. Thus, there are
four cases that can occur: i) the same activity in the same
spatio-temporal context – it is defined as a normal execution;
ii) same activity in different spatio-temporal contexts – it is
defined as a suspicious execution, but some properties must
be considered such as the velocity of mobility in order to
apply the appropriate authentication policies; iii) different
activities in the same spatio-temporal context – it is defined as
a suspicious execution; and iv) different activities in different
spatio-temporal context – it is defined as an abnormal
execution. Therefore, depending on the categorization of the
user, the authentication system defines which action will be
taken regarding the following factors: the performed request,
the malicious user, the mobile device and the potential fraud
victim. The activity diagram shown in Figure 4 illustrates
how the system operates when it detects device switching.

3.2 Resource Reservation
As previously discussed, the possibility of resource

reservation allows mobile users to plan their future use of the

80 Int'l Conf. Grid Computing and Applications | GCA'10 |

grid. The resource reservation module, which is still under
development, is responsible for ensuring that these
reservations are maintained for future workflow submission
on the grid. In addition, it enables the monitoring of reserved
resources as well as recording any cancelled reservations.
Figure 5 illustrates the design of the module and its
functionality is described in the subsequent paragraphs.

Fig. 5: Resource Reservation Architecture

First, after intercepting the request and authenticating the

user, the authentication service transfers the ticket access
information and the resources requiring reservation to (I) the
Reservation Service. At the same time, the authentication
module transfers the start time and end time of the reservation
to the Reservation Service, which uses (II) the Grid
Information Service (GIS) to verify the availability and status
of the requested resources. If there are available resources,
(III) the Co-allocation Service will select the best option
based on the information from the GIS, and it will allocate the
resources accordingly. At this point, the user ticket is
associated with the reservation, which enables future
interactions between the user and the system, allowing the
user to verify the status of reservations, cancel a reservation
or monitor the workflows. Subsequently, information
pertaining to the allocated resources and the user ticket are
stored in (IV) a Data Base (DB), hence enabling a checkpoint
mechanism. This method is necessary in case a user wishes to
access a previous workflow result or interact with the grid
environment to submit or cancel workflows.

The ticket created by the authentication module might
specify a duration time based on the time of the reservation.
When a ticket is no longer valid, the resources reserved by the
user are automatically released. When the user submits a
workflow to the environment, the Reservation Service
searches the information in the Database to verify the user
ticket. Once the ticket is verified, the workflow is sent to the
Workflow Manager (V).

Through the reservation module, users can plan the future
use of resources based on their mobile requirements. Since
the reservation is performed and monitored through their
mobile device, the user does not need to worry about which
device will make submissions and monitor workflows.

Rather, they need to ensure that the resources have been
previously allocated.

The development of the resource reservation module was
enabled by GridSim [17]. The toolkit supports modeling and
simulation of heterogeneous grid resources, users and
application models. This toolkit will assist withthe
implementing the Reservation Service component, modeling
heterogeneous computational resources of variable
performance, and testing the policy of advance resource
reservation.

4 Experimental Results
Experiments were performed on the basis of the

environmental configuration proposed in [3] and focus on the
battery usage without concern about potential security threats.
Therefore, the Java programming language was used for
implementing the user-centric authentication service and
integrating it with the other modules. In addition, the module
present in the Mobile GUI, which is responsible for handling
the user’s vCard and intercepting service requests, was
implemented using the J2ME (Java 2 Micro Edition) Wireless
Toolkit. In addition, the simulator GridSim was used as the
grid environment.

The experimental environment consisted of a server
containing the authentication service, which was integrated
with the other modules presented in [3]. Also, the mobile
devices used in our experiments were two Palm Tungsten C
devices, each with a 400MHz processor, 64 MB RAM, built-
in Wi-Fi (802.11b), and a Palm OS 5.2.1 operating system.
As the integration of GPS with authentication system is still
under development, for the current experiments we used a
device without GPS.

Since the maintenance of battery life is one of the most
critical and challenging problems found in mobile devices,
such as PDAs and cell phones [18], new methods and
techniques are required to reduce the dissipation of energy in
such devices. Accordingly, we analyzed the efficiency of the
proposed user-centric authentication mechanism based on the
power consumption of mobile devices.

This analysis was performed by identifying a pre-defined
sequence of ten service requests. Specifically, this analysis
compared the execution of a sequence using the user-centric
authentication approach and the traditional authentication
approach. The traditional authentication approach refers to the
device-centric authentication method used in [3], where a
username and password are requested when the user moves
from one mobile device to another. The device-centric
authentication was chosen for analysis because it is one the
most common authentication mechanisms in mobile grid
environments, as indicated in the research. In order to
evaluate the efficiency of the mechanism proposed in this
paper, we simulated a user changing mobile devices.
Therefore, the pre-defined requests were interspersed between
the two devices by performing the pre-defined sequence in a
mobile device, then running it in the other one.

Figure 6 presents empirical results using the battery
consumption of the mobile devices as the metric for the

Int'l Conf. Grid Computing and Applications | GCA'10 | 81

performance of the proposed approach, which compared user-
centric authentication to the traditional authentication. This
evaluation was performed using the BatteryGraph software
[19], which had been installed on the mobile devices. It
provides the mean battery level, expressed in milivolts (mV),
before and after the completion of each of the two
applications.

Fig. 6: Battery power consumption for two authentication approaches

Figure 6 indicates that the user-centric authentication
approach demonstrates a consistent increase in power
consumption based on the number of requests. In comparison,
the traditional authentication approach causes a greater
increase in the energy consumption of the battery. Thus, the
proposed approach represents a significant reduction in the
power consumption of the battery as compared to the
traditional authentication mechanism.

The second experiment attempted to analyze the efficiency
percentage of the proposed mechanism. Specifically, it
consisted of running the same sequence of pre-defined
requests several times until the battery was totally depleted.
First, this procedure was performed using the traditional
authentication approach and switching the mobile devices
between the sets of requests. Subsequently, the same
experiment was performed by executing the application with
the user-centric authentication mechanism. As in the case of
the traditional approach, this execution also used the process
of interspersing the sets of requests between the two mobile
devices.In addition, in order to acquire an accurate
assessment, both experiments were performed three times.

Figure 7 presents the results obtained by using the two
authentication approaches. The BatteryGraph was utilized for
obtaining the percentage of the devices' charge level.
Moreover, it also verifies the percentage of battery used
during a time interval selected by the user.

As shown in Figure 7, the mechanism proposed in this
work for user-centric authentication enables a greater
autonomy of energy in comparison to the traditional
authentication mechanism. For instance, the traditional
authentication mechanism resulted in total battery exhaustion
after 130 requests, while the proposed approach for user-
centric authentication did not completely drain the battery
until after 200 requests. Therefore, the user-centric

authentication approach results in a noticeable increase of
approximately 53% in the battery life.

Fig. 7: Comparison of battery charge for two authentication approaches

5 Conclusions and Future Work
A user-centric authentication approach was proposed in this

paper for enabling safe advanced resource reservation in
mobile grid environments. The proposal addressed the
shortcomings in [3], which were mainly due to the
inefficiency of various components in the environment. This
work aimed to create a safe and transparent system for users
to submit tasks and reserve resources in mobile grid
environments. Specifically, its primary objectives consisted of
making the user’s interaction with the environment more
flexible and reducing the battery consumption of mobile
devices, both of which were successfully achieved. In
addition, the proposal also aimed to provide to the user with
more efficient mobility resources in such environments.

As a future work we are planning to perform further
simulations using other mobile device models in order to
perform experiments regarding the user’s location and the
impact on the experience of the user. In addition, it is
interesting to consider other important metrics in mobile grid
environments, such as the occurrence of disconnections and
interferences in the wireless network, user interactivity, and
the ability of the system in detecting frauds. The latency of
the user-centric authentication approach is important also to
measure, particularly, the way in which it affects the resource
reservation environments.

6 References
[1] I. Foster, “What is the Grid? A three Point Checklist”,
GridToday, vol.1, no.6, July, 2002.
[2] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of
the grid: Enabling scalable virtual organizations”,
International Journal of High Performance Computing
Applications, vol. 15, no. 3, pp. 200-222, 2001.
[3] A. Rossetto, V. Borges, A. Silva, and M. Dantas,
“SuMMIT – A framework for coordinating applications
execution in mobile grid environments”, Proceedings of the

82 Int'l Conf. Grid Computing and Applications | GCA'10 |

8th IEEE/ACM International Conference on Grid Computing,
pp. 129–136. IEEE Computer Society Washington, DC, USA,
2007
[4] D. Chu and M. Humphrey, “Mobile OGSI .NET: Grid
computing on mobile devices”, Proceedings of the 5th
IEEE/ACM International Workshop on Grid Computing, pp.
182–191. IEEE Computer Society Washington, DC, USA,
2004.
[5] A. Gomes, A. Ziviani, L. Lima, and M. Endler,
“DICHOTOMY: A Resource Discovery and Scheduling
Protocol for Multihop Ad hoc Mobile Grids”, Proceedings of
the 7th IEEE International Symposium on Cluster Computing
and the Grid, pp. 719–724. IEEE Computer Society
Washington, DC, USA, 2007.
[6] D. Saha and A. Mukherjee, “Pervasive computing: a
paradigm for the 21st century”, CIEEE Computer, vol. 36 no.
3, pp. 25–31, 2003.
[7] A. Takefusa, H. Nakada, T. Kudoh, Y. Tanaka, and S.
Sekiguchi, “GridARS: An Advance Reservation-Based Grid
Co-allocation Framework for Distributed Computing and
Network Resources”, Lecture Notes in Computer Science,
4942, pp. 152-168, 2008.
[8] M. Siddiqui, A. Villazon, R. Prodan, and T. Fahringer,
“Advanced Reservation and Co-Allocation of Grid
Resources: A Step towards an invisible Grid”, Proceedings of
9th IEEE International Multitopic Conference, pp. 1–6. IEEE
Computer Society Washington, DC, USA, 2005.
[9] T. Roblitz and A. Reinefeld, “Co-reservation with the
concept of virtual resources”, 5th IEEE International
Symposium on Cluster Computing and the Grid, vol. 1, pp.
398–406. IEEE Computer Society Washington, DC, USA,
2005.
[10] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt,
and A. Roy, “A distributed resource management architecture
that supports advance reservations and co-allocation”, 7th
International Workshop on Quality of Service, pp. 27–36.
IEEE Computer Society Washington, DC, USA, 1999.
[11] The WS-Resource Framework [Online]. Available:
http://www.globus.org/wsrf/
[12] D. Mashima and M. Ahamad, “Towards an user-Centric
Identity-Usage Monitoring System”, Proceedings of the 3rd
International Conference on Internet Monitoring and
Protection, pp. 47–52. IEEE Computer Society Washington
DC, USA, 2008.
[13] H. Choi and Y. Yi, “an user-Centric Privacy
Authorization Model Based on Role and Session in the
Context-Aware Home” Proceedings of the 8th IEEE
International Conference on Computer and Information
Technology Workshops, pp. 254–259, IEEE Computer
Society Washington, DC, USA, 2008.
[14] A. Yamin, J. Barbosa, I. Augustin, L. da Silva, R. Real,
C. Geyer, and G. Cavalheiro, “Towards merging context-
aware, mobile and grid computing” International Journal of
High Performance Computing Applications, vol. 17, no. 2,
pp. 191-203, June, 2003.
[15] F. Dawson and T. Howes, “RFC2426: vCard MIME
directory profile”, RFC Editor, United States, 1998.

[16] M. Kulldorff et al. “SaTScan v7.0: Software for The
Spatial and Space-Time Scan Statistics”. Available:
http://www.satscan.org/
[17] A. Sulistio and R. Buyya, “A Grid Simulation
Infrastructure Supporting Advance Reservation”, Proceedings
of the 16th International Conference on Parallel and
Distributed Computing and Systems, pp. 1-7, MIT,
Cambridge, USA, 2004.
[18] S. Mohapatra, R. Cornea, H. Oh, K. Lee, M. Kim, N.
Dutt, R. Gupta, A. Nicolau, S. Shukla, and N.
Venkatasubramanian, “A Cross-Layer Approach for Power-
Performance Optimization in Distributed Mobile Systems”
Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium, vol. 11, pp. 8. IEEE
Computer Society Washington, DC, USA, 2005.
[19] BatteryGraph. Web Page. Available:
http://palm.jeroenwitteman.com

Int'l Conf. Grid Computing and Applications | GCA'10 | 83

Abstract— The need to model the risk of failure is critical

to Grid resource providers. Moving from the best-effort

approach in accepting Service Level Agreements (SLAs) to a

risk-aware approach assists the Grid resource provider to

offer a high level quality of service (QoS). In this paper we

develop a mathematical model to predict the risk of failure of

a Grid node using a discrete-time analytical model driven by

reliability functions fitted to observed data. We consider four

standard distributions Weibull, Gamma, Exponential, and

Lognormal to fit the failure data. We find that the time

between failures is well modeled by a Weibull distribution. We

evaluate the model by comparing the predicted risk of failure

with the observed risk of failure using availability data

gathered from four Grid nodes. We find that the difference is

not statistically significant between the observed risk of failure

and the predicted risk of failure.

Keywords: Availability Modeling, Grid computing, Risk of

Failure prediction.

1. INTRODUCTION

 Grid computing is the coordinated sharing of resources and

solving problems in dynamic, multi-institutional virtual

organizations. This sharing must be controlled with clear

boundaries on what will be shared, who are allowed to share,

and the conditions under which sharing occurs, whether the

resources are hardware, software, or users [1-2]. The sharing

should be done using standard, open, and general-purpose

protocols and interfaces, and should deliver nontrivial quality

of services (QoS) [3-4]. The sharing and coordination of

resources on the Grid is complicated, since both the user and

the Grid resource provider are geographically located in

different time zones, and have competing needs. Therefore

Service Level Agreements (SLAs) are used to either provide

some measurable capability or perform a specific task. An

SLA allows the user to know what is expected from a service

without requiring detailed knowledge of the provider’s

policies [5-6].

 Even with the introduction of SLAs commercial Grids are

not attracting users and providers. Current Grid middleware

(e.g. Globus Toolkit [7]) still follows the best-effort approach,

there is a risk that users do not get any guarantees that their

SLAs will not be violated. Also commercial resource

providers are not attracted either. For a resource provider

agreeing on an SLA without enough information about the

state of resources and the availability of devices introduces a

chance of violating the SLA, which results in a penalty fee.

There is a risk attached to system failure, service

unavailability, insufficient resources etc, which might lead to

SLA violation. Without a method for assessing the risk of

accepting an SLA providers are only able to make uncertain

decisions regarding suitable SLA offers. Also end-users would

like to know the risk of violating an SLA so that they can

make decisions on what Grid resource provider to select and

the acceptable cost/penalty fee. The risk-aware approach will

also enable the Grid provider to understand the capacity of the

infrastructure and plan future investment.

 Significant work on risk assessment has been performed in

the scope of the AssessGrid project [8]. The work has focused

on qualitative and quantitative risk assessment and how it can

be performed in a scenario where resource reservations are

defined by a number of compute nodes (machines) required,

the duration of the service, and scheduling constraints. The

approach used in the AssessGrid project for failure estimations

is based on the Possibility theory and assumed that Grid

failure data are hardly available. On the other hand, our

approach is to develop a mathematical model to predict the

node risk of failure using a discrete-time analytical model

driven by distribution functions fitted to observed data. We

analyze failure data collected from four different nodes from

two different Grid sites. We consider four standard

distributions Weibull, Gamma, Exponential, and Lognormal to

fit the failure data. We developed the risk estimation model

using the observed distribution. In this paper a Grid site is a

physical location containing Grid resources. A node is a

computer running some type of Grid software. A site is build-

up by one or more nodes. The node risk of failure at time t is

the probability of the node not functioning at time t. This

paper is organized as follows. The data collection process and

the structure of the data records are presented in Section 2. In

Section 3 we define the statistical distributions used

throughout this research and describe our method for

parameters estimation and goodness-of-fit test. In Section 4

we develop the mathematical model to predict the node risk of

failure. To estimate the effectiveness of our model, we

compare the model predicted risk of failure with the observed

risk of failure in Section 5. Section 6 presents some related

work. Then we conclude in section 7.

Modeling the Risk of Failure in Grid Environments

Raid Alsoghayer, Karim Djemame
School of Computing, University of Leeds,

Leeds, LS2 9 JT, UK

{raid, karim}@comp.leeds.ac.uk

84 Int'l Conf. Grid Computing and Applications | GCA'10 |

2. DATA COLLECTION

 Research in the area of dependable computing depends on

understanding how failures in the real world look like, e.g.

knowledge of failure characteristics can be used in resource

management to improve cluster availability [9]. Also creating

realistic benchmarks and test-beds for reliability testing

requires the knowledge of failure characteristics [10].

Therefore access to failure data is very important.

 The Grid Operations Centre Data Base (GOCDB)[11] is a

database of all sites within the Enabling Grids for E-science

(EGEE)[12], the UK National Grid Service (NGS)[13] and

Worldwide LHC Computing Grid (WLCG)[14] that contains

information on sites, nodes, services, and downtime. GOCDB

is publicly available and accessed following registration.

 A downtime is a period of time for which a grid resource is

declared to be inoperable. A downtime record contains unique

downtime ID, downtime classification (scheduled or

unscheduled), the severity of the downtime, the user who

recorded the downtime, the date at which the downtime was

added to GOCDB, the start and end of the downtime period,

the description of the downtime, and the entity affected by the

downtime.

 Scheduled downtimes are planned and agreed in advance,

while unscheduled downtimes are unplanned, usually

triggered by an unexpected failure. EGEE define specific rules

[15] about what should be classified as scheduled downtime

and what should be classified as unscheduled downtime. The

rules are based on the length of the intervention, the impact

severity, and how long in advance the downtime is declared.

Yet currently it is up to the person who declares the downtime

to decide if it is scheduled or not.

 The severity of the downtime is either “At Risk” (Resource

will probably be working as normal, but may experience

problems) or “Outage” (Resource will be completely

unavailable).

 The data collected in GOCDB is different compared to the

data in error-logs. Error-logs are generated automatically and

treat every unexpected event the same whether it resulted in a

system failure or not. Also error-logs might contain multiple

entries for the same event. On the other hand data in the

GOCDB are created manually by system administrators.

Human created failure data have two potential problems

underreporting of failure events and misdiagnosing the cause

of the downtime. While it is possible for a failure to being not

reported at all, in this study we are assuming that this is not

the case. Misdiagnosing the cause of the downtime is feasible.

GOCDB does not have classification of the root cause (e.g.

Hardware, Software, etc) it has only a description of what

might cause the downtime. The diagnosis and description

depend hugely on the administrators’ skills.

 In this study we take into account the downtime data for

two Grid Sites A and B from GOCDB. We considered two

nodes from each site. The downtime data are for the whole

node and show only the time when the node was down. The

data span form July 2007 till January 2010. All data have

scheduled and unscheduled downtime. Here we only consider

unscheduled failures. The reason is that a resource provider

uses advance reservation, which takes into account scheduled

downtimes.

3. FITTING A DISTRIBUTION TO FAILURE

DATA

 The time between failures on many computer systems have

been observed to follow a Weibull distribution [9-10, 16-19].

Schroeder and Gibson [10] analyzed system failures collected

over nine years from several high-performance computing

systems at Los Alamos National Laboratories, and found the

time between system failures was well-modelled by a Weibull

distribution with shape parameter less than 1.

In this section we view the sequence of failure events for

each node in the study as a stochastic process and we study the

time between unscheduled failures, inter-arrival times. Even

though times between failures on computer systems have been

observed to follow a Weibull distribution, for the sake of

investigating we fit the empirical Cumulative Density

Function (CDF) at each node with four standard distributions

Weibull, Gamma, Exponential, and Lognormal. We use

maximum likelihood estimation (MLE) to estimate the

distributions parameters and negative log-likelihood to test the

goodness-of-fit.

 Fig. 1 shows the empirical CDF at the 1
st
 node site A, and

Fig. 2 shows the empirical CDF at the 2
nd

 node site A fitted by

four standard distributions. Visual fit shows that the

distribution between failures in both nodes is well modeled by

a Weibull or Lognormal distribution, yet the Weibull is a

better fit when tested using negative log-likelihood.

Fig. 1: CDF for inter-arrival times of failures Node 1_A.

Fig. 2: CDF for inter-arrival times of failures Node 2_A.

Fig. 3: CDF for inter-arrival times of failures Node 1_B.

Int'l Conf. Grid Computing and Applications | GCA'10 | 85

Fig. 4: CDF for inter-arrival times of failures Node 2_B.

Fig. 3 shows the empirical CDF at the 1
st
 node site B, and

Fig. 4 shows the empirical CDF at the 2
nd

 node site B fitted by

four standard distributions. Visual fit also shows that the

distribution between failures in both nodes is well modeled by

a Weibull or Gamma distribution. Both distributions create an

equally good visual fit and the same negative log-likelihood.

This confirms the observation in previous researches that

the time between failures is well-modeled by a Weibull

distribution with shape parameter less than 1.

It is useful to know how the time since the last failure

influences the expected time until the next failure. This notion

is captured by a distribution’s hazard rate function. An

increasing hazard rate function predicts that if the time since a

failure is long then the next failure is coming soon. And a

decreasing hazard rate function predicts the reverse. The shape

parameter of less than 1 indicates that the hazard rate function

is decreasing, i.e. not seeing a failure for a long time decreases

the chance of seeing one in the near future.

4. DEVELOPING THE RISK ASSESSMENT

MODEL

 The risk of failure at time t of a node is the probability of

the node not functioning at time t. This can be defined as one

minus the probability of the node functioning at t. By

computing the node availability A(t) we can compute the Risk

of failure.

 Risk of Failure = 1 – A(t)

 To model the risk of failure for Grid nodes, we developed a

three-state Markov model to represent the state of the node.

State (0) is UP, which represents node is successfully

operating. State (1) is At Risk, which represents a functioning

node, but may experience problems. The final sate (2) is

Down, which represent the node is unavailable and completely

stops working. Fig. 5 shows a continuous time Markov model

of the Grid node availability.

 The node will start at state 0 and operate until either: (i) The

performance degraded and the node transited to state 1. (ii)

The node stops working and transited to state 2. ZW(t) is the

rate of events that cause a node to transition from Up to At

Risk, ZR(t) is the rate of recovery events that results in the node

returning to the Up state, ZF(t) is the rate of events that leads

to the node failure, and ZG(t) is the rate of repair events that

results in the node return to Up state.

Fig. 5. Continuous-time Markov Model for Node Availability.

To determine the reliability functions for ZW(t), ZR(t), ZF(t),

and ZG(t) for the continuous-time Markov model shown above

we need to view the sequence of unscheduled events, in

GODB, as a stochastic process. The data have two types of

events, the first is At Risk, which represents the transition

from state 0 to state 1, and the second is complete failure,

which represents the transition from state 0 to state 2. The

time to repair the system is the time to return it to state 0 from

state 1 or 2. The time between events follow a Weibull

distribution, therefore the reliability functions above are based

on a Weibull probability density function, with unique shape α

and scale λ values for each function.

ZW(t) = 𝛼𝑊𝜆𝑊 (𝜆𝑊 𝑡)(𝛼𝑊−1) 𝑒−(𝜆𝑊 𝑡)𝛼𝑊
 (1)

ZR(t) = 𝛼𝑅 𝜆𝑅 (𝜆𝑅 𝑡)(𝛼𝑅−1) 𝑒−(𝜆𝑅 𝑡)𝛼𝑅
 (2)

ZF(t) = 𝛼𝐹 𝜆𝐹 (𝜆𝐹 𝑡)(𝛼𝐹−1) 𝑒−(𝜆𝐹 𝑡)𝛼𝐹
 (3)

ZG(t) = 𝛼𝐺 𝜆𝐺 (𝜆𝐺 𝑡)(𝛼𝐺−1) 𝑒−(𝜆𝐺 𝑡)𝛼𝐺
 (4)

Continuous-time Markov model are hard and complex to

solve. Numerical integration techniques are one method of

solving the model. An alternative method is to approximate

the continuous-time process with discrete-time equivalents

[20]. We will use the 2
nd

 method because numerical

integration involves some degree of approximation anyway.

Fig. 6 shows the resulting discrete-time Markov model for

time step ∆t. Since more than one transition may occur during

a time step, the model must take into account the joint

probability of state transition.

The state transition probabilities for the discrete-time

Markov model change over time, therefore we need to drive

an expression for A(n), B(n), C(n), D(n), and E(n). The model

we drive is based on models developed by Howard [21] and

Siewiorek and Swarz [20].

We are interested in calculating the probability transition

equations, in which qij (m, n) is the probability that the system

is in state j at time n given that it was in state i at time m (m ≤

n). With this notation, in matrix form the Chapman-

Kolmogorov equation [21] is:

Q(m, n) = Q(m, k) Q(k, n) m ≤ k ≤ n (5)

 Letting k = n – 1,

UP

State 0

DOWN

State 2

AT RISK

State 1

ZW(t)

ZF(t)

ZR(t) ZG(t)

ZF(t)

86 Int'l Conf. Grid Computing and Applications | GCA'10 |

Q(m, n) = Q(m, n – 1) Q(n – 1, n) (6)

 Defining P(n) = Q(n, n + 1),

Q(m, n) = Q(m, n – 1)P(n – 1) (7)

 Expanding the equation recursively

Q(m, n) = Q(m, n – 2) P(n – 2) P(n – 1)

 = Q(m, n – 3) P(n – 3) P(n -2) P(n – 1) (8)

 Yielding the final solution

Q(m, n) = 𝑃(𝑖)𝑛−1
𝑖=𝑚 (9)

Fig. 6. Discrete-time Markov Model for Node Availability.

 For converting from continuous-time probability functions

to discrete-time probability function, a discrete-time

probability distribution must be found that correspond to the

continuous-time distribution. The corresponding parameters

can then be calculated for the desired time-step ∆t. Also a

discrete-time approximation has to consider the probability of

two failures during the same interval. The time-varying

reliability functions ZW(t), ZR(t), ZF(t), and ZG(t) are based on a

Weibull probability density function.

pdf = f(t) = αλ(λt)
α-1𝑒−(𝜆𝑡)𝛼

(10)

 The corresponding discrete Weibull function, probability

mass function, is:

pmf = f(k) = 𝑞𝑘𝛼
 – 𝑞(𝑘+1)𝛼 (11)

 Given that f(k) is defined as the probability of an event

occurring between time ∆t and time (k + 1) ∆t for some

chosen interval size ∆t. The probability mass function can be

expressed as:

f(k) = P[no event by k∆t] – P[no event by (k + 1)∆t] (12)

f(k) = R(k) – R(k+1) (13)

 R(k) is the reliability function. By substituting the

continuous-time equivalents yields:

f(k) = R(k∆t) – R[(k + 1) ∆t] (14)

f(k) = 𝑒−(𝜆𝑘∆𝑡)𝛼 – 𝑒−[𝜆(𝑘+1)∆𝑡]𝛼 (15)

 Rearranging terms we can find that

q = 𝑒−(𝜆∆𝑡)𝛼 (16)

 The probability mass functions ZW(n), ZR(n), ZF(n), and

ZG(n) provide the reliability for a discrete time step n = tn/∆t.

The calculation of the transition probability functions for the

discrete-time Markov model must take into account the joint

probabilities of state transitions. The time varying functions

are:

qW = 𝑒−(𝜆𝑊 ∆𝑡)𝛼𝑊
 (17)

ZW(n) = 1 – 𝑞𝑊
(𝑛+1)𝛼𝑊 – 𝑛𝛼𝑊

 (18)

qR = 𝑒−(𝜆𝑅 ∆𝑡)𝛼𝑅
 (19)

ZR(n) = 1 – 𝑞𝑅
(𝑛+1)𝛼𝑅 – 𝑛𝛼𝑅

 (20)

qF = 𝑒−(𝜆𝐹 ∆𝑡)𝛼𝐹
 (21)

ZF(n) = 1 – 𝑞𝐹
(𝑛+1)𝛼𝐹 – 𝑛𝛼𝐹

 (22)

qG = 𝑒−(𝜆𝐺 ∆𝑡)𝛼𝐺
 (23)

ZG(n) = 1 – 𝑞𝐺
(𝑛+1)𝛼𝐺 − 𝑛𝛼𝐺

 (24)

 The transition probability functions in Fig. 2, which

represent the probability of transition from one state to another

state, are:

A(n) = [1 – ZF(n)] ZW(n) (25)

B(n) = [1 – ZW(n)] ZF(n) (26)

C(n) = [1 – ZF(n)] ZR(n) (27)

D(n) = [1 – ZR(n)] ZF(n) (28)

E(n) = ZG(n) (29)

 The transition probability matrix P(n) =

1 − [𝐴 𝑛 + 𝐵 𝑛] 𝐴(𝑛) 𝐵(𝑛)

𝐶(𝑛) 1 − [𝐶 𝑛 + 𝐷 𝑛] 𝐷(𝑛)

𝐸(𝑛) 0 1 − 𝐸(𝑛)

 A(n) is the probability of not going down and the

probability of going from Up to At Risk, B(n) is the probability

of not going to at risk and the probability of going from Up to

Down, C(n) is the probability of not failing and going from At

Risk to Up, D(n) is the probability of not been recovered and

going Down, and E(n) is the probability of repairing the

system and going from Down to Up.

 The probability of transition P0,0 is the probability of

remaining in state 0, which is 1 – the probability of leaving

state 0, hence 1 – [A(n) + B(n)]. The same can be applied for

the probability of transition P1,1 and P2,2.

 P(n) can be used to compute instantaneous or point risk of

failure which is the probability that the system will not be

operational at any random time t. Yet the most important is the

duration risk of failure which is the probability that the system

will not be operational for the entire duration (e.g. job

execution time). Computing duration risk of failure is an

iterative process. Using appropriate values for α and λ, starting

at T = start time, P(n) is computed forward for successive

values of n until the desired finish time t = n ∆t is reached.

1- E(n) 1- [C(n) + D(n)]

1- [A(n) + B(n)]

E(n)

UP

State 0

DOWN

State 2

AT RISK

State 1

A(n)

B(n)

C(n)

D(n)

Int'l Conf. Grid Computing and Applications | GCA'10 | 87

5. EXPERIMENTAL RESULTS

 We take into account the down-time data for two nodes

from Grid site A and two nodes from Grid site B. We compute

the probability transition matrix P(n) for each node using the

technique described in the previous section. We calculate the

risk of failure as the sum of the probability of transitioning

from Up to At Risk and the probability of transitioning from

Up to Down. The observed risk of failure is the number of

failures divided by the number of days in the time-span. We

select the time-span to be 6 months for 2 reasons. (1) The data

used to calculate the model span for years. (2) The Weibull

shape parameter for Grid failures is less than 1 this means

after a failure the risk of seeing one soon increased, therefore

short time-span does not reflect the true behavior of the

failures.

 Fig. 7, 8, 9 and 10 shows the predicted risk of failure over a

number of days and the observed risk of failure for node 1 site

A, node 2 site A, node 1 site B, and node 2 site B

correspondingly.

We use the Analysis of Variance (ANOVA) for testing the

difference in the means between the predicted and the

observed risk of failure. The test shows that the difference is

considered to be not statistically significant with P= 0.508, P=

0.863, P= 0.232, and P= 0.088 respectively for the four

experiments.

Fig. 7. Predicted & Observed Risk of Failure for Node 1_A.

Fig. 8. Predicted & Observed Risk of Failure for Node 2_A.

Fig. 9. Predicted & Observed Risk of Failure for Node 1_B.

Fig. 10. Predicted & Observed Risk of Failure for Node 2_B.

 Comparing Fig. 7, 8, 9 and 10, the most apparent feature is

that the risk assessment model accurately predicts Grid node

risk of failure. Therefore the Grid resource provider can

integrate the risk assessment model to build the confidence in

accepting SLAs.

 The second observation is that nodes risk of failure of site A

(Fig 7 and 8) is higher than nodes risk of failure of site B (Fig

9 and 10) The primary cause was the time to repair a failed

node in each site. On site A the time to repair node 1 on

average takes around 19 hours, while it takes around 25 hours

for node 2. On site B the time to repair node 1 on average

takes around 11 hours, while it takes around 9 hours for node

2.

6. RELATED WORK

 Risk assessment in Grid computing has been addressed in

the AssessGrid project [8, 22]. The main objective of the

AssessGrid project is to address obstacles of a wide adoption

of Grid computing by bringing risk management and

assessment to this field, enabling use of Grid technologies in

business and society. In this scope, AssessGrid delivers

generic, customizable, trustworthy, and interoperable open-

source software for risk assessment, risk management, and

decision-support in Grids. The approach used to develop the

risk assessment model in AssessGrid is different than the

approach used in this research. The approach used in

AssessGrid is based on the Possibility theory initiated by

Zadeh in [23]. It assumed that Grid failure data are hardly

available and are not frequent; therefore probability theory

models cannot be used. Possibility theory is based on new

concepts such as possibility measure, necessity measure,

possibilistic distributions, etc. However this paper is the first

attempt to compute the risk of failure using observed data

from existing Grid systems.

Markov models are widely used to model System

Availability and Reliability. [24] Investigated the use of Semi-

Markov models to model node reliability on large

supercomputing systems. [25] Used a two-phase cyclic non-

homogeneous Markov chain to evaluate the performance of a

replicated database. [26] Explored the use of homogeneous

continuous time Markov chain with the amount of free

memory to model the resource degradation of the computer

system. [27] Studied the use of a cyclic non-homogeneous

continuous time Markov chain to drive an optimal software

rejuvenation model. Also a large number of studies that look

at systems failure (or equivalently systems availability) is

found in the literature and includes [9-10, 16-18, 28-29], to

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126

Days

P
ro

b
a
b

il
it

y

Predicted Risk of Failure Observed Risk of Failure

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126

Days

P
ro

b
a
b

il
it

y

Predicted Risk of Failure Observed Risk of Failure

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88

Days

P
ro

b
a
b

il
it

y

Predicted Risk of Failure Observed Risk of Failure

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

Days

P
ro

b
a
b

il
it

y

Predicted Risk of Failure Observed Risk of Failure

88 Int'l Conf. Grid Computing and Applications | GCA'10 |

name a few. Most of these studies considered only short term

availability data. Other studies used statistical modeling to

predict resource failure (or availability) at Grid level not

resources level. These studies only considered distribution

fitting to the failure data. This approach does not take into

account the effect of system repairs and also it only gave the

probability of first failure at time t. Therefore if the system

fails before time t then the estimated probability at time t is

not accurate. However we develop a model that is based on

the fitted distribution (Weibull) and takes into account the

effect of system failures and repairs. The model estimate the

probability of failure (Risk) at resource level taking into

account the resources might fail at any time and require to get

repaired.

7. CONCLUSION

The need to model risk of failure is critical to Grid

providers. Moving from the best-effort approach in accepting

SLAs to a risk-aware approach assists the Grid provider to

offer a high level QoS. This increases the provider revenue,

improves demand for resources, and decreases penalty fees to

be paid in case of SLA violation. Also the reputation of the

provider improves so that additional customers can be

motivated to outsource part of their IT activities to the

provider. In this paper we analyze the downtime data for two

nodes from two Grid sites A and B. Our work shows that the

time between failures in nodes is best fitted with a Weibull

distribution with decreasing hazard rate, which is similar to

other systems studied in the related work. We developed a

mathematical model to predict the risk of failure using a

discrete-time analytical model driven by distribution functions

fitted to observed data. We evaluated the model by presenting

both graphical and statistical evaluations. We found that the

difference is not statistically significant between the observed

risk and the predicted risk. In future work we plan to improve

the risk assessment model by looking at other parameters

affecting the risk of failure (e.g. system load, time of day, and

availability of experts).

8. REFERENCES
1. Foster, I. and C. Kesselman, The Grid in a Nutshell, in Grid

resource management : state of the art and future trends, J.

Nabrzyski, J.M. Schopf, and J. Weglarz, Editors. 2004, Kluwer

Academic Publishers: Boston. p. 3-13.

2. Foster, I., C. Kesselman, and S. Tuecke, The anatomy of the Grid,
in Grid Computing : Making the Global Infrastructure a Reality, F.

Berman, G. Fox, and A.J.G. Hey, Editors. 2003, J. Wiley,: New

York. p. 169-197.
3. Foster, I. and C. Kesselman, Concepts and Architecture, in The

grid : blueprint for a new computing infrastructure, I. Foster and

C. Kesselman, Editors. 2004, Morgan Kaufmann: Amsterdam ;
Boston. p. 37-64.

4. Roure, D.D., et al., The evolution of the Grid, in Grid Computing :

Making the Global Infrastructure a Reality, F. Berman, G. Fox,
and A.J.G. Hey, Editors. 2003, J. Wiley,: New York. p. 65-100.

5. Czajkowski, K., et al., Grid Service Level Agreements: Grid

resource management with intermediaries in Grid resource
management : state of the art and future trends, J. Nabrzyski, J.M.

Schopf, and J. Weglarz, Editors. 2004, Kluwer Academic

Publishers: Boston. p. 119-134.

6. Czajkowski, K., et al., SNAP: A Protocol for Negotiating Service

Level Agreements and Coordinating Resource Management in
Distributed Systems. Lecture Notes in Computer Science. 2002.

153-183.

7. Foster, I. Globus Toolkit Version 4: Software for Service-Oriented
Systems. in FIP International Conference on Network and Parallel

Computing. 2005: Springer-Verlag LNCS 3779.

8. The AssessGrid Project. Available from: http://www.assessgrid.eu.
9. Taliver, H., P.M. Richard, and D.N. Thu, Improving cluster

availability using workstation validation. SIGMETRICS Perform.

Eval. Rev., 2002. 30(1): p. 217-227.
10. Schroeder, B. and G.A. Gibson. A large-scale study of failures in

high-performance computing systems. in International Conference

on Dependable Systems and Networks, DSN. 2006.
11. Grid Operations Centre DataBase. Available from:

http://www.grid-support.ac.uk/content/view/406/293/.

12. Enabling Grids for E-sciencE Available from: http://www.eu-
egee.org/.

13. National Grid Service Available from: http://www.grid-

support.ac.uk/.
14. Worldwide LHC Computing Grid Available from:

http://lcg.web.cern.ch/LCG/.

15. EGEE Production Infrastructure: Intervention Procedures.
Available from: https://edms.cern.ch/document/829986.

16. Lin, T.T.Y. and D.P. Siewiorek, Error log analysis: statistical

modeling and heuristic trend analysis. Transactions on Reliability,
IEEE, 1990. 39(4): p. 419.

17. Jun, X., Z. Kalbarczyk, and R.K. Iyer. Networked Windows NT
system field failure data analysis. in Pacific Rim International

Symposium on Dependable Computing. 1999.

18. Iosup, A., et al. On the dynamic resource availability in grids. in
8th IEEE/ACM International Conference on Grid Computing

2007.

19. Alsoghayer, R. and K. Djemame. Probabilistic Risk Assessment for
Resource Provision in Grids. in 25th UK Performance

Engineering Workshop. 6-7 July 2009. School of Computing,

University of Leeds.
20. Siewiorek, D.P. and R.S. Swarz, Reliable computer systems :

design and evaluation. 3rd ed. 1998, Natick, Mass.: A K Peters.

21. Howard, R.A., Dynamic probabilistic systems. Vol. 1. 1971, New
York ; London: Wiley.

22. Djemame, K., et al., Introducing Risk Management into the Grid,

in Proceedings of the Second IEEE International Conference on e-
Science and Grid Computing. 2006, IEEE Computer Society.

23. Zadeh, L.A., Fuzzy sets as a basis for a theory of possibility. Fuzzy

Sets and Systems, 1999. 100(Supplement 1): p. 9-34.
24. Hacker, T.J., F. Romero, and C.D. Carothers, An analysis of

clustered failures on large supercomputing systems. Journal of

Parallel and Distributed Computing, 2009. 69(7): p. 652-665.
25. Platis, A., et al., A Two-Phase Cyclic Nonhomogeneous Markov

Chain Performability Evaluation by Explicit Approximate Inverses

Applied to a Replicated Database System. Journal of Mathematical
Modelling and Algorithms, 2003. 2(3): p. 235-249.

26. Koutras, V.P., A.N. Platis, and G.A. Gravvanis, Software

rejuvenation for resource optimization based on explicit
approximate inverse preconditioning. Applied Mathematics and

Computation, 2007. 189(1): p. 163-177.

27. Koutras, V.P., A.N. Platis, and G.A. Gravvanis, On the
optimization of free resources using non-homogeneous Markov

chain software rejuvenation model. Reliability Engineering &

System Safety, 2007. 92(12): p. 1724-1732.
28. Nadeem, F., R. Prodan, and T. Fahringer. Characterizing,

Modeling and Predicting Dynamic Resource Availability in a

Large Scale Multi-purpose Grid. in 8th IEEE International
Symposium on Cluster Computing and the Grid, CCGRID '08.

2008.

29. Nurmi, D., J. Brevik, and R. Wolski, Modeling Machine
Availability in Enterprise and Wide-Area Distributed Computing

Environments, in Euro-Par 2005 Parallel Processing. 2005,

Springer Berlin / Heidelberg. p. 432-441.

Int'l Conf. Grid Computing and Applications | GCA'10 | 89

http://www.assessgrid.eu/
http://www.grid-support.ac.uk/content/view/406/293/
http://www.eu-egee.org/
http://www.eu-egee.org/
http://www.grid-support.ac.uk/
http://www.grid-support.ac.uk/
http://lcg.web.cern.ch/LCG/

Data Replication Strategy in the Data Grid

Leyli Mohammad Khanli
1
, Farzaneh Veghari Baheri

2

1
Assistance Professor, Computer Science, University of Tabriz, Iran

2
Islamic Azad University – Shabestar Branch, Tabriz, Iran

Abstract - Data Grid is composed of storage resources. Data

Grids are useful technique for management of the huge

distributed and shared data resources efficiently. Most of the

efforts in data management have been done on data

replication. Data replication is a strategy to achieve better

performance and reliability. Data replication generates

multiple copies of the existing data to reduce access time. In

this paper we improve the performance of data access and

bandwidth consumption and reduce the access latency. In this

paper, a dynamic data replication strategy is proposed, which

is called Largest Access Largest Replication (LALR). We

assume hierarchical architecture. This architecture has some

clusters. LALR chooses a popular data and calculates a

replica number. The data access history saved in the table in

each cluster. In a case, if requested data does not available in

a cluster then it will be send to coordinator. Coordinator finds

appropriate data replication with the least cost. In order to

does this, coordinator collect the history of each cluster then it

determines number of replication for reduce the access

latency. We simulate this algorithm to evaluate the

performance of this dynamic replication strategy with other

strategies in a cluster grid. The simulation results show that

LALR has shortest data access time.

Keywords: Cluster; Data Grid, Data Replication

1 Introduction

 In data grids, many scientific and engineering applications

require access to large amounts of distributed data (terabytes

or petabytes) [11, 15]. The size and number of these data

collections has been growing quickly in recent years. The data

grid is a solution for the management of the huge distributed

data resource. Essentially, the data grid is providing

geographically distributed storage resource for distributed

scientific and engineering applications. An important

technique that speeds up data access in data grid is data

replication. Data replication is an efficient method to achieve

better performance and reliability by storing copies of data

sets on different grid nodes. Creating replicas can reduce

bandwidth consumption and cost of access in data grid

systems. The read cost for send data over the data grid systems

to the end-user is minimized with replication. The replication

strategy is divided into two important subjects: which data

should be replicated and how many replicas should be created

[1, 2, 3, 4, 7, 14].

Several factors effect replica transfer times and execution

performance in data grid. For example the few factor such as

static and dynamic parameters are shown below [5, 6, 8, 13]:

- Static parameters: these parameters are not changing

when the environment in data grid is changing such as

the type and frequency of CPU and the speed of

sending network card.

- Dynamic parameters: these parameters can change when

the environment is changing. Such as CPU usage rate,

band width. In this paper we focused on the dynamic

parameters.

There are some methods for find number of replica, for

example there are mathematical and cache methods. The

mathematical method needs some fixed parameters. As you

know, that parameters are not available the most time for us.

The cache method has some problem. The problem is that the

method cache is not compatible. But in this article, we use

history of data access that it is optimum access time and it is

very better answer than other method [9, 10, 12].

In this paper, a dynamic data replication algorithm is

proposed and is called Largest Access Largest Replication

(LALR). A hierarchical architecture of a data grid system is

assumed. A cluster shows an organization unit which is a

group of sits. We develop time access and reduce the number

of replicate in grid environment. We suppose that requests

enter through CH with a priority tag. There is a table for

saving data-ID and the access-number and the service-time in

every cluster. In every period of time the tables of clusters is

collected in a table by a coordinator. Coordinator is a replica

management that defined as a system that can create, identify,

manage, and update replicas within the virtual organization.

And then data type and the optimal number of replicas of a

dataset are defined. We simulate our algorithm to evaluate the

performance of this dynamic replication strategy. It is obtained

the more optimum answer than the other methods. Providing

the appropriate replication for one site will increase the

performance of system. Summary, the time of data access and

bandwidth consumption and fault tolerance is reduced.

Section 2, in this paper introduces some previous work on

grid data replication. Section 3, explain our dynamic

replication mechanism in detail and section 4 evaluate

proposed algorithm. Finally, section 5 summarizes some

results.

90 Int'l Conf. Grid Computing and Applications | GCA'10 |

2 Related Works

 The technique of data replication is not a new strategy.

Data replication provides higher data availability, increased

performance and lower bandwidth consumption. In some cases

the application programs need different high volume data and

this data may be on the different machines.

In order to get better access performance, they [9] use

mathematical economic data replication with security. In their

model, market demand is estimated then invalid data

replications which are created by hackers are considered.

Since economic problems are considered. For example if user

pays money for their demands then suppliers should not give

invalid data replication. Therefore should increase access

performance in order to maximize the average profit. Since

mathematical methods needs some parameter which are not

available all the time. This model is not useful for any

situation.

Authors of [10] have proposed fast parallel replication

(FPR) tool which creates multiple distribution trees by

pipelining point to point transfer and reduce the data

replication time to multiple sites. In order to do that first a tree

with widest shortest path is created by the use of Dijkstra's

algorithm. Then the remaining trees are created with DFS and

BFS approach. Through this method the time of replication

will be minimized. But the tree method demands high capacity

of memory.

Authors of [8] have proposed the multi-tier hierarchical

data grid architecture. This algorithm proposed an efficient

mechanism for sharing of data. Two dynamic replication

algorithms, Simple Bottom-Up (SBU) and Aggregate Bottom-

Up (ABU), are proposed in [8] for the multi-tier data grid. The

basic idea of Simple Bottom-Up (SBU) is to create the

replicas as close as possible to the users that request the files.

If a requested file does not exist in the parent node of the user

and if the parent node has enough available space, then that

file replicates.

The basic idea of Aggregate Bottom-Up (ABU) is to

aggregate the history records to the upper tier till it reaches

the root. The ABU algorithm adds the number of accesses for

the records the same parent node. The result record after

aggregation, the parent node id will replace the node id for the

same parent.

3 LALR dynamic replication

algorithm

3.1 Proposed hierarchical architecture

In this paper, we assumed hierarchical architecture with

the dynamic data replication mechanism. This architecture has

some clusters. Proposed hierarchical architecture is shown in

figure 1. In a hierarchical model there is a coordinator in the

centre which is responsible for the following tasks:

 Making contact to send and receive messages

 Data transferring

 Storing and maintenance of data

 Ability of observation and following up requests

 Determining the type and number of replication

There is a table on the coordinator that is included

following fields:

 File_ID: Data Identification

 BW: Bandwidth Low or High?

 Replica_Cost: Cost Of Create Replication

 Priority: Data Value High or Low?

 Access_Number: Data Access-Number

 Service_time: Long Of Time for Allocation Data

 Transmission_Time_without_Replication: Time of

send in a case there is no replication

 Value_Replicate: Number of Replication

 Transmission_Time_with_Replication: Time of send

in a case there is replication

The coordinator saves condition and cost of dataset. Long

distance has high latency. Coordinator selects the nearest

replica. Cost of communication is calculated by hop count.

Figure 1. Proposed architectural hierarchical data replication

Proposed hierarchical architecture has some clusters. Each

cluster consists of many relatively strong nodes which

connected to each other.

There is a central node in every cluster named Cluster

Head (CH) which is managing all nodes in cluster and

monitors status of all nodes over the time as a central

manager. In each cluster, only CH connected to internet and

communicates with the entire clusters. There are some sits in

each cluster. Each sites included thousands of nodes. We

suppose that requests enter from CH with priority tag. There is

a table on each CH in each cluster that is included following

fields:

 File_ID: Data Identification

 Data_Type: Types can be local or remote

 Access_Number: Data Access-Number

 Service_Time: long of time for allocated data

Int'l Conf. Grid Computing and Applications | GCA'10 | 91

Each cluster maintains a detailed record for each data. The

format of a record in CH is <Data_ID, Data_Type,

Access_Number, Service_Time>.

CH and coordinator are responsible for managing the

access history. After summarizing the records by a CH, the

information about number is sent to the coordinator. The

number of data accesses should be aggregated for same data

ID by coordinator. Therefore, there is a table in the

coordinator for collecting the information. For example, if

there is a record in the cluster A, <C, local, 10, 25> and in the

cluster B, <C, local, 27, 30>, the result after collecting is <C,

local, 37, 55>.

3.2 Largest Access Largest Replica (LALR)

Algorithm

The Largest Access Largest Replication (LALR) is a

dynamic replication algorithm which has two phases. First,

finding which data is more popular. Second, we calculated

how many replication need to be created.

In the first phase, list of requests are entered by users

through the clusters and the time of request is registered as

“Request_Time” and the time of allocation is registered as

“Response_Time”. Service_Time is available through

expression (1):

)1(_Re_Re_ TimequestTimesponceTimeService

Figure2. Flowchart of LALR Algorithm

If requested data is its own cluster then data will be

allocated and this type of data is local, otherwise CH sends

requested data to coordinator. Coordinator finds data with

minimum distance and this data is remote for requested

cluster.

When data is allocated, Access_Number in the cluster

table is increased and Service_Time is calculated. This result

is saving in the cluster table. These tables of clusters are

updated in every access. Steps of updating the table are shown

in figure 2.

Coordinator holds the location of data Replication. It

should be mentioned that the long distance cause delay in

receiving data so coordinator selects the data with the

minimums distance and gets their identification. Relevant

flowchart is shown in figure 2.

3.3 Calculation the type and the number of

data replication

Coordinator collects the tables of clusters in each period of

time (for example in the bank after the one month) and

determines the number of replication with following

expression:

BW

dataofsize
TimeonTransmissi

__
_ (2)

countHopeTimeonTransmissiCostplica ___Re

 (3)

TimeonTransmissi

TimeServiceiorityNumberAccess
plicationofValue

_

Pr
Re__

 (4)

For example these parameters in table 1 are as follows:

10

10000__
_

BW

dataofsize
TimeonTransmissi (2)

1001100_Re Costplica (3)

6
1000

36352
Re__

plicationofValue (4)

If the number of replication for a popular data in a cluster

is less than the value of replication which is decided by the

coordinator, then the number of replica will be copied. On the

other hand, the LALR algorithm deleted the extra replication.

If the copy of one data is not use at all, then it will be deleted

by LALR.

4 Simulation

Simulation of this paper has been confirmed using the

Visual Basic6 software beside the crystal report 7. At the first,

we propose a hierarchical architecture with 4 clusters, A, B, C,

D and each cluster has 3 sites. Simulation has been confirmed

in 2 parts.

Part 1: we assume that requests have been saved and there

is no replication. In each cluster there is only one data,

because there are 4 clusters so we have 4 types of data. When

data allocated, Access_Number in the cluster table is

increased and Service_Time is calculated. These results are

saving in the cluster tables following as table 1 for cluster A.

92 Int'l Conf. Grid Computing and Applications | GCA'10 |

These tables (table 2, table 3, and table 4) of clusters are

updated in every access.

If each CH needs a data that it is not available in its own

cluster, CH sends it for coordinator. After passing a period of

time, the coordinator collects the tables of clusters as

following table 5. The LALR algorithm is performed and the

type and number of replication data is determined as

expression 2, 3, and 4. In addition the total Service_Time is

calculated for drawing charts and comparing them.

Part 2: Now the value of data replication is determined.

Then the copies of data will be placed in a node with

maximum requests. We restart running the simulation with 4

data after passing the same time period plus the services time

and observe reduce of services time. All requests have priority

label means that they have different value of important.

The chart of figure 3 shows the runtime of total entered

requests in to the assumed environment in two states of no

replication and with replication. Run time for replication mode

in the LALR algorithm shows a reduction. The chart of figure

3 shows the runtime of total entered requests in to the assumed

environment with 4 clusters in two states of no replication and

with replication. Figure 3 shows LALR algorithm service time

is lower by %25 compared to without replication.

Figure 3: request time for 4 clusters

Int'l Conf. Grid Computing and Applications | GCA'10 | 93

Figure 4: request time for 8 clusters

We assume that we have 8 clusters and 12 clusters which

calculated access time for this assumption. The chart of figure

4 shows the runtime of total entered requests in to the assumed

environment with 8 clusters in two states of no replication and

with replication. Figure 4 shows LALR algorithm service time

is lower by %28 compared to without replication.

Figure 5: request time for 12 clusters

The chart of figure 5 shows the runtime of total entered

requests in to the assumed environment with 8 clusters in two

states of no replication and with replication. Figure 5 shows

LALR algorithm is lower by %37 compared to without

replication. The simulation results show that LALR improve

the performance of data access and bandwidth consumption.

5 Conclusions

In this paper, we propose a dynamic replication strategy

called Largest Access Largest Replication (LALR). At

intervals, the dynamic replication algorithm gathers the data

access history, which contains File_ID, Access_Number and

the Service_Time that each request came from CH. Moreover,

these history tables are collected by coordinator from each

cluster.

According to access frequencies for all data that have been

requested, popular data is found and a number of replication

will be calculated. In order to evaluate the value of our

dynamic replication strategy, we simulate a grid environment.

All data access time was investigated in two with replication

and without replication modes. The simulation of LALR

algorithm shows that the total data access time is reducing.

6 References

[1] Y.Lin, J.Wu, P.Liu, “A List-Based Strategy for Optimal Replica
Placement in Data Grid Systems”, 37th International Conference on
Parallel Processing IEEE, 2008

[2] Z.Jianfeng, Q.Leihua, Z.Dong, Z.Jinli, “A Duplicate-Aware Data
Replication”, 978-0-7695-3540-1/08 $25.00©2008 IEEE

[3] Y.Mansouri, R.Monsefi, “Optimal Number Of Replicas In Data
Grid Environment “, 2007

[4] R.Chang, H.Chang, Y.wang, “A Dynamic Weighted Data
Replication Strategy in Data Grids”. 978-1-4244-1968-
5/08/$25.00©2008 IEEE

[5] G.Nie, L.Zhang, Y.Liu, X.Zheng,Y.Shi, “Decision Analysis Of
Data Mining Project Based On Bayesian Risk”, Sciencedirect Elsevier
Journal , 2009

[6] C.Yang, C. Huang, T.Hsiao, “A data grid file replication
maintenance strategy using Bayesian networks” ,Eighth International
Conference On Intelligent Systems Design And Applications IEEE ,
2008

[7] R.Chang, J.Chang,S.Lin, “Job Scheduling And Data Replication
On Data Grids”, Future Generation Computer System 23, 2007

[8] M.Tang, B.Le, C.Yeo, X.Tang,“Dynamic Replication Algorithms
for the Multi-Tier Data Grid”, Future Generation Computer System 21,
2005

[9] J.Li,“A Replication Strategy in Data Grid Environment”, IEEE
2009

[10] J.Li, “Fast Parallel File Replication in Data Grid “, 2009 IITA
International Conference On Services Science Science, 2009 IEEE

[11] H.Lamehamedi, B.S.szymanski, Z.Shentu, “Data Replication
Strategies in Grid Environments”, Bejing, China, October 2002, IEEE
Computer Society Press, Los Alamitos, Ca, 2002

[12] A.Domenici, F.Donno, G.Pucciani, H.Stockinger, K.Stockinger,
“Replica Consistency in A Data Grid”, Sciencedirect In 2004

[13] A.Chakrabarti, R.A.Dheepak, S.Sengupta,” Integration of
Scheduling and Replication in Data Grids”, Springer- Verlag Berlin
Heidelberg, 2004

[14] F.Carballeira, J.Carretero, A.Calderon, J.Daniel, M. Sanchez, “A
Global and Parallel File System For Grids”, Sciencedirect Future
Generation Computer System 23, 2007

[15] T.Phan, K.Ranganathan, R.Sion ,“Evolving Toward the Perfect
Schedule: Co-Scheduling Job Assignments and Data Replication in
Wide-Area Systems Using A Genetic Algorithm” Springer-Verlag
Berlin Heidelberg, 2005

94 Int'l Conf. Grid Computing and Applications | GCA'10 |

Intelligent Replica Selection Strategy for Data Grid
Rafah M. Almuttairi, Rajeev Wankar, Atul Negi, C. R. Rao.

Department of Computer and Information Sciences, University of Hyderabad, Hyderabad, AP, 500046, India.

Abstract: The timely availability of data is very crucial for
the efficient execution of jobs in grids, especially in the
context of data grids. In the replica selection procedure it is
required to fetch data cached in replica across the grid in
the least possible time. This selection problem has been
investigated in literature thoroughly and most approaches
minimize total execution time by minimizing delays in
transferring accessed data. Usually this is done by
minimizing lookup time by either using a classification
technique like K-Nearest Neighbor rules [8] or using
predictive techniques such as regression [12] or using
neural network techniques [16]. All these methods attempt
to predict the total transferring time instead of using
traditional models which look up catalogs. In this paper, a
totally new approach to replica selection is proposed that
aims to optimize transfer by probing for current network
congestion status and opts for the most efficient set of
replica’s sites that will work concurrently to transfer
requested files or their parts. To achieve this goal, an
association technique [3] is used to extract the replica’s
sites that have shown best possible efficiency and will work
together to accelerate the response to the user’s request.
Our simulation results show an improvement of 29% as
compared other reported work like the methods mentioned
above and 40% better than traditional models that use
replica lookup time.

Keywords: Data Grid, Replica Selection Strategies,
Association rules, Apriori Algorithm.

1 Introduction:
 Scientific applications and researchers often require
accessing, storing, transferring, analyzing, replicating and
sharing huge amount of data in the domain of global climate
change, high energy physics, and computational genomics.
This generates large (on a terabytes scale) data volumes that
are distributed in different locations around the world. To let
the applications and researchers share and have an access to
aforementioned files in a systematic way, we need an
infrastructure which provides a secure, fast, reliable and
transparent access. This infrastructure is provided by Data
Grid which is optionally available in all grid infrastructures
[2]. Data replication becomes important in data grids [1].
Data replication is a good technique that helps to move data
by caching it at various nodes in data grid. The general idea
of replication is to store copies of the same data in different
locations so that data can be easily recovered if one copy at
one location is lost. If data can be kept nearer (in terms of
time required to access it) to the user, data access
performance can be improved dramatically. Moreover,
accessing data from a single location by all users is not
feasible; it would lead to an increase in data access latency

and single organization may not be able to handle such an
enormous amount of data alone. Due to all these reasons
data replication has become very important in data grids [1].
 Since each file may have several replicas in distributed
sites, to know where exactly these files are physically
located, we use Replica Location Service (RLS) which has
Local Replica Catalog (LRC) used to get physical file
names and their location. Then, in order to reduce the
network traffic and to enhance the overall execution
performance of the job of the user/user application, the
execution grid site must find the best replica site to get the
requested file from it [7].
 The decision of selecting the best replica site among
many replicas sites is an important issue; because each site
in grid has its own capabilities and characteristics such as:
availability, security, network condition and cost, so the
choosing process will affect the total execution performance
especially data access latency [6].
 Several attempts have been made in the past by many
researchers to solve this important problem, but all of them
have some merits and demerits. In this paper we present a
new method for the solution for replica selection using
Association rules of data mining which selects set of sites
that has similar characteristics and then the method selects
best among the selected sites.
The reminder of the paper is organized as follows. We
present the related work in Section 2. Problem statement is
declared in Section 3. The Data grid mining is briefly
explained in Section 4. The replica selection strategies are
discussed in Section 5. Our technique is explained in section
6. In Section 7 simulation input and results are presented. In
section 8 we declared the comparison among all replica
selection models. Discussion and conclusion is presented in
Section 9 and the acknowledgment written in section 10.

2 Related works
 Replica selection problem has been investigated by many
researchers in the past. In 2001, Kavitha et al. [15], used
traditional replica catalog based model, where for each new
request Replica Location Service is queried to get the
addresses of replica's sites and then probe the network link
using Hop count method to select the best replica. This way
of selection is not efficient because the number of hops does
not reflect the actual network condition like Network
Bandwidth and link’s latency.
During 2001-2003, Sudharshan et al. [12,15,11] contributed
many research results. In their work they used the history of
previous file transfer information to predict the best site
holing copy of requested file. When a file transfer has been
made between two sites, the file size, the available network
bandwidth, and transfer time are saved so it can be used
later for training and testing the regression model to predict

Int'l Conf. Grid Computing and Applications | GCA'10 | 95

the actual transfer time. In their work they showed that data
from various sources can help in better predictions than data
from one source. They achieve a better accuracy in file
transfer throughput prediction by using data from all of
these three sources: data streams of network, file size, and
past grid transfer information.
In 2005, Rashedur et al. [8], a replica selection technique
called the K-Nearest Neighbor (KNN) rule is exploited to
select the best replica from information gathered locally.
The KNN rule selects the best replica for a file by
considering previous file transfer logs indicating the history
of the file and those nearby. This technique has a drawback
as they mentioned in their paper: the misclassification will
increased when for large file transfer and costs more than a
couple of small file transfer misclassifications. Especially in
the Gaussian random access pattern the accuracy is the
lowest. Another drawback in KNN is that one needs to save
all previous instances (requests of files) to use them to select
the best replica site, which means it will take a time to
search in the large history of data base and the result might
or might not be correct.
In 2008, Rashedur et al. [16] proposed a predictive
technique (NN based) to estimate the transfer time between
sites. The predicted transfer time can be used as an estimate
to select the best replica site among different sites.
Simulation results demonstrate that Neural Network
predictive technique works more accurately than the multi-
regression model, which was used before NN [12, 15, 11].
However NN technique does not always give the right
decision because the copy of the file may become no longer
available (this is common in grid environment because the
memory of site is limited) in the predicted site, so in this
case Traditional Model will be used.
In 2009, A. Jaradat et al. [19] proposed a new approach that
utilizes availability, security and time as selection criteria
between different replicas, by adopting k-means clustering
algorithm concepts to create a balanced (best) solution. The
best site does not mean the site with shortest time of file
transfer, but the site which has three accepted values:
security level, availability and time of file transfer. Our
work differs from the previous works by selecting not only
one replica site, but number of sites that have similar
characteristics in terms of stabilizing the network
conditions. These sites concurrently work to send parts of a
big file or different small files. So summarize, following are
the drawbacks of the previous methods:

1- History file does not reflect the recent information;
it is outdated (K-Nearest Neighbor rule).

2- Bandwidth alone and Hop counts alone do not
describe the real network condition (Traditional
Method, Neural Network and KNN).

3- In the classification method, the misclassification
will increase in case of transferring large files and
using a Gaussian Random file access pattern.
(KNN)

None of the previous methods reflect the real picture of
network links.

3 Problem statements:
 To overcome the problems stated in the previous section,
we propose a technique to measure the stability of network

links before and during transfer time. In our work, by stable
links we mean links with the least Standard Deviation of
Single Trip Time (STT). STT is the time taken by the small
packet to travel from replica’s site to requester site. The
STT delays include packet-transmission delays (the
transmission rate out of each router and out of the replica
site), packet-propagation delays (the propagation on each
link), packet-queuing delays in intermediate routers and
switches, and packet-processing delays (the processing
delay at each router and at the replica site), therefore the
delay from replica site to the requester site is the summation
of all these delays [4]. To select the site which is stable we
have to take all these delays into account. That is the major
reason for using STT instead of Bandwidth and Hop count
in our work.
Our technique has few features like:

1- Transfer large amount of data (Terabyte or above)
from different sources simultaneously.

2- Allow a process to use multiple data streams to
obtain data and biggest Maximum Transmission Unit.

3- Data consumers are allowed to get portions of data
from different locations.

4- Work s properly with dynamic and static replica
strategies.

4 Data Grid Mining
 As we mentioned before our major work concern is to
select the set of sites which has similar characteristic. To
extract it, sites association rules of data mining approach is
used. Apriori algorithm is the most popular algorithm used
for the association rules discovery to extract the hidden
knowledge of the large data base [5, 10].

5 Few Replica Selection Strategies:
 When different sites hold replicas of a particular file, the
access latency is minimized by selecting the best replica. In
the following sub sections we will discuss few important
replica section methods available in the literature.

5.1 Replica Selection by Traditional Model
 In the Traditional Model (TM) of replica selection
procedure whenever a new data grid job is submitted by
resource broker to computing element, the computing
element checks whether the files of the new job are
available in the local storage element or not. If the files are
locally available, the computing element immediately
accesses them, otherwise, it gets the files from different
distributed sites using following steps:

1- Consults the replica catalog with the logical file
names of requested file to get the physical file names.

2- Probe the links between the requester site and replica
sites using a testing route tools like Iperf [17]. The
replica site with the highest network bandwidth or
with the least Hop count measurement will be
selected to get the file from. Replica Lookup Time is
the time spent step one and two together [16].

5.2 Replica Selection by Neural Network (NN)
 In there work the authors minimized the access latency
by getting the files from the sites predicated by neural

96 Int'l Conf. Grid Computing and Applications | GCA'10 |

network instead of probing the routes as the TM does [16].
The drawbacks of this model are:

1- It works after 20 training sets of transferring file
requests.

2- For each file request it contacts Local Replica
Catalog with logical names of requested files to get
the physical location names.

3- It minimizes the probing time by predicting the
replica sites instead of probing network links.

4- It may or may not give a correct prediction. So the
access latency is increased by using NN model
whenever the prediction is incorrect.

5- In case of the correct prediction the selected site
might or might not be the best site when we consider
the congestion of the link between requester site and
replica site.

5.3 Replica selection using K-Nearest Neighbor

rule model (KNN)
 In this model they have minimized the access latency
by avoiding the considerable amount of replica lookup time
[8]. In KNN model, when a new request for the file arrives
all previous file requests (k requests) that are similar to the
new one are considered to predict the best replica site. If the
k-nearest rule model returns the site which has a copy of
requested file, the classification is considered as a right
classification; otherwise it is a wrong classification. The
drawback of this model:

1- Needs to save all previous requests (File identifier,
Time stamp, Replica Storage site’s name) and search
them all whenever a new request for the file arrives.

2- The selected site using KNN model may not have the
requested file. In this case the access latency will
increase because the model will go back to use the
traditional model, means it doesn't work properly with
dynamic replica strategy, the copy of the file may
suddenly be deleted by replica site.

3- In Inter- Grid architecture, even though the prediction
is correct the selected site might or might not be the
best site with respect to the network conditions, at the
time of file transfer.

 We summarized characteristics of all studied
models in the Table1:

 Followings are the limitations of previous replica
selection models:

1- The replica site which is predicted by TM, NN and
KNN may not achieve the least time to transfer the
requested file.

2- The predicted site may not have the copy of the
requested file any more.

3- None of the previously proposed methods took into
account the maximum transmission unit of data
packet.

4- The selection of predicted site is not done by taking
into account for the maximum number of data
streams that could be opened between two parties.
(Our new technique takes all these points as criteria
to select the best replicas.)

5- The size of requested file(s) affects the efficiency of
selection techniques. In NN and KNN, the efficiency
decreases when large files are requested, but there is
no impact on the size of the file in case of TM and
EST.

 To overcome the drawbacks of all previous models,
we propose a new technique to get the requested file(s) from
the site(s) that require less time to transfer the file(s). To
achieve this goal the network latency, maximum
transmission unit and maximum number of data streams are
considered as criteria for selecting the best set of replica’s
sites.

 To reduce the total time to transfer the requested file(s)
we use more than one replica sites to share the process of
file(s) transfer. The selection of replica sites is done using
following characteristics:

1- Uncongested links at the time of transferring the
requested file(s) for parallel file transfer (Figure 1).

2- The biggest Maximum Transmission Units (MTU)
(Section 6.1).

3- Maximum number of data streams can be opened
between a computing site and a replica site (Section
6.2).

Figure1. Multiple sites send different parts of huge file
 Table 1. The limitations of all models
6 Efficient Set Technique (EST)
 In this section a new Efficient Set Technique is proposed
to solve a replica section problem in data grid. It removes
many drawbacks which mentioned in section 3 of
previously proposed methods. Followings are the steps of
our method:
Step1: Receive requests from User/Resource Broker (RB).

Step2: Gather the replica location information from
Replica Location Service (RLS).
Step3: Use Iperf service and probe the routes
periodically between the executing site and all replica
sites to build the Network History File, NHF, 2-D table
where:
 - Columns represent the replica sites(Let s be number
sites); each column represents one site which has a
copy of requested file.

Int'l Conf. Grid Computing and Applications | GCA'10 | 97

 - Rows represent the transactions (Let N be the
number of transactions); one transaction represents the
values of Single Trip Time (STTs), it is the latency of
single trip starting from replicas sites to computing site
(Requester site).
 NHF=[STTi,j] here i=1,2,..,N and j=1,2,…,s
Step 4: Calculate the threshold to convert the values of
NHF to binary values and save it in a Binary Table
called BT in the following way:
Consider block size as k consecutive transactions
 -Calculate the mean:

 ∑
+−

=

=
1

/
ki

is
sjij kSTTM , for i=1,2,..,N-k

 -Calculate Standard Deviation:

 ∑
−+

=

−=
1

2
,)(/1

ki

is
ijjsij MSTTkS

 -Find Qij=(Sij /Mij)*100

 -Calculate the Average Qij. : AQi = ∑
=

s

j
ij sQ

1

/

 -Compare Qij with AQi and build BT
 if (Qij ≥ AQi) then BTij = 1 otherwise BTij = 0

Step5: Apply Association Model AM (Input (BT, C, S),
Output (Ln)), where: n: is the order of the set for
 C represents: Minimum confidence value.
 S represents: Minimum support value
 Ln= Union of Gnm over m for fixed n Group’s order;
Step 6: Based on Maximum Transmission Unit and
maximum number of data streams select a set Efficient
Set in short ES , such that ES ⊆ Ln .
Step 7: Use any fast file transport services, (ex.
GridFT[18]) to transport the file or part of it.

The ES obtained by using the above EST algorithm will be
helpful in reducing execution time of a job in grid
environment.

6.1 Maximum Transmission Unit
 It is the largest physical packet size, measured in bytes
that a network can transmit. To minimize the transferring
time of requested files, the sites that have biggest MTU are
chosen. MTU can be discovered by Iperf service [13] before
starting the transmission of the files [4].
6.2 Maximum number of Data stream
 It can further utilize the bandwidth provided by grid
environment [4]. Whenever the numbers of streams are
increased, the transmission efficiency is also increased. The
number of streams can be set by users.
 In our implementation, the numbers of streams are
calculated using this formula [9]:
Number of streams = bandwidth * delay / Window size.
Using Iperf service [17] one can get the bandwidth, delay
and Window size of Transport protocol for all replicas sites.
Before deploying any new replica selection strategy in the
real grid environment it must be tested thoroughly to test the
new replica selection strategy, analyze the results and
compare it with the results of previous replica selection
strategies. In our work we use a data grid simulator called

OptorSim [13]. The next section presents the simulator
OptorSim in brief, its architecture and the execution flows
of the replication algorithms in the simulator.

7 Simulation:
 To evaluate our approach we use a simulation package
called OptorSim. OptorSim is a Data Grid simulator
designed to allow experiments and evaluations of various
replication optimization strategies in Grid environments

7.1 Architecture
 The simulator design assumes that the Grid consists of a
number of sites, each consisting of zero or more computing
elements and zero or more storage elements. The computing
elements provide computational resource and the storage
elements serve as data storage resources for submitted jobs.
A resource broker acts as a meta-scheduler that controls job
scheduling for different computing elements. A job in
OptorSim must access a set of files which may be located
locally or at different storage sites.

7.2 Grid configuration Files in OptorSim.
 Using OptorSim simulator our program gets input from
the three configuration files:

7.2.1 The Grid Configuration File:
 Being nodes of an intra-grid we encode the real life
example of the PRAGMA Grid (Figure 2) into the
simulator, therefore our grid configuration file will reflect
the real network nodes and links condition of the PRAGMA
Grid [20]. We select 19 sites of PRAGMA grid and we
saved a copy of requested files in 9 sites which are: I= [S1,
S3, S4, S5, S6, S7, S8, S14, S18]. S0 in the simulator is the
executing site which represents (venus.uohyd.ernet.in) in
PRAGMA real grid environment. S0 having the computing
elements and enough memory to save requested files by
submitted jobs J. J is list of jobs submitted to computing
element of S0. J= [J1, J2, J3, J4, J5]. So in the simulator the
grid configuration file is used to describe the topology of the
participating sites, their associated network geometry and
the content of each site shows resource availability, as
shown in Figure 3. Each link between two sites shows the
available network bandwidth which is expressed in
Mbits/sec (M) or Gbits/sec (G). The circles referred to the
sites which are separated by stars referred to routers.

Figure 2. PRAGMA Grid, 28 institutions in 17 regions

98 Int'l Conf. Grid Computing and Applications | GCA'10 |

http://rocks-67.sdsc.edu/cgi-bin/scmsweb/probe_analysis.cgi?cluster=venus.uohyd.ernet.in&grid=PRAGMA

7.2.2 Job Configuration File
 This file contains names of jobs, list of required files
for each job, a list of logical file names, their sizes in
MB/GB and their unique numerical identifiers. It also
contains job selection probability and schedule table with
job execution time for each computing element.

7.2.3 Background Network Configuration File
 The file used to describe background network traffic,
it is site-by-site matrix, having for each pair of sites the
name of data file containing the relevant STT information,
the mean of STT and the standard deviation; keeping the
source sites in the rows, and the destination sites in the
columns. The last configuration file initializes different
parameters for running the simulation. These parameters
may include information such as total number of jobs to be
run, file processing time, delays between each job
submission, maximum queue size in each computing
element, file access pattern, the optimization algorithm
used, etc. As mentioned above, a job will typically request a
set of logical filename(s) for data access. The order in which
the files are requested is determined by the access pattern. In
this simulation, we experimented with four access patterns:
sequential (files are accessed in the order that has been
stated in the job configuration file), random (files are
accessed using flat random distribution), unitary random
(file requests are one element away from previous file
requests, but the direction will be random), and Gaussian
random walk (files are accessed using a Gaussian
distribution).

7.3 Execution replica selection in the Simulator:
 We tested all replica selection models using same list of
jobs and same environment to see the difference of the total
time of executing jobs when we apply different models.

7.3.1 Using TM
 If the file is in the local site, the computing element
can access it instantly; otherwise the file must be transferred
from the storage site that has the minimum transmit time to
the requesting client. In the traditional model, the site gets
the best replica of a file in the following way: it contacts the
replica manager with a logical file name; the replica

manager in turn calls the local replica catalog to determine
physical locations of the logical file. Once it finds physical
locations for the logical file, it gets the current network
conditions (Bandwidth, number of Hop count, etc.), the
replica site which has the maximum bandwidth or the least
number of hop counts is considered as the best site to fetch
the file from.

7.3.2 Using KNN
 In this section we illustrate the execution of a
computing element behavior using KNN. The computing
element uses the traditional model for first thirty requests
and stores: the file index, the destination site index number,
the requesting site index number and the timestamp into a
log file. When each site has enough transfer history, it
requests the best site using the KNN rule; otherwise it
contacts the replica catalog to find all file replicas as done in
TM. This model works properly in two cases:

1- In the static replica strategy, a replica is presented
until it's deleted by administrator or its time duration
expired. In other words, the file is always remains
available in replica site.

2- In the static network when there is no change in the
network conditions.

7.3.3 Using transfer time prediction of NN and
Regression model
 In this model to train it, minimum 20 file transfer
requests are required between two sites using traditional
model. Parameters like the file size, the available network
bandwidth, and transfer time are saved and can be used later
for training and testing the neural network. Regression
model is later used to predict the transfer time for new
transfer file request.

Figure 3.PRAGMA Grid and their associated network
geometry

 We start training the NN with the first 20 training
sets of data as implemented in [16]. Each set is presented to
the neurons of the input layer and the whole network is
trained with back-propagation algorithm so that the output
neuron can predict the transfer time between the requesting
site and the sites that hold replica of requested file. With this
estimation on file transfer time, the computing element can
request file from the site that has the lowest predicted
transfer time. In our experiments this model works properly
only when the bandwidth is the unique criteria for the
network (which is not again a real condition in the Inter-
Grid architecture). In general the latency is more effective
parameter to chose the file from replica sites.

7.3.4 Using EST
 In our proposed model we use criteria that if the
computing element has sufficient scanning history of the
routes of replica sites, it executes EST to find best replicas;
otherwise it contacts the Iperf or NWS services to probe the
related links and get a real view of routes. Initially, each
computing element gets information from the replica catalog
about the replica sites. In our simulation we assume a fixed
replica lookup time, with (20 seconds). After the file
transfer process is finished, the file index is recorded with
the mean and standard deviation of STT into a log file NHF.

Int'l Conf. Grid Computing and Applications | GCA'10 | 99

8 Comparisons:
 In this section we compare the total time taken by file
transfer process using different selections models:

8.1 Comparison between TM and EST:
 The total transmission time for both of these methods
is equal to replica lookup time. As we see in Figure 4, the
EST is more efficient than traditional model. The main
reason is that the EST selects the best replica from the sites
with the stable links. In EST the retransmission is less than
traditional method which selects the best replica from the
sites having the least number of Hop Counts or the highest
bandwidth which does not reflect the actual picture of the
network, especially in the Inter-Grid architecture.
Illustration of this is given in Figure 3. If the job J1 is
submitting to S0 it needs file resides in (S1, S3, S4, S14),
using the traditional Model (with less number of Hop count)
S0 will ask S1 or S14 to deliver the file, because the number
of Hops is 1, whereas the number of Hops between S0 and
S3 is 2 and between S0 and S4 is 3. The time required to
transfer the file in this case will be bigger than the time
required from S3 because the two routers (R5 and R7) are
uncongested whereas R4 is congested. Same thing will
happen when TM chooses the best site depending on the
highest bandwidth between two sites. EST chooses S3 to get
the file because it has stable link with uncongested routers.

,

8-2 Comparison between NN and EST:
 Both models have a Replica look up time. The NN
needs history information (size of file and bandwidth) for at
least 20 requested files, whereas EST needs only to probe
the network links. As we see in Figure 5. The transferring
time of requested files using neural network model takes
more time than using EST because NN depends on two
parameters which are: the size of requested file and the
bandwidth between the requester site and replica site which
holds a copy of requested file. Both of these parameters do
not give a real picture of the network condition when the
request for transfer has come. From Figure 5 it can be seen
that EST performs better than NN in most of the cases
because it depends on the actual picture of the links between
sites.

8.3 Comparison between KNN and EST:
 KNN model minimizes the total file transfer time by
avoiding replica lookup time. It means that in this technique

after the first thirty file requests, there is no need to contact
the replica catalog or to probe the network bandwidth [16].

0

50

100

150

200

1 2 3 4 5

Requested Files indexes

Tr
an

sf
er

rin
g

Ti
m

e/
se

c

Neural Netw ork (NN) Eff icient Set Technique (EST)

Figure 5. Transferring time using NN and EST

 In the k-nearest neighbor rule, when a request for a file
arrives, all previous data is considered to find a subset of
previous file requests (k requests) that are similar to it and
then it uses these to predict the best site holding copy of
requested file. If the k-nearest rule returns the same site as
returned by the TM, the file transfer is classified as the right
classification; otherwise it is classified as the wrong
classification.
In this section we compare the efficiency of the k-nearest
rule with the EST. As we can see in the Figure 6, the KNN
model even with right classification is less efficient than
EST because the Grid environment is dynamic where user
requests and network latencies vary significantly, therefore
the site selected by the k-nearest rule may not be the best
site for replica selection under the this condition.

 Figure 4. TM using Hop Count & EST

0

20

40
60

80

100

120

1 2 3 4 5

Requested f ile indexes

Tr
an

sf
er

rin
g

c

 Due to sudden change in network conditions, the KNN
rule may give wrong classifications. If the KNN gave five
consecutive wrong classifications the simulator switches to
traditional model again. We use k =5 for the k-nearest rule.
Figures 6 (a) and 6 (b) depict the effect of right and wrong
classifications on the total transferring time for different file
requests and sequential access patterns.

/s
e

 It can be seen that in Figure 6(b) the wrong
classification makes the transferring time longer than the
right one because it will be the summation of time spent to
contact the predicted site which does not have the file any
more and the replica lookup time. Figures 7(a) and 7(b)
depict the different transferring time among three models
(Traditional, KNN and EF), as we see the best technique is
EST because it takes the file from the site that has a copy of
the file, one that is stable and has maximum number of data
streams which carry the data file packets.

 (a) Right classification (b) Wrong Classification

Figure 6. Total transferring time using KNN with Right &
of replica’s site vs. EST. Wrong classifications

 T
im

e

Traditional Model(TM) using Hop Count Efficient Set Technique (EST)

0

50

100

150

200

250

1 2 3 4 5
Requested File Indexes

Tt
an

sf
er

rin
g

Ti
m

e/
se

c

K-Nearest Neighbor (KNN) Efficient Set Technique(EST)

0
20
40
60
80

100
120

1 2 3 4 5

Requested Files Indexes

Tr
an

sf
er

rin
g

Ti
m

e/
se

c

K-Nearest Neighbor (KNN) Eff icient Set Technique (EST)

100 Int'l Conf. Grid Computing and Applications | GCA'10 |

9 Discussion and conclusion
 In this paper we presented a novel method known as
Efficient Set Technique (EST) to choose the best set of
replicas in a dynamic and static replica strategies of data
grid environment. We compared this method with the
methods available in the literature for solving the same
problem. Followings are the observations:

1- Our technique, EST works properly with two types of
replica strategies: static and dynamic whereas most of
the other models work with static better than dynamic
replica strategy.

2- Our technique will select a set of sites having similar
characteristics at the point of file transfer, whereas
others will select one site as a best replica’s site. In
case if these methods also apply the same concept of
having more than one site, perhaps the same result
will not be achieved.

3- In previous methods, the selected replica site may or
may not have the requested file since they depend on
history of file requests which may be outdated
information. Whereas in our method we do not have
such a problem since we depend on present
information of Local Replica Catalog.

4- Some models like traditional method depends upon the
Bandwidth alone or Hop counts alone which do not
describe the real network condition, whereas we
depend on the STT which reflects the real network
conditions.

10 Acknowledgements
 Authors wish to register their sincere thanks to Prof.
Arun Agarwal, from GridLabs Department of Computer and
Information Sciences, University of Hyderabad, India for
providing all the infrastructural and computational support
required to carry out this work. His academic suggestions to

improve the quality of the work are also highly appreciated/
acknowledged.

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5

Requested File Indexes

Tr
an

sf
er

rin
g

Ti
m

e/
se

c

References
[1] Lei, M., S.V. Vrbsky and Q. Zijie, 2007, Online grid
replication optimizers to improve system reliability, IPDPS
2007, March 26-30, DCSc, Alabama University.
[2] Ahmar Abbas, Grid Computing: A Practical Guide to
Technology and Applications, 2006.
[3] Jochen Hipp, Ulrich Güntzer, and Gholamreza
Nakhaeizadeh, Algorithms for association rule mining -
SIGKDD Explorations, 2(2):1-58, 2000.
[4] James F. Kurose, Keith W. Ross, Computer Networking
A Top-Down Approach Featuring the Internet, third edition.
[5] Agrawal R, Srikant R. Fast algorithms for mining
association rules In, Proc. 20th VLDB Conference, 1994.
[6] H. Hamad E. AL-Mistarihi and C. H. Y., Response,Time
Optimization for Replica Selection Service in Data Grids,
USM, Pulau Pinang, Malaysia, pp 487-493, 2008.
[7] Francesco Palmieri and Silvio Pardi, Network-Aware
Replica Optimization in the SCoPE Grid, Italy, 2008.
[8] Rashedur M. Rahman, Ken Barker, Reda Alhajj,
Replica selection in grid env. data-mining approach,
(DSGC),pp: 695 – 700 , 2005
[9] W. Zhang, W. Tong, Z. Chen and R. Glowinski,
Intelligent File Transfer Protocol for Grid Environment,
International Conference on HPCA, August 8–10, 2004.
[10] A. K. Pujari, Data Mining Techniques. Niversities
Press, India, 2001.
[11] S. Vazhkudai, S Tuecke, I. Foster, Replica selection in
the globus data grid, in: First IEEE/ACM International
Conference on Cluster Computing and the Grid, CCGrid
2001.
[12] S. Vazhkudai, J. Schopf, Using regression techniques
to predict large data transfers, in: Computing: Infrastructure
and Applications, The International Journal of High
Performance Computing Applications, IJHPCA , August,
2003.
[13] W. Bell, et al., OptorSim _ A grid simulator for
studying dynamic data replication strategies, Journal of
HPCA, 17 (4) (2003).
[14] http://www.javaworld.com/javaworld/jw-02-2009/jw-
02-servlet3.html
[15] S. Vazhkudai, J. Schopf, I. Foster, Predicting the
performance of wide-area data transfers, in: 16th
International PDPS, 2002.
[16] RM. Rahman, K Barker and R Alhajj, Replica selection
strategies in data grid, Journal of Parallel and Distributed
Computing, Volume 68, Issue 12, Pages 1561-1574,
December 2008.
[17] A. Tirumala, J. Ferguson, Iperf 1.2 - The TCP/UDP
BW Measurement Tool 02.
[18] R.M. Rahman, K. Barker, R. Alhajj, Predicting the
performance of GridFTP transfers,USA ,2003.
[19] A. Jaradat, R. Salleh and A. Abid, Imitating K-Means
to Enhance Data Selection, Journal of Applied Sciences 9
(19): 3569-3574, 2009, ISSN 1812-5654, Asian Network for
Scientific Information-2009.
[20] http://goc.pragma-grid.net/pragmadoc.

Figure 7. Total transferring time using KNN vs. NN &
EST,

KNN w ith Right Classif ication NN Model ES Technique

0

50

100

150

200

250

1 2 3 4 5

Requested File Index

Tr
an

sf
er

rin
g

Ti
m

e/
se

c

KNN w ith Wrong Classif ication NN Model ES Technique

 (a) Right classification (b) Wrong Classification

Figure 8. Compare total transferring time using all
selection techni

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5

Tr
an

sf
er

rin
g

Ti
m

e/
se

c

Traditional Model(BW) KNN(Right Classif ication) NN Model ES Technique

ques.

Int'l Conf. Grid Computing and Applications | GCA'10 | 101

http://portal.acm.org/author_page.cfm?id=81100275149&coll=GUIDE&dl=GUIDE&trk=0&CFID=62928075&CFTOKEN=41329828
http://portal.acm.org/author_page.cfm?id=81100377273&coll=GUIDE&dl=GUIDE&trk=0&CFID=62928075&CFTOKEN=41329828
http://portal.acm.org/author_page.cfm?id=81100613277&coll=GUIDE&dl=GUIDE&trk=0&CFID=62928075&CFTOKEN=41329828
http://www.javaworld.com/javaworld/jw-02-2009/jw-02-servlet3.html
http://www.javaworld.com/javaworld/jw-02-2009/jw-02-servlet3.html
http://www.sciencedirect.com/science/journal/07437315
http://www.sciencedirect.com/science/journal/07437315
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236908%232008%23999319987%23712073%23FLA%23&_cdi=6908&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=22de605a90023a2b4e269376c32b3494
http://goc.pragma-grid.net/pragmadoc

Aglets Mobile Agent Based Grid Monitoring System

Arindam Choudhury, Inderveer Chana
Computer Science and Engineering Department, Thapar University, Patiala, Punjab, India

Abstract – Grid computing is dynamic. Any resource can
leave or join the system at any time. In grid, mechanisms are

needed to monitor available resources. Monitoring is also

required for load-balancing and fault-tolerance. Fault is

inevitable in grid as its supports various technologies and

heterogeneous resources. In this paper a mobile agent based

monitoring system for proposed for grid environment. The

proposed system is designed using Aglets mobile agent

framework.

Keywords: Grid Computing, Aglets Mobile Agent,

Monitoring System.

1 Introduction

 Grid computing [1] concentrates on large scale resource
sharing to provide solution to the problems requiring large

storage and processing. Resources shared are spanned among

different administrative domains and they are highly

heterogeneous in nature. Grid computing is concerned with

efficient utilization of these heterogeneous systems with

efficient workload management. Resources can be compute

cycles, storage system, network bandwidth, memory space,

data transfer, and simulation etc.

 To support interaction between heterogeneous resources

from different administrative domain sharing must be highly

controlled and done with consensus of both resource
consumers and resource providers. Grid resource

management [2] [3] system establishes a mutual agreement

between a resource provider and resource consumer to

perform some task on behalf of the consumer. It also manages

available resources and system workloads accordingly to

uniform utilization of resources of grid. It discovers the

resources joining or leaving the grid dynamically. Grid

resource management manages how the resources are

allocated, assigned, authenticated, authorized, assured,

accounted, and audited.

 Grid has to deal with various technologies and protocols

to accommodate heterogeneous resources form different
Virtual Organizations [4]. Interaction between these

technologies, protocols and systems may result into failures.

To achieve high-performance in grid, it is critical to monitor

and manage the system. Monitoring data helps to determine

the source of the performance problems, fault detection and

recovery. Monitoring systems also helps in load balancing.

 Grid is not a controlled environment. Any resource can
leave or join the environment at any time. Moreover conflict

between policies, interaction between resources of different

administrative domains may result in failures. Besides of

traditional hardware faults, software faults and network faults

grid suffers from two more types of failures [5]: Interaction

faults which caused by protocol incompatibilities, security

incompatibilities, policy problems, timing overhead etc. and

omission faults. Faults in grid can be mitigated using retrying,

replication and checkpointing mechanism.

 Monitoring [6] [7] is crucial in a variety of cases such as

scheduling, data replication, accounting, performance
analysis and optimization of distributed systems or individual

systems, self-tuning applications and many more. It also

provides real time monitoring for the availability of resources

and their utilization. This information is effective for effective

management of resources. It also helps to detect faults and

bottlenecks.

 Monitoring system provides information about system

configuration, network configuration, installed operating

system, CPU information, free memory available, and load

average etc of available grid nodes. This information helps in

load balancing the grid and choosing best node to submit job.

 Monitoring system also helps in fault-tolerance by
providing information about the source of the problem. The

job encountering failure can be submitted to a suitable node

using the monitoring system.

 There are many monitoring system available for

monitoring grid environment such as Autopilot [8], Hawkeye

[9], Mercury, NetLogger [10], and RGMA etc.

 The purpose of the paper is to propose a mobile agent

based monitoring system for grid computing. Software

mobile agent [14] is a new computing paradigm where the

client and server are merged to become host to provide high

degree of flexibility. In this paradigm code is sent to the data
which minimizes the use of network bandwidth. Mobile

agents are a optimum choice to develop a monitoring system

for grid computing as they reduce network load, execute

asynchronously and autonomously, naturally heterogeneous,

robust and fault-tolerant.

 The rest of paper is organized as follows: Section 2

provides discussion about various technologies used in the

proposed system. Section 3 discusses about design and

deployment details of the monitoring system. It also provides

102 Int'l Conf. Grid Computing and Applications | GCA'10 |

the experimental results of the monitoring system. Finally

section 4 concludes this paper.

 The following sub-section discusses various

technologies and programming paradigm used in the

proposed monitoring system.

2 Technologies Used

 In the proposed system java based mobile agent

framework aglets is used. Hyperic SIGAR is used to gather

system information locally on each system. MySQL database

system is used to maintain the monitoring data. The website is

designed using PHP and hosted on local network using

apache HTTP server.

2.1.1 Globus Toolkit

 Globus Toolkit [11] 4.2.1 is used to create grid for

deploying and testing the proposed monitoring system.

Globus Toolkit is developed and provided by Globus

Alliance. Globus Toolkit includes software and libraries for

resource monitoring, resource management, data

management, communication, fault detection, security and

portability. GT4 uses Web services mechanism heavily to

provide flexible, extensible, and widely adopted XML-based
mechanisms for describing, discovering, and invoking

network services. Globus Toolkit is open source, well

documented and mailing-list is available for users query.

2.1.2 Hyperic SIGAR

 Hyperic System Information Gatherer (SIGAR) [12] is

an open source cross platform API. SIGAR supports Linux,
Windows, FreeBSD, Solaris etc operating system and

architecture. SIGAR API gives portable access to inventory

and monitoring data including:

 System memory, swap, CPU, load average,

uptime, logins.

 Per-process memory, CPU, credential info, state,

arguments, environment, open files.

 File system detection and metrics.

 Network interface detection, configuration

information and metrics.

 Network route and connection tables.

 Hyperic SIGAR is operated from the command-line

tools. Hyperic SIGAR has been used in implementation as it

is easy to use, open source and well documented.

2.1.3 Aglets

 Aglets [13] is a java based mobile agent platform. An

aglet is a java mobile agent which can autonomously and
spontaneously move from a system to another. An aglet is

simply an object on which a thread executes on. This

approach is very similar to the applets or servlets. Aglets has
been used in the proposed monitoring system as it is open

source and well documented. Aglets can migrate in both

directions (in and out the platform) and message between

local and migrated agents. Aglets supports weak mobility,

only code is needed to transport without any particular

information about the execution of the code, and aglets

mobile agents are restarted from the entry point of the code

after migration to other machines. To overcome these

limitation aglets is designed to keep its java state after

migration. The aglets code will restart from an entry point but

no re-initialization will happen. Proxy is used in aglets for

communication without hampering the security.

 Aglets mobile agent platform is composed of following

three parts:

 Aglet mobile agent platform: is the core platform,

able to manage the agents.

 Tahiti: the server in-charge of managing the

mobility of the agents. It comes with

 A graphical user interface.

 Aglets software development kit: is a library that

provides developers all the facilities required to write mobile

agents complaint to the Aglets MAP.

Figure 1 Tahiti Server

Figure 1 shows the Tahiti server, it provides functions to

manage aglets mobile agents. The basic functions are:

 Create: allow administrators to create new agent

instances.

 Dialog: sends message to the selected agent.

 AgletInfo: opens dialog window with information

about the selected agent.

Int'l Conf. Grid Computing and Applications | GCA'10 | 103

 Dispose: allow administrator to kill a running

agent.

 Clone: allow administrator to create an identical

copy of running agent.

 Dispatch: allow administrator to order an agent to

migrate to another aglets platform.

 Retract: allow administrator to order an agent to

come back from a remote aglets platform.

 Aglets has been used in the implementation for its ease

of use, functionalities and available documentation.

 The next section discusses the topology, architecture,

design of the mobile agent based monitoring system. It also

details the experimental results.

3 Design of the Proposed System

 This section discusses about the design of monitoring
system. It describes the topology and architecture of the

proposed monitoring system and the design of agents.

3.1.1 Topology of the Monitoring System

 The topology of the monitoring system is shown below:

Figure 2 Topology of the monitoring system

 Server node sends mobile agents to the other nodes of

the network. These mobile agents gather resource information

from the nodes. Then they return to the server node and

update the database. Web pages are used to provide these

resources information to users and hosted on local network

using apache HTTP server. Any system on local network

running apache HTTP server can access these web pages.

3.1.2 Architecture of the Monitoring System

 This section discusses about the architecture of mobile

agent based monitoring system. Figure 3 presents a pictorial

view of the system.

Figure 3 Architecture of the monitoring system

 The system uses Hyperic SIGAR to gather information

about the resources of local system. This resource information

is managed, processed and updated to a database. The

server’s local resource information and remote system’s

resource information is collected differently. Local

Information Manager is used to collect and process the local

resource information and updates the database, for remote

nodes mobile agents are used to collect and process the

resource information. Local Information Manager is a Java

file that reads the resource information generated by Hyperic
SIGAR and updates it to the database. To manage resource

information of remote systems three mobile agents are used.

These mobile agents are: AgentOne, AgentTwo, and

AgentThree. AgentOne invokes the local information

manager on server. Agents are needed to dispatch to the

remote nodes that are needed to be monitored. Addresses of

these nodes are stored in a file which is denoted as “Node

List” in the Figure 3. The detailed discussion of agents

behavior are followed.

3.1.3 Design of Mobile Agents

 Three mobile agents are used in the monitoring system

as already discussed. These agents are AgentOne, AgentTwo,

and AgentThree. Users need to feed AgentOne to the Tahiti

Server; users also need to dispose the AgentOne manually.

AgentTwo and AgentThree are generated and disposed

automatically.

 Next subsections give detailed description of working of

AgentOne, AgentTwo and AgentThree. These mobile agents
are discussed using work flow diagrams.

a) Design of AgentOne

 AgentOne starts the monitoring process. Figure 4 shows

the workflow of AgentOne.

104 Int'l Conf. Grid Computing and Applications | GCA'10 |

Figure 4 workflow of AgentOne

 AgentOne truncates the monitoring systems database to

delete all the previous values stored in the database.

AgentOne calls Hyperic SIGAR API to generate system

information, and then it calls the local information manager.

Then it reads the node list to find out remote hosts addresses.

AgentOne creates AgentTwo and sends AgentTwo to these

addresses. AgentTwo needs the address of server node as it

sends back AgentThree from remote nodes. So AgentOne

sends the URL of server to the AgentTwo. If sending of a

AgentTwo to an address fails, AgentOne disposes that
AgentTwo. That address is declared unreachable and updated

to database. These processes go on in a loop until user stops it

by disposing AgentOne.

b) Design of AgentTwo

 Figure 5 shows the workflow of AgentTwo:

Figure 5 Workflow of AgentTwo

 Though AgentTwo starts its life in server node its

original working is done in remote node. On remote node
AgentTwo calls the Hyperic SIGAR API to generate resource

information. Then it creates AgentThree and sends it to server

node. If dispatching of AgentThree to server fails, AgentTwo

disposes AgentThree. At last AgentTwo disposes itself.

c) Design of AgentThree

 Figure 6 shows the workflow of AgentThree:

Figure 6 Workflow of AgentThree

 AgentThree is created by AgentTwo on remote node.
AgentThree reads the files created by Hyperic SIGAR and

initialize its variables by the values. As aglets supports weak

mobility, these data remains intact after AgentThree is

dispatched to server node by AgentTwo. On server node

AgentThree updates the database. It also checks if any remote

host has idle CPU and used memory size below threshold

value. The threshold value is defined in the AgentThree. If

overloading found then an error is updated in database. At last

AgentThree disposes itself.

3.2 Deployment Details

 The monitoring system is deployed in the Research Lab

of Computer Science and Engineering Department of Thapar

University. Five systems are used in deployment. The
operating system of these systems is Fedora Core 8. Globus is

installed in all those system. To deploy the monitoring system

aglets and Hyperic SIGAR are needed to be installed in those

systems. These two are installed in the /opt folder. The shell

script files to generate resource information using Hyperic

SIGAR are stored in a folder named Monitor. The folder is

copied to /opt/aglets/cnf. This folder also contains the Java

file to process local system information i.e. local Information

Manager. The agent codes are copied to /opt/aglets/public

folder. All these codes are needed to be compiled. In the

Int'l Conf. Grid Computing and Applications | GCA'10 | 105

server node, /opt/aglets/cnf folder contains a file named ip.txt

which contains the addresses of the nodes. The owner of this
ip.txt file is needed to be changed to apache. The following

sub-section presents a discussion about the creation and

deployment of the mobile agents.

 The monitoring system starts its execution when user

manually fed AgentOne to the Tahiti Server on the server

node. It can be said reversely that in which system user

initiates the AgentOne, that system becomes the server node

of the monitoring system. AgentOne continually run on the

server node. The next section discusses about the

experimental results of the monitoring system.

3.3 Experimental Results

 The monitoring system uses website based approach to

provide monitoring information to the user. This section
provides details of various webpages and the monitoring data

they provide to the user.

 Figure 7 shows the main page. It provides general and

brief information about the nodes like IP address, hostname,

CPU speed, and percentage of idle CPU, total memory, free

memory available, load average and status of globus i.e.

globus is running or not on the system.

 Figure 8 shows the pop up window to maintain list of

monitored nodes. IP address of nodes can be added or

removed from the list. Changes in this pop up window results

in changes in the ip.txt file of /opt/aglets/cnf/Monitor folder.
IP of nodea.grid.tu is not showing in the IP list as

nodea.grid.tu is the server node. Server node’s information is

managed by local information manager. Agents need not to

be dispatched to this system, so IP list does not contain the

server IP address.

Figure 7 Main Page

Figure 8 Modifying Node List of Monitoring System

 On main page there is two category of information of

system. In first category the reachable hosts are listed and

information about each reachable host is showed in rows. The

row has two hyperlink named Details and Errors. Second

category shows the list of unreachable hosts.

 Clicking on Details hyperlink on main page will open a

page which shows details of a particular node, shown in

Figure 9. This page shows details of the node having

associated IP address. Details about system, operating system,

CPU, memory and network are listed on this page.

Figure 9 Detail Information of Node

106 Int'l Conf. Grid Computing and Applications | GCA'10 |

Figure 10 Overloading Errors on Node

 Figure 10 shows the overloading error occurs in a node.

It can be opened by clicking on Errors hyperlink of main

page. It shows errors regarding CPU and memory overloading

with time and date.

 The monitoring system has been tested using the

following test cases:

Test Case1 New node is added to the monitoring system.

Test Case2 Node is removed from the node list.

Test Case3 A system is shut down while monitored.

Test Case4 Tahiti server of a node is closed while monitored.

Test Case5 A node is highly overloaded while monitored.

The results of these test cases are:

Test Result1 The system information of the added system is

shown as in Figure 7 if the node is up and Tahiti is running. If

not then the node is listed under unreachable hosts.

Test Result2 The node is removed from the web pages also.

It may take some time as the node’s entry from the database

is removed by truncating the database.

Test Result3 The node is added to the list of unreachable

hosts.

Test Result4 The node is added to the list of unreachable
hosts though the node is live and network is also fine. Aglets

needs Tahiti server to communicate. As Tahiti is closed,

agents from server cannot communicate with this node. As a

result this node is declared as unreachable.

Test Result5 As the node is highly overloaded, the value of

free memory and free CPU become low. They gone below the
threshold value predefined in the AgentThree. As AgentThree

finds overloading, table regarding to the error of database is

updated. This overloading information can be accessed using

the web pages as shown Figure 10.

4 Conclusions

 Grid computing suffers from various problems for its

dynamicity and supports for various technologies and

heterogeneous resources. The grid environment needs to be

monitored to discover newly added resources, choosing a

system optimum to run a job and detect any failure. A mobile

agent based monitoring system for grid computing is

proposed and discussed in this paper. The monitoring system

is easy to deploy, use and scalable. It provides information to

the user which is easy to understand and access. If server
node fails, the monitoring system can be recovered by

introducing a new server just by feeding AgentOne to the

node.

5 References

[1] I. Foster, C. Kesselman, et. al, "The Grid: Blueprint for

a Future Computing Infrastructure," Morgan Kauffmann

Publishers,Inc, San Francisco, California,Second Edition,

2003.

[2] Grimshaw A., Wulf W. et al. “The Legion Vision of a

Worldwide Virtual Computer”. Communications of the

ACM, Vol 40(1), January 1997.

[3] Object Management Group (OMG),

http://www.omg.org/

[4] I. Foster, C. Kesselman, S. Tuecke, "The Anatomy of

the Grid: Enabling Scalable Virtual Organizations,"

International Journal of Supercomputer Applications, 15(3),

pp.115-128, 2001.

[5] P. Townend, J. Xu, “Fault Tolerance within a Grid

Environment,” In Proceedings of AHM2003, page 272, 2003.

[6] S. Zanikolas, R. Sakellariou, “A Taxonomy of Grid

Monitoring Systems”, Future Generation Computer Systems,

Vol 21(1), pp 163-188, January 2005.

[7] M. Mansouri-Samani, M. Sloman, “Monitoring

Distributed Systems”, IEEE network 7 (6), pp 20-30, 1993.

[8] R.L. Ribler, J.S. Vetter, H. Simitci, D.A. Reed,
“Autopilot: Adaptive Control of Distributed Applications”,

Proceedings of the Seventh IEEE Symposium on High-

Performance Distributed Computing, pp. 172–179, 1998.

Int'l Conf. Grid Computing and Applications | GCA'10 | 107

http://www.omg.org/

[9] A. Hawkeye,"Monitoring and Management Tool for

Distributed Systems”,
http://www.cs.wisc.edu/condor/hawkeye/.

[10] B. Tierney, D. Gunter, “NetLogger: A Toolkit for

Distributed System Performance Tuning and Debugging”,

G.S. Goldszmidt, J. Schonwalder (Eds.), Proceedings of the

IFIP/IEEE Eighth International Symposium on Integrated

Network Management (IM 2003), Vol 246 of IFIP

Conference Proceedings, Kluwer, pp 97–100, 2003.

[11] I. Foster, “Globus Toolkit Version 4: Software for

Service-Oriented Systems”, IFIP International Conference on

Network and Parallel Computing, Springer-Verlag LNCS

3779, pp 2-13, 2006.

[12] Hyperic SIGAR,
http://www.hyperic.com/products/sigar.html.

[13] D. B. Lange, M. Oshima, “Mobile Agents with Java:

The Aglet API”, World Wide Web, Vol 1(3), pp 111 – 121,

1998.

[14] D. B. Lange, “Mobile Objects and Mobile Agents: The

Future of Distributed Computing?” Lecture Notes in

Computer Science, ECOOP’98-Object-Oriented

Programming, 1998.

108 Int'l Conf. Grid Computing and Applications | GCA'10 |

http://www.cs.wisc.edu/condor/hawkeye/
http://www.hyperic.com/products/sigar.html

Workstations as Grid with enabled “Green Provisioning”

in a PBS Professional embedded HPC Cluster

Jayant Mukherjee
1
 and Avadhesh Mittal

2

1
Project Manager, Altair Engineering, Bangalore, Karnataka, India
2
Sales Manager, Altair Engineering, Bangalore, Karnataka, India

Abstract – The paper provides the insight of algorithm build

on a HPC cluster where PBS is deployed. Paper states on the

power of using workstations as node when required for the

grid environment and switch off if not in use. This helps

uninterrupted use of workstation in a need basis else switch

off the machine provided there is no interaction by the end

user. Paper also describes the cost factor involves in

maintaing HPC and workstations and how using the proposed

algorithm above PBS can harness the power consumption and

grid farms usage. Message is “Go Green”

Keywords: Green Provisioning, PBS, Auto Restart, OS

Provisioning, ReQueuing

1 Introduction

With the introduction of quad core and soon to arrive multi-

core workstations(ws) organizations have a challenge and a

fantastic opportunity to harness this extra processing power.

Workstation Grid, an algorithm embedded on HPC Cluster

managed by Altair’s PBS GridWorks Product suit allow

organizations to utilize the extra cores to gain a real

competitive advantage, whether its getting products to market

quicker, or running more analysis cycles in the same

timeframe etc.

PBS which is a backend Grid Engine provides the compute

power to carry out complex jobs and handles organization’s

return on hardware investment for an HPC setup. Typical

office productivity tools such as email, web browsing,

spreadsheets and presentations do not require multi-core

processing power and in many cases are not able to use it

anyway. Multiply this across many users and departments and

its clear there is potentially a very large pool of untapped

processing power.

Workstation Grid harness all the processing power across

workstations, and provide a controlled and managed system to

allow jobs to use spare CPU cycles without affecting any work

being carried by users.

1.1.1 HPC Environment

HPC setup could be of two types:

• Dedicated high performance computing (HPC) resources

such as clusters, large shared memory systems etc

• Running computations on desktop workstations

Altair’s PBS GridWorks has the capacity to manage both the

types with required scheduling policies and management tools

to maximize job through put, maximize resource utilization

and minimize job execution time

2 Current Problems

In the world of new jargons like SaaS, PaaS, IaaS, Cloud

Computing & Virtualization, the problem still persists is how

to handle the operating cost involved in maintaining the

workstations which consume huge power and cooling cost.

Also in case of an HPC set up if the node has to be increased

from X to nX, the corresponding maintenance through

cooling, electricity (power) also increases tremendously.

Though these jargons reveal an illusion of how to compensate

through different services, the bottom line is “How effectively

an organization can utilize the underlying Workstations?”

This issue gets multiplied with organizations having

workstations which has better performance oriented

infrastructures plus an HPC setup. This is a typical problem

occurred in Product Design & Development group of Altair

India where 2000 cores of HPC setup sitting on PBS

professional for job submission and monitoring of different

CAE jobs includes around 240 workstations each with high

performance oriented architecture.

The below figures show how the HPC setup gets unutilized

(white HPC nodes are always active even if no jobs are

running)

Figure 1: Typical Organization HPC Setup (Black Nodes in

use, white nodes are unused)

Int'l Conf. Grid Computing and Applications | GCA'10 | 109

2.1 How much electricity do computer use?

 A typical desktop computer uses about 65 to 250 watts. A

computer whose label or power supply says 300 watts might

only use about 70 watts when it's actually running, and only

100 even in peak times with serious number-crunching and all

the drives spinning.

As long as the computer goes into sleep/standby when it is not

in used, the computer doesn't use squat for electricity.

Of course, one should absolutely make sure that the computer

is set to sleep automatically when user is not using it. This

requires the user discipline and organization policy.

 Table 1: Watts Consumption of different computers

Computers

Desktop Computer 60-250 watts

On screen saver
60-250 watts

(no difference)

Sleep / standby 6 watts

Laptop 15-45 watts

Monitors

Typical 17" CRT 80 watts

Typical 17" LCD 35 watts

Screen saver (any

image on screen)

same as above

(no difference)

Sleeping monitor (dark

screen)
 up to 15 watts

2.1.1 Cost Estimation for running a computer

 To calculate our costs use this formula:

 Watts x Hours Used
 ---------------------------------- x Cost per kilowatt-hour = Total Cost

 1000

2.1.2 Worst Scene

WorkStation Case (Calculation based on currency INR) :

A big high-end computer with a high end graphics card and an

old CRT monitor, and we leave them on 24/7 :

 330 watts x 24 hours x 365 days/yr = 2,890,800 watt-

hours, or 2891 kilowatt-hours.

If we're paying ~ INR 5 per kWh, total payment is ~ INR

14500 a year to run our computer

Practical Case (Calculation based on currency INR): A

normal PC with office application use, which uses about 105

watts, and we are smart enough to turn it off when we're not

using it. We use it for 10 hours a day, five days a week. That's

50 hours a week, or ~ 2600 hours a year. So our 105 watts

times 2600 hours = 273 000 watt-hours. Divide by 1000 and

we have 273 kilowatt-hours (kWh).

 If we’re paying ~ INR 5 per kilowatt-hour, toal payment is ~

INR 1365 a year to run our computer

But : - The practical does not happen so we remain in between

on the spent

Factors affecting Energy Use:

We need to add another 35 watts for an LCD monitor, or 80

watts if we have an old-school CRT. And we should not

forget about the related Devices also.

*Laptop computers use about 15-45 watts, far less than

desktops.

 Sleep & ScreenSavers- Are they Best Solution?

When our computer sleeps (aka "standby", "hibernate") the

computer uses up to 10 watts. (So does the monitor.)

We can set our computer to sleep automatically after a certain

amount of idle time. Setting our computer to auto-sleep is the

best and easiest way to save on computer energy use!

A screensaver that shows any image on the screen doesn't save

any energy at all -- we save energy only if the monitor goes

dark by going to sleep

2.2 Sample Calculation

Usage hours – 10

 Computer - 125 Watt/Hour + Monitor - 100 watt/hour

Non – Usage hour 14

Sleep/standby – computer - 10 watt/hour+ Monitor – 10

Watt/hour

Screensaver –

 Computer – 125 Watt/hour + Monitor – 10 Watt/hour

About 250 Working day/year

 10*250 ~= 2500 Hour/usage

Total Hours in a year

 24*365 = 8760 Hours

About 6000 Hours of non-usage (�wastage of power)

Sleep/standby enabled power – 6000X20 = 120000 Watts

Screensaver enabled power – 6000X135 = 810000 watts

Switching off for about 4500 Hours with Green computing –

Sleep enabled comp = 4500 X 25 = 112500 Watts/PC/Year

Screen Saver Comp = 4500 X 135 = 607500 Watts/PC/Year

110 Int'l Conf. Grid Computing and Applications | GCA'10 |

3 Benefits of WS Grid Environment

This paper demonstrates that a HPC cluster where PBS is the

Grid Engine, Workstation Grid is able to harness the

increasing power of spare cores and spare CPU cycles on

workstations through workstation clusters will have a massive

increase in compute capability with no additional hardware

cost.

Even with dedicated HPC systems in place the benefits of

workstation Grid are achieved by

• Offloading small (1 or 2 CPU jobs) from the

dedicated system

• Offloading short running jobs from the dedicated

system

• Offloading less critical jobs from the dedicated

system

• Offloading test jobs to check a solution is going to

converge from the dedicated system

Dedicated HPC systems are expensive resources that should

be made to work as hard as possible on the most important

jobs for the business. If less critical or smaller workloads can

be offloaded to workstation clusters thus improving HPC

utilization and increasing overall job throughput then that

organization will get a much better return on their IT

investment and potentially gaining competitive advantage.

Harnessing the power of desktop systems using workstation

clusters brings many benefits and compliments the dedicated

HPC resources with no additional hardware costs.

3.1 High Performance Computing: GOALS

o Optimal utilization of hardware and solvers

o Shorter time to market:-the same set of

computation to take less time.

o Higher product quality :-achieve more

complex computation in the same time

3.2 Management Information

o Know the overall utilization of the hardware

and the software solvers

o Enable well founded planning for future

purchase of any hardware or solver license

extension

3.3 IS Management

o A self sufficient system to reduce day to day

administration of HPC

o HPC User’s

o Easy access to the compute resources

4 Features of PBS managed WS Grid

A workstation Grid is a collection of workstations that are

networked together and uses a workload manager

PBS/LSF/SunGE/Moab/Torque to control & monitor the

resources within the cluster, and to manage the deployment or

scheduling of jobs across the workstations.

Figure 2: A typical Workstation Grid Setup

4.1.1 Auto Detection of Nodes in WS Grid

Altair’s PBS server does deployment of jobs and to recover in

the event of workstation or network failures a algorithm is

written on PBS which provides a single point of entry into the

workstation cluster through PBS. Jobs submitted to the PBS

are held in queues. Algorithm which sits on the PBS server

continually monitors resource availability around the cluster

e.g. available CPUs/cores, memory etc and compares this to

resources required by queued jobs. As soon as a workstation

is found in a logged off state it becomes available for a job is

dispatched to run on a workstation in the cluster.

Desktop Grid submits jobs to :

� A logged off workstation only

� Auto detection system finds out which workstation is in

logged off condition

Ensuring

� Users are not affected by background jobs

Possibility

� To use multi core cpu power for batch jobs at the same

time reserve some for interactive jobs

Int'l Conf. Grid Computing and Applications | GCA'10 | 111

Figure 3 : Workstations acting as nodes in a HPC

environment

PBS provides the features for all internal communication

within the cluster to monitor the status of all workstations and

the progress of running jobs.

It is essential that a user’s experience is not changed when

their workstation is configured as part of a Grid. However,

spare cycles when the user is not using their system become

available for the workstation cluster to run other jobs. Once

the user leaves their system and their activities have finished

the workstation is flagged as free and becomes an available

node in the cluster.

4.1.2 Automatically makes WS offline

Algorithm written on PBS Pro marks a workstation offline

� When a user logs on to a workstation

� auto-detection system finds out which workstation is in

logged on state

Ensuring

� PBS server do not submit jobs on a workstation which

is used by a user

Figure 4 : Auto ShutDown of Nodes not in use by end

user & by master node (3 nodes left, 2 nodes right)

4.1.3 Auto Migration/requeue jobs to an available WS

If cluster jobs are still running on a workstation when the user

returns, algorithm gives direction to PBS to make a decision

what to do with the jobs.

• Migrate/requeue running jobs

• Suspend running jobs until the workstation becomes

free again. Then resume the suspended jobs so they

continue to execute

• Let the running jobs continue to run

4.1.4 Auto log off a ideal WS to make it available to

Grid:

An interesting difference between workstation clusters and

typical dedicated HPC systems is that the nodes in a

workstation cluster monitor user interactivity and workload

and report this back to the PBS as available. Dedicated HPC

systems have nodes that are not used interactively so don’t

need to monitor what local users are doing.

Auto logoff feature

 Will automatically log off a workstation with

 1. No key board event

 2. No cpu activity

 3. No local jobs on the workstation for Time ‘T’

Ensuring

� The unutilized workstation becomes part of Desktop

Batch Grid

112 Int'l Conf. Grid Computing and Applications | GCA'10 |

Figure 5 : Auto Log off of ideal workstation and making

available for Grid (Node 3 gets active from right)

4.1.5 Green Computing – Auto Shutdown/Reboot as

needed:

 With increasing energy costs and more attention to “green

issues” many organizations have policies to turn off unused

workstations overnight. PBS Pro provides power aware

scheduling to turn off system when not in use and at the same

time use WOL feature to boot required no. of workstations for

the jobs in queue.

Green Computing will automatically shutdown a workstation

if

 1. Workstation is logged off

 2. No batch jobs are running for Time ‘T’ (Configurable)

Power aware scheduling can boot workstation as and when

needed as per the jobs resource requirement

Ensuring

� The unutilized workstation either locally or from batch

system is shutdown – no user intervention

Figure 6: Shutdown of nodes if not used by user & HPC

(Number 3 node of both sides)

4.1.6 OS Provisioning to use WSs either in

Windows/Linux mode for Batch Jobs:

 The script (algorithm) written on PBS Pro uses Power aware

scheduling which remotely sends signal for Workstation boot

and shutdown if not in use.

To gain advantage of running a Job in Linux or Windows

mode

The workstations could be made dual boot

� The default boot is in Linux to cluster the workstation.

� Auto shutdown feature in the algorithm will direct PBS

to shutdown the workstation and it will be booted in

Linux as and when required.

� MPI jobs can run using PBS Grid Setup

� Once the job in Linux is over, the Auto shutdown will

shut down the workstation

� Users can boot the workstations in Windows mode for

interactive application

Int'l Conf. Grid Computing and Applications | GCA'10 | 113

Ensuring

� No intervention from user or System admin team is

required for switching workstation to Linux

� The unutilized workstations either locally or from batch

system are shutdown – no user intervention

Figure 7: Dual boot mechanism: Linux as Node, Windows

as End user usage

5 Conclusions & Further Work

 In this paper, a solution has been given on how to

effectively use organization workstations and make the power

of workstations as part of HPC rather than planning and

procuring for new HPC setup. The paper also describes that

using algorithm as part of PBS setup can make not only huge

power save but can utilized unused resources and can shut

down if not in use.

The complete setup is ready and running at Altair India, PDD

group where the CAE jobs are required to be submitted in an

existing HPC setup. When HPC is fully used and there are

available workstations, algorithm switch on the idle

workstations and use it for calculations. Simultaneiously it

also checks for idle workstations and hpc nodes and shut it

down. If CAE analysts starts the work on his workstation,

algorithm in the backend switch over to his preferred OS and

migrate the job to next available grid node fulfilling the

criteria of submission or makes it available for the resources

to get free.

Future work involves complex environment where

organization have multiple grid engines following hpc

profiling. Using the logic of grid engines compatibility, it is

possible to use the same algorithm for non-PBS environment

where PBS becomes master Grid Engine driving all other

engines through hpcprofiling.

6 References

[1] Sites & Support documents of PBS GridWorks by Altair

Engineering

114 Int'l Conf. Grid Computing and Applications | GCA'10 |

Feedback guided job modeling in PRAGMA environment

Madhulina Sarkar2, Rupam Mukhopadhyay1, Dibyajyoti Ghosh1, Sarbani Roy1, Nandini Mukherjee1

1Department of Computer Science and Engineering, Jadavpur University, Kolkata – 32,
2Department of Computer Sc. and Engg., Govt. College of Engineering and Leather Technology, Kolkata - 98,

madhulina.sarkar@gmail.com, rupam.mukhopadhyay@gmail.com, dibyajyotig@gmail.com,
sarbani.roy@cse.jdvu.ac.in, nmukherjee@cse.jdvu.ac.in

Abstract: Grid computing environment provides access to
more computational resources than ever before by aggregating
and utilizing the computational power of ensembles of shared,
heterogeneous, and distributed resources for executing
computation intensive jobs. Moreover, Grid provides a highly
dynamic environment in which resources/services can be added
or withdrawn at any point of time. Managing such dynamic,
heterogeneous pool of resources and allocating the resources
to the jobs in most effective manner is one of the central
concerns in Grid environment. Thus, resource management is
one of the focus areas in Grid computing research. One major
objective of resource management in a computational Grid
environment is to allocate jobs to various available resources
according to jobs' requirements to make efficient use of the
computational resources under different resource providers
and, thereby, achieve high performance of the jobs. However,
heterogeneity of resources and jobs makes it difficult to
manage the execution of jobs in such environments. A proper
job modeling can be helpful to allocate jobs into their most
suitable resource providers in Grid. Consequently, it assists to
manage the execution of jobs as well as helps to achieve the
high performance. This paper presents a feedback guided job
modeling technique that describes the process required to
identify the most suitable resource provider for a particular
job.

Keywords: Grid, resource management, multi-agent system,
job modeling

1. Introduction
Modeling resource requirements for a job has been a major
challenge for the researchers for a long time. The runtime
behavior of a job is generally not known beforehand.
Furthermore, complexity of the underlying platform and
changing resource status exacerbate the problem of estimation
of resource requirements for jobs.
 In spite of the complexity, particularly modeling the resource
requirements for every job is important in a large distributed
computational environment, where heterogeneous hosts are
available. Precise modeling enables the client to schedule the
job on a suitable host and thereby maximize the performance of
the job. In recent times, Grid has emerged as large distributed
environment with characteristics which are very different from
traditional distributed systems [14]. A Grid environment
comprises heterogeneous resources administered by multiple
administrative domains. When a client submits a job in such
environment, the client must specify resource requirements, so

that a resource broker can find appropriate resources for
carrying out the job and achieve the performance guarantee as
desired by the client. In most resource management systems
for Grid [15], the client is left to decide the resource
requirements for their jobs. Such ad hoc decisions taken by the
client may often lead to overestimation or underestimation of
the resource requirements.
 In our previous works [18], we proposed a framework for
adaptive execution of jobs in Grid environment. Within the
framework, an application or the components of an application
(referred as jobs) are initially scheduled onto suitable resource
providers. Later, on the basis of the performance properties, the
jobs are either locally tuned or rescheduled to a different
resource provider so that performance guarantee is maintained
[18]. At the time of scheduling and rescheduling, estimation of
resource requirements is necessary, and we believe that the
estimation should be done automatically instead of leaving it to
the knowledge and expertise of the client. But as mentioned
before, automatic modeling of resource requirements is a
difficult task and precise modeling even for a traditional
architecture is not feasible. In case of Grid, this becomes
further difficult because Grid provides a dynamic environment
where resource providers may join or leave any time.
 This paper proposes an initial framework for automatic
estimation of resource requirements at the time of initial
scheduling of a job. The framework is based on the static
analysis of the job and the execution history of the same job or
a similar job which was executed before.
 The rest of the paper is organized as follows. Section 2
discusses about job modeling in Grid Environment. Section 3
describes the PRAGMA (Performance based Resource
Brokering and Adaptive execution in Grid) environment where
we have introduced our feedback guided job modeling module.
Section 4 explains the concepts of feedback guided job
modeling as has been introduced in PRAGMA. Section 5
compares the effect of feedback guided job modeling in job
execution with existing job modeling in PRAGMA
environment. Section 6 presents the conclusion and directions
for future work.

2. Job Modeling in Grid
General purpose of job modeling is to document the
requirements of a job and it forms the basis for later
improvement. It is an important phase in Grid environment and
it determines the types of resources for a particular job
according to its requirements. Thus, job modeling is the initial
stage of resource brokering. The data model, used to

Int'l Conf. Grid Computing and Applications | GCA'10 | 115

mailto:madhulina.sarkar@gmail.com�
mailto:nmukherjee@cse.jdvu.ac.in�

characterize the requirements of a job is the job model. Proper
analysis of the job is required for creating an effective job
model.
 Majority of the middlewares developed for Grid [[1], [2],
[15], [16]] demand that a job is submitted with a specification
of its requirements which is explicitly provided by the Grid
users. This requirement specification of a job is matched with
the available resources in the Grid. If the required resources are
found, the job is allocated to the resource provider for its
successful execution. Here, clients are allowed to characterize
the requirements of a job and a data model containing relevant
values (A Job Requirement List (JRL) in [[1], [2], [17]]) is
constructed with the help of client provided information. The
data model is prepared from the description of each job (Jdesc
in [[1], [2], [17]]) and identifies the minimal resource
requirements to run that job for meeting the desired QoS.
However, two problems can be envisaged here; these are over-
provisioning and violation of service level agreement (SLA)
that might have been set up between the user and the resource
provider at the time of job submission. Over-provisioning is a
persistent problem which causes waste of computing resources.
On the other hand, a job can not complete its execution
successfully on a particular resource provider if service level
agreement is violated. Thus, job modeling is an important issue
in Grid computing for efficient resource management and for
successful execution of jobs in Grid environment.

2.1. Related work
A large number of research works focus on job analysis and on
job modeling to predict job performance or to estimate
resource requirements on a single parallel supercomputer,
cluster or in Grid environment. In [8], Jirada et al proposed a
resource estimation model for parallel applications executing in
a homogeneous computational cluster environment and
developed a parallel-pipeline model of execution that performs
a parallel associative operation over a large set of distributed
processors [11]. Vikram Sadand Adve [9] analyzed the
behavior, performance of parallel programs and developed a
simple deterministic model to predict parallel program
performance based on influence of random delays in execution
time of a job in parallel computers. In [3], Konstantinos
Christodoulopoulos et al analyzed the inter-arrival times of
jobs and the workload at LCG/EGEE [10] cluster. They
proposed a simple model for job arrival processes at the cluster
and Grid level. In [5], Li et al used the LCG real time monitor
tool [6] to collect data from resource brokers (Rbs), located at
different machines at CERN, Germany and UK and proposed
traffic models for the job arrival processes. A methodology to
analyze and synthesize pseudo-periodic job arrival processes
has been proposed in [4]. The methodologies for job modeling
discussed in [3], [4], [5] are based on the job arrival processes
and the execution times of the jobs. Predicting resource
requirements of a job in Grid Computing Environment has
been considered in [12] and [13]. In [12], Arshad Ali et al
proposed a prediction engine that provides estimates of the
resources required by a submitted job on the basis of historical
information. This history based approach operates on the
principle of identifying similar applications and predicting

runtime of similar applications by computing a statistical
estimate. They have argued that two applications are similar
because the same user on the same machine submitted them or
because they have the same application name and are required
to operate on same-sized data. In [13], Bohlouli et al proposed
a Grid History Based Prediction Architecture which is based on
the principle that the architecture itself predicts resource
requirements. The job resource requirement prediction
algorithm operates on identifying similar jobs based on some
similar characteristics of jobs and then a statistical prediction is
done in centralized and decentralized way to estimate their
execution times.
 In our proposal for feedback guided job modeling we mainly
concentrate on inherent characteristics of the parallel jobs and
their execution environments which are stored in a database as
execution history for each job which has been executed earlier.
From the execution history, we attempt to predict a suitable job
execution environment and estimated execution time for a
newly submitted job.

3. The PRAGMA environment
S. Roy et al [[1], [17]] proposed an integrated framework for
performance-based resource management in computational
Grid environment. The framework is supported by a multi-
agent system (MAS) that has been developed using a firm
software engineering approach based on Gaia methodology.
The MAS initially allocates the jobs onto different resource
providers based on a resource selection algorithm. Later,
during runtime, if performance of any job degrades or quality
of service cannot be maintained for some reason (resource
failure or overloading), the MAS assists the job to adapt to the
changed environment. The MAS provides adaptive execution
facility either by rescheduling the jobs onto different resource
providers or by tuning certain portions of the job locally. Based
on the MAS, a tool PRAGMA (Performance based Resource
Brokering and Adaptive execution in Grid) [[1], [17]] has been
developed.

3.1. Agents in PRAGMA
Altogether six types of agents function in PRAGMA [[1],
[17]]. A Broker Agent (BA) is responsible for finding suitable
resources for jobs which are submitted to the system by a
client. A ResourceProvider Agent (RPA) on a particular
resource provider prepares a ResourceSpecificationMemo
which stores the details of the available resources. Later,
ResourceSpecificationMemos are used by the Broker Agent for
resource brokering. A JobController Agent (JCA) (with the
help of Broker Agent and ResourceProvider Agent) performs
initial resource selection for all jobs on the basis of a resource
selection algorithm [2] which ensures that every job gets
allocated to a resource provider that can fulfill its requirements
and deliver the desired quality of service(QoS). JobController
Agent establishes service level agreements (SLA) between the
client and the selected resource owners. A set of
JobExecutionManager Agents (JEM), one per job in a batch,
become associated with the jobs and control and keep track of
their execution. JobExecutionManager Agent moves to the
resource provider along with the job and when the job

116 Int'l Conf. Grid Computing and Applications | GCA'10 |

executes, it liaises with the Analysis Agents. A number of
Analysis Agents are organized in a hierarchy and are employed
to carry out performance analysis at various levels of the
environment. Analysis Agents are further subdivided as: (1)
Grid Agent (GA), (2) Grid Site Agent (GSA), (3) Resource
Agent (RA) and (4) Node Agent (NA). An overview of the
hierarchical Analysis agent framework is presented in [18]. If
the Analysis Agents observe that the performance of a job
degrades on a particular resource provider, they either
collaborate with JobExecutionManager Agent for migration of
the job to a different resource provider or instruct a local
Tuning Agent (TA) to take appropriate action for improving the
performance of the job [[1], [18]].

3.2. Job modeling in PRAGMA
In the current implementation of PRAGMA, job modeling is
not automatic. In this phase, the users are allowed to
characterize the requirements of a job. For doing this, the users
must have a very good knowledge about the problem domain
and the implementation. Also, as the phase is not supported by
any data, the characterization cannot be flawless and efficient.
This paper proposes a technique to automate job modeling by
managing different types of data including the execution-
history of every job. Following is a brief description of the
proposed methodology for feedback guided automatic job
modeling.
 Within the PRAGMA environment, the agents described in
the previous section are engaged in job modeling phase as well.
Interactions of various agents during the job modeling phase
are depicted in Figure1 and are explained in Section 4.

4. Feedback guided job modeling
In earlier research works, job modeling is generally based on
analysis of various characteristics of jobs and parameters
related to the underlying hardware platforms [[4], [5], [8], [9],
[12], [13]]. But such information is not always sufficient for
developing a suitable model of a job.
 In a computational environment, a compute-intensive job is
generally executed several times or often it can be observed
that a submitted job is similar to some jobs executed earlier.
Based on these observations, we propose that job modeling in a
computational Grid environment should be feedback guided.
During every execution of a job, its execution history is stored.
This history includes any performance problem observed
during the previous execution and the actions taken to
overcome the performance problem. This section explains the
proposed methodology and the data models used for this
purpose.

4.1. Agent interaction
All six agents in multi-agent system (MAS) [[1], [17]] are
involved in feedback guided automatic job modeling. Figure 1
depicts collaboration diagram of multiple agents for feedback
guided job modeling. Initial job-submission is handled by the
Broker Agent. After submission of a job, the Broker Agent
analyzes the job before its execution and retrieves static
analysis data. Then it requests the Grid Site Agent (GSA) to get
execution history for a similar type of job, if there is any. The

Broker Agent also prepares a Job Requirement List (JRL) [[1],
[2], [17]] based on static analysis of the job and on historical
data supplied by the GSA. Then it prepares Resource Provider
List by matching JRL with Resource Specification table which
is sent by Resource Provider Agent. Job Controller Agent
prepares service level agreement for the job. Job Execution
Manager controls the job execution and informs Node Agent
about job execution strategy. The Node Agent analyzes the job
execution strategy and for any performance problem it contacts
to Tuning Agent. Tuning Agent sends tuning action to Job
Execution Manager and Job Execution Manager accordingly
tunes the job or migrates the job to different resource
providers. Again, constructing the database of execution history
is an important part of feedback guided automatic job
modeling. So, all tuning actions that are taken for a job by the
JEM and all runtime analysis data for each job are sent to the
JCA. JCA forwards the job execution details of each job to the
GSA and the GSA stores it as execution history database for
future use in feedback guided automatic job modeling.

Figure 1: Collaboration diagram of multiple agents for feedback

guided job modeling.

4.2. Job models
To model a job, we consider two sets of data – (i) BE (Before
Execution) set of data that can be retrieved before executing the
job and (ii) AE (After Execution) set of data that are retrieved
after executing (AE) the job. Since, the BE type data set is not
machine dependent, they can be categorized as static
information of a job, whereas the AE type of data is machine
dependent. Figure 2 depicts the class diagram for our proposed
data model. The base classes in the data model include
Job_Desc, BE_information (Before Execution data) and
AE_information (After Execution data). Job_Desc stores the
detailed description of a job, such as job identifier, its type and
its data size. The Job_Desc base class contains BE_Information
class and AE_Information class. BE_Information stores the
information about a job that can be collected by static analysis
of the job. This information includes lines of code, number of
parallel regions, and number of parallel loops. In certain cases,
other information like nesting level of the parallel loops,
upperbound and lowerbound of the index variables in a loop
and shapes of the iteration spaces of the loops can be obtained
before executing the job. In other cases, these data can only be

Int'l Conf. Grid Computing and Applications | GCA'10 | 117

collected after execution. In many cases though, these data
vary from one execution to another. For such cases it is
undesirable to use such data for program analysis.
 AE_Information comprises data like total execution time,
total instruction count, total number of floating point
operations in the job, maximum number of threads used to
execute the job etc. AE_Information contains information

related to the parallel regions. We store information for a
parallel region only if it is a significant region (i.e. it executes
for a significant amount of time with respect to the total
execution time of the job). However, information related to
every parallel region can also be stored using the data model.
The class parallel_region_info includes information like
number of threads used to execute the region, instruction count
for the region etc. A parallel loop must be a parallel region;
therefore, loop_information (for parallel loops only) is a sub-
class of parallel_region_info. It includes information on nesting
level of the loop, upper bound and lower bound of the loop and
the shape of its iteration space (triangular, square etc.). As
mentioned before, some of this information can be collected
through static analysis of the code. In many cases, though,
these data vary from execution to execution and therefore such
cases must be handled separately and are not within the scope
of the current paper.
 PRAGMA facilitates adaptive execution of jobs. Thus,
execution environment of a job may change during its
execution. Furthermore, in case of certain performance
problems, a job may migrate from one resource provider to
another resource provider. Therefore, fractions of a job may
execute in different execution environments. Hence, a job may
be related to different execution environments as depicted in
Figure 2 (class execution_environment). Each execution
environment is described by the fraction of a job executed in
that environment and required number of processors to execute
that fraction. Execution environment is associated with
resource provider information (class
resourceprovider_information) on which the fraction of the job

has been executed. Each resourceprovider_information class is
described by resource provider type (workstation, cluster, SMP
etc.), total number of processors, clock per instruction etc.
Each execution environment is also associated with the
analysis details for the fraction of the job that has been
executed in the environment. These details are gathered
through runtime performance analysis of the job. The class

analysis_detail stores actual execution time for the loop
fractions (if the significant parallel region is a loop), its
scheduling strategy (static, dynamic), etc. For each fraction of
the job executed in a specific execution environment,
performance analysis is carried out on the basis of certain
performance properties [2]. Thus performance_property is a
derived class of analysis_detail that stores the severity values
for every performance property during execution [2].

4.3 Proposed methodology
In our proposed framework for feedback guided job modeling,
when a job runs in Grid environment with different QoS
expectations, its execution information along with performance
analysis details [18] are gathered as execution history of the
job. The execution history is used as feedback information for
future execution of the same job or similar kinds of jobs. Our
endeavor is to build up a job model as precisely as possible
without executing it provided that the execution history of the
same job or similar type of job has already been stored in the
database.
 When a job arrives for execution, it is first checked whether a
job of same type and of exactly same size has been executed
earlier. In such case, the new job and the job stored before are
considered to be the same jobs. On the other hand, two jobs of
same type but with different data sizes are considered as
similar jobs. In order to determine the type, merely the
Job_type information stored in Job_Desc class is not sufficient.
Job type must be related with the structure and other
characteristics of the job. We are currently working with the
techniques for identifying same type and similar type of jobs.

Figure 2: UML representation of the base classes of execution history of a job.

118 Int'l Conf. Grid Computing and Applications | GCA'10 |

However, these techniques are not within the scope of this
paper. Now let us explain our methodology for job modeling
with an example. Consider two jobs, A and B. Let A has been
executed earlier and as a result we have the execution history
for job A. We have BE type of data for job B. Thus, there are
three sets of data: BE type data for A, AE type data for A and
BE type data for B. From the three sets of data we make a
prediction of the AE data of job B based on whether A is same
as B or is similar to B. This prediction of AE data can be used
to estimate the resource requirement for a job. In addition, the
analysis details of job A can be used to improve the
performance of job B. Consider A and B are two similar types
of jobs. Thus, from the execution history of job A we can
predict a suitable execution environment for B. When a job
executes for the first time, there cannot be any after execution
information. A job may have more than one instances of
AE_Information as it might have been executed on different
machines.

5. Examples
In this section we demonstrate our proposed techniques taking
example codes in parallel Java applications. Minor
modifications have been made to the original source codes in
order to run them in PRAGMA environment. Parallel jobs are
implemented using Java OpenMP, i.e. JOMP. Three different
programs are considered in this paper:
Matrix Multiplication: The conventional matrix multiplication
code consists of one nested loop of depth three. The outer most
loop is a significant loop and the shape of the loop is square.
Parallelization of the significant loop is done using Java
OpenMP directive. Data sizes in the experiments have been
varied from 1000x1000 to 5000x5000.
Gaussian Elimination (Linpack benchmark): This program
provides solution for a system of linear equations, Ax=B,
where A is a known matrix of size NXN, x is the required
solution vector, and B is a known vector of size N. The major
significant loop is triangular in shape and parallelization of this
loop is done using JOMP. This benchmark is experimented
with varying data size from 1000 to 6000.
LU Matrix Factorization (SciMark 2.0 benchmark): This
program computes LU factorization followed by a triangular
solve of a dense NxN matrix using partial pivoting and dense
matrix operations. This major significant loop in this test code
is triangular in shape. Parallelization of this significant loop is
done using JOMP directive. For the experimental purpose, data
sizes have been varied from 1000 to 8000.

Table1: Before Execution analysis details.

Table 1 shows Before Execution (BE) data for the three above
mentioned programs. The columns in the table hold
identification of each program, input data size, Line of Code
(LoC), number of parallel loops, nesting level of the loops and
shape of the loops.
 Initially, the above mentioned three jobs with different data
sizes are executed within the PRAGMA environment [2] and
their execution details are stored in the execution history. We
have implemented only three tuning strategies - changing the
number of threads, changing the local scheduling strategies and
migrating the job if necessary. In the current example, only by
changing the number of threads while executing the job,
desired performance could be achieved by the client. The
analysis details [18] contain actual execution time of the job
fraction, number of threads (processors) that have been used to
execute the job fraction, scheduling strategy that has been used
for local scheduling and total execution time of the job. From
the execution history, it is now easy to determine the best
execution environment for each job. Table 2 provides the best
execution environments that are perceived from execution
history of the three jobs with known data sizes. It also provides
total execution times for all above mentioned jobs when they
are executed within best execution environment. For example,
we perceived the best execution environment for Matrix
Multiplication of data size 4000X4000, when it has been
executed with 5 processors using static scheduling strategy on
HP server or the best execution environment for LU matrix
factorization of data size 6000X6000, when it has been
executed on HP server with 6 processors using dynamic
scheduling strategy. Table 2 also depicts resource provider
information on which the jobs were executed and achieved the
warranted performance.

Table 2: Best execution environment of jobs perceived from execution

history.

Table 3: Sample execution history.

Next, two experiments have been carried out as described
below.

Int'l Conf. Grid Computing and Applications | GCA'10 | 119

Experiment 1: Running same job in PRAGMA environment

When a parallel job is submitted to PRAGMA Environment,
PRAGMA applies its feedback guided job modeling strategy
and identifies that the newly submitted job is same as one of
the previously executed jobs. Next, it retrieves the execution
history of the previously executed jobs. On the basis of the
history, the best execution environment is selected for the new
job. Thus when the same jobs are submitted again, they are
executed in the best execution environment retrieved from the
execution history. For example, If Matrix Multiplication of size
4000X4000 is submitted again in PRAGMA, feedback guided
job modeling recognizes the job as same job in comparison
with the jobs already executed earlier. The best execution
environment for Matrix Multiplication of size 4000X4000 is
retrieved and the job is executed in the best execution
environment. Similarly, if a LU matrix factorization of
6000X6000 is submitted again, it will be executed in the best
execution environment with 6 processors, dynamic scheduling
strategy. Figure 3, Figure 4 and Figure 5 compare the
execution time of same jobs in the existing PRAGMA
environment and in PRAGMA environment with feedback
guided job modeling technique for Matrix Multiplication,
Gaussian Elimination and LU matrix factorization respectively.

Experiment 2: Running similar jobs in PRAGMA environment

In case of similar jobs, consider initially we have the execution
history of the three jobs (or job fractions) executed in a single
execution environment. Table 3 shows a sample execution
history that contains execution times, execution environments,
resource provider details for each of the three above mentioned
jobs with specific job sizes. The execution time of a similar job
(in this case, same jobs with different input data sizes) is
predicted from the execution history. Prediction is done here on
the basis of mean and linear regression of the previous
execution times. Thus, when a new job is submitted in
PRAGMA environment, if it is found that the same job was
never executed, but a similar job1

[2]

 was executed previously,
PRAGMA consults its execution history. Then using linear
regression, PRAGMA predicts the execution time of the new
job and considers the predicted value as its expected
completion time (ect) . Thus, expected completion times
(ect) of Matrix Multiplication of sizes 2000X2000,
3000X3000, 4000X4000, 5000X5000 are predicted using
mean and linear regression in a constant execution environment
(HP server, 4 processors, static scheduling strategy). The
Matrix Multiplication jobs of sizes 2000X2000, 3000X3000,
4000X4000, 5000X5000 are submitted with the predicted
execution time as expected completion time (ect) to the same
execution environment in PRAGMA. Similarly, expected
completion time of Gaussian Elimination of sizes 2500, 3000,
5000 are predicted in a constant execution environment (HP
server, 2 processors, dynamic scheduling strategy) and the

1 The technique for deciding whether a job is similar to a
previously executed job is not within the scope of this
paper.

predicted execution times are used as expected completion
times at the time of initial job submission. In case of LU matrix
factorization of sizes 2500X2500, 3000X3000 and 5000X5000,
same techniques are repeated and the predicted execution times
are used as the expected completion times during their initial
submission. In the PRAGMA environment, each job achieves
warranted performance and completes its execution within the
expected completion time that has been predicted using
execution history data. Figure 6, Figure 7 and Figure 8 compare
the execution times of a job in PRAGMA (when job is initially
submitted with only one processor (default) with a randomly
selected expected completion time) [[1],[18]] and the execution
times of a job when the job is submitted in PRAGMA
environment with feedback guided job modeling technique
where the predicted execution time is taken as the expected
completion time for Matrix Multiplication, Gaussian
Elimination and LU matrix factorization.

Figure 3: Comparison between the execution times of Matrix

Multiplication in existing PRAGMA environment and in PRAGMA
environment with feedback guided job modeling technique.

Figure 4: Comparison between the execution times of Gaussian
Elimination in existing PRAGMA environment and in PRAGMA

environment with feedback guided job modeling technique.

Figure 5: Comparison between the execution times of LU matrix
factorization in existing PRAGMA environment and in PRAGMA

environment with feedback guided job modeling technique.

120 Int'l Conf. Grid Computing and Applications | GCA'10 |

Figure 6: Comparison between the execution times of Matrix

Multiplication in existing PRAGMA environment and in PRAGMA
environment with feedback guided job modeling technique.

Figure 7: Comparison between the execution times of Gaussian
Elimination in existing PRAGMA environment and in PRAGMA

environment with feedback guided job modeling technique.

Figure 8: Comparison between the execution times of LU matrix
factorization in existing PRAGMA environment and in PRAGMA

environment with feedback guided job modeling technique.

6. Conclusion and Future Work
In this paper we have proposed a framework for managing
execution information of jobs that are used as the feedback data
and this feedback data are stored as execution history of jobs.
The execution history is used later to predict expected
completion time and the resource requirements of a newly
submitted job in PRAGMA environment. Sometimes the
execution history is used to improve the execution performance
of the newly submitted job. The feedback guided job modeling
provides a basis of finding job requirements’ before its
execution without common users' intervention. Besides
discussing the technique for managing job execution
information using feedback guided job modeling in PRAGMA
environment, the automatic job modeling module within MAS
[1] has also been discussed here. We are improving our existing
feedback guided job modeling module to make it a fully
automatic job modeling module in near future.

Acknowledgement
This research work has received support from the project
entitled “Developing Multi-Agent System for Performance
Based Resource Brokering and Management in Computational
Grid Environment” funded by Department of Science and
Technology, Government of India under the SERC scheme.

References
[1] Roy S., N. Mukherjee: “Adaptive Execution of Jobs in
Computational Grid Environment”, Published in Journal of Computer
Science and Technology, Springer, vol.24, No.5, September 2009.
[2] Roy S., M. Sarkar, N. Mukherjee: “Optimizing resource
allocation for multiple concurrent jobs in grid environment”,
Published in ICPADS 2007: pp. 1-8.
[3] Christodoulopoulos K., V. Gkamas, E. A. Varvarigos:
“Statistical Analysis and Modeling of Jobs in a Grid Environment”,
Published in the Journal of Grid Computing (2008) 6:77–101.
[4] Li H., R. Heusdens, M. Muskulus, L. Wolters: “Analysis and
Synthesis of Pseudo-Periodic Job arrivals in Grids: A matching Pursuit
Approach” in Proceedings of CCGrid’07.
[5] Li H., M. Muskulus, L. Wolters: “Modeling Job Arrivals in a
Data-Intensive Grid” in Proceedings of the 12th JSSPP’2006 (2006).
[6] Real Time Monitor: http://gridportal.hep.ph.ic.ac.uk/rtm/
[7] http://www2.epcc.ed.ac.uk/computing/research_activities/jomp
/grande.html
[8] Kuntraruk J., W. M. Pottenger, A. M. Ross: “Application
Resource Requirement Estimation in a Parallel-Pipeline Model of
Execution”, in IEEE Trans. Parallel Distributed System 16(12): 1154-
1165 (2005).
[9] Adve V. S.: “Analyzing the Behavior and Performance of
Parallel Programs”, in Computer Sciences Technical Report #1201 for
the degree of Doctor of Philosophy of University of Wisconsin-
Madison, December 1993.
[10] The EGEE project homepage: http://public.eu-egee.org/
[11] Kuntraruk J., W.M. Pottenger: “Massively Parallel Distributed
Feature Extraction in Textual Data Mining Using HDDITM”, in
Proceedings of the Tenth IEEE International Symposium on High
Performance Distributed Computing, August 2001.
[12] Ali A., A. Anjum, J. Bunn, R. Cavanaugh, F. van Lingen, R.
McClatchey, M. A. Mehmood, H. Newman, C. Steenberg, M. Thomas,
I. Willers: “Predicting the Resource Requirements of a Job
Submission. In: Computing in High Energy Physics”, 2004,
Interlaken, Switzerland.
[13] Bohlouli M., M. Analoui: “Grid-HPA: Predicting Resource
Requirements of a Job in the Grid Computing Environment”: in
Proceedings of World Academy of Science, Engineering and
Technology, August, 2009.
[14] Nemeth Z., V. Sunderam: “A Comparison of Conventional
Distributed Computing Environments and Computational Grids”, in
Proceedings of the International Conference on Computational
Science-Part II (ICCS ’02), LNCC, vol. 2330, pp. 729-738, April
2002.
[15] http://www.csse.monash.edu.au/~davida/nimrod/nimrodg.htm
[16] Globus, web site: http://www.globus.org
[17] Roy S.: “Performance-based Resource Management in
Computational Grid Environment”. Thesis for the degree of Doctor of
Philosophy of Jadavpur University, Kolkata, October 2007.
[18] De Sarkar A., S. Roy, D. Ghosh, R. Mukhopadhyay, N.
Mukherjee: “An Adaptive Execution Scheme for Achieving
Guaranteed Performance in Computational Grids”, Published in the
Journal of Grid Computing, ISSN: 1570-7873 (Print) 1572-9814
(Online), vol. 8, pp. 109-131, 2010.

Int'l Conf. Grid Computing and Applications | GCA'10 | 121

http://gridportal.hep.ph.ic.ac.uk/rtm/�
http://www2.epcc.ed.ac.uk/computing/research_activities/jomp/grande.html�
http://www2.epcc.ed.ac.uk/computing/research_activities/jomp/grande.html�
http://public.eu-egee.org/�
http://www.csse.monash.edu.au/~davida/nimrod/nimrodg.htm�
http://www.globus.org/�

Skeleton/Pattern Programming with an Adder Operator for Grid
and Cloud Platforms

J. Villalobos, B. Wilkinson
Department of Computer Science, University of North Carolina, Charlotte, NC, USA

Abstract— Pattern operators are extensions to the Pat-
tern/Skeleton parallel programming approach used to apply
two types of communication patterns to the same data. The
operators are intended to simplify the wide range of possi-
ble patterns and skeletons. The abstraction helps manage
non-functional concerns on the Grid/Cloud environments.
This paper explains how the pattern operators work on
synchronous cyclic undirected graph patterns, and it shows
examples on how they are used. A prototype was created
to test the feasibility of the idea. The example used to
show the operator approach is the addition of termination
detection to a discrete solution to a PDE. The example
can be coded with 27.31% less non-functional code than
a similar implementation in MPJ, and its programmability
index is 13.5% compared to MPJ’s 9.85%. The overhead
for an empty pattern with low communication was 15%.
The use of pattern operators can reduce the number of
skeletons/patterns developed.

Keywords: Skeletons, patterns, grid, cloud, operators

1. Introduction
The advent of Grid computing during the past decade

has created a heterogeneous computing environment where
the users of computing resources have been exposed to
multiple types of architectures, network topologies, security
issues and other non-functional concerns. These challenges
need to be addressed. We are using the term heterogeneous
environment to refer to the Grid and to cloud computing.
Some aspects of cloud computing require the use of abstrac-
tions such as skeletons/patterns (SPs), particularly the need
to separate the resources of the cloud from the users and
developers. The main problem at hand is how to program
for this heterogeneous environment given all the possible
variations that may need to be accounted for in order to run
a single program in different configurations efficiently. The
approach we favor is the use of SPs.

Skeletons are directed, acyclic graphs, and their imple-
mentations are data parallel. The algorithms create a flow
of data that streams from one stage to the other until the
necessary algorithms have been performed to it. Patterns
are cyclic, undirected graphs. They are data-parallel and
they require synchronization during the execution. The start
and end of the patterns are the same as the skeleton, that
is, they start with some mapping of the initial data to the

nodes, and then end by converging the processed data into
a sink node. Figure 1 shows the common life cycle for
both skeletons and patterns. The most recurring skeletons
are map, reduce, workpool/farm, and pipeline. The most
recurring patterns are stencil and all-to-all. More complex
skeletons like divide-and-conquer can be constructed from
simpler skeletons through nesting [1] [2]. The patterns have
a wider set of non-standard pattern types that cannot be made
from a basic set of patterns as is the case with skeletons.

Source Sink

Compute Nodes

. . .

. . .

Fig. 1: Basic skeleton pattern organization.

There are three advantages to using SPs over the industry
standards today (MPI [3], OpenMP [4], and explicit thread
libraries). The first is that SPs hide deadlock and race con-
ditions from the user. They provide implicit parallelization
to the user programmer. This is done by giving the user
programmer an interface. When the user programmer gives
the implementation to a framework, the framework will run
the interface while taking care of the race conditions and
deadlock. The user is never aware of the problem. The sec-
ond advantage is a reduction in code and development time.
Macdonald et al. showed that coding with SPs requires less
coding, and is simpler in comparison to MPI [5]. Aldinucci
et al. also have shown frameworks such as Lithium and
Muskel that use object-oriented Java to provide the benefits
of skeletons to the user programmer [1]. Object-oriented
languages have created the abstraction that is necessary for
the concepts behind SPs to be provided in a form that is
simpler to understand. Previously, projects such as eSkel
[6], Sketo [7], and DPnDP [8] provided skeletons using
procedural C/C++ (which is not typed) but they create an
environment where mistakes are hard to find [8]. The third
advantage for SPs came in with the increased need to abstract
the parallelization away from the computational resources as
is needed in cloud and Grid computing. The abstraction is

122 Int'l Conf. Grid Computing and Applications | GCA'10 |

needed mainly in Grid computing because the environment
is made up of multiple architectures and network topologies.
Ideally, service providers want an application to run on this
environment while minimizing the amount of knowledge the
user programmer needs to code it. In the case of cloud
computing, the environment tends to be more homogeneous
and controlled by a single entity, but the service provider
also wants to provide the computation resources in a way
that they can optimize the use of the hardware. The hardware
optimization leads to servicing more customers. SPs are a
pertinent option to abstract the use of the resources because
they allow the user programmer to code the problem using
the provided API, and they give the Grid/cloud maintainers
space to manage the non-functional requirements. The API
and interfaces, in effect, create an extra layer between the
hardware and the user programmer. One could argue that
skeletons have started to be introduced into the cloud;
MapReduce can be cited as a successful example of skeleton
use in the cloud environment [9]. More skeletons are needed
in the future since MapReduce is not optimal for all types
of parallel programming algorithms.

Despite the benefits, SPs have some persistent drawbacks.
In his manifesto, Cole explains that SPs must "show the pay-
back", and he stresses simplicity [6]. However, many still
believe that the number of SPs needed to address parallel
computing is infinite [10]. This has some implications; the
user programmer may be faced with a library of SPs so large
that he is discouraged from using the approach. On the other
extreme, the user programmer, despite having multiple SPs
to choose from, does not find the pattern that he needs for
the problem, and therefore is tempted to just use lower level
tools. One can intuitively surmise that there can be a basic
set of SPs from which all the other SPs can be created. This
could be possible by features such as nesting. In nesting,
the user programmer is able deploy new SPs from inside the
SPs, which allows for an exponential increase of SPs without
increasing the size of the basic set. Nesting also allows for
the use of libraries that contain SPs themselves. With some
operators and a basic set, one could see a Turing-complete
(so to speak) set of patterns from which all possible parallel
programs can be created.

Section 2 presents a high level explanation about pattern
operators. Subsection 2.1 presents an example using Java. It
explains the use of interfaces to create computation modules
and the interfaces used to create data containers. Subsection
2.2 presents some important details on implementing SPs
into a framework we call the Seeds framework. Subsection
2.3 presents the implementation of the adder operator in
Seeds using the tools explained in Section 2.2. Section 3
presents the results from measuring the adder operator on
the dimensions of performance and programmability. Finally,
Section 4 mentions the related work.

2. Pattern Operators
Pattern operators are elements that work on the same

piece of data. We present here the addition operator for
synchronous patterns. The creation of this operator comes
about to address stateful algorithms such as discrete solu-
tions to PDE’s and practical solutions to particle dynamics
algorithms. In these types of algorithms, there are different
communication patterns at different stages of programming.
In the example of a discrete simulation of heat distribution,
multiple cells on a stencil pattern work in a loop parallel
fashion, computing and synchronizing on each iteration.
However, every x iterations, they must implement an all-
to-all communication pattern to run an algorithm to detect
termination. That is used to check if all cells have converged
on a value and all the cells should at that point stop
computing. Figure 2 shows the example of this approach.

Fig. 2: Adding a Stencil plus an All-to-All synchronous
pattern.

Similarly, the practical approach to solving particle dy-
namics combines multiple communication algorithms. Let
us first review a simple version of particle dynamics. In this
version, an all-to-all communication pattern is run on every
iteration and the information for every particle is used to cal-
culate the future momentum of each particle. This has O(N2)
complexity. Another algorithm has a lower complexity, but
its implementation is to use a stencil where the particles will
calculate its momentum based on n of its closes neighbors.
This stencil pattern is performed for x iterations. Every x
iterations, the algorithm switches into an all-to-all pattern of
communication to update all particles and reduce the error
that the algorithm inevitably accumulates. With just these
two examples, it is easy to see that many more algorithms
fall into this category where one has multiple layers of
communication patterns that work on the same data. In the
example of heat distribution, the data is a set of pixels that
represent the heat energy present at that point. In the case of
particle dynamics, the data represents momentum for each
particle at that instant in time.

2.1 Example
Figures 3 and 4 show an example where an all-to-all

termination detection algorithm is used to determine if there
is convergence after performing a stencil algorithm for some
number of iterations. A discrete approach to the problem
of heat distribution was used to test the code shown in the
figures. Figure 3 shows the code used to create the algorithm
for heat distribution. Some of the problem-specific code was
omitted in the interest of brevity. The class HeatDistribution

Int'l Conf. Grid Computing and Applications | GCA'10 | 123

extends a Stencil abstract class. This requires the user
programmer to implement some signature methods. The
Javadoc for each signature method is used to instruct the
user programmer on the purpose of each method and their
interaction within the framework. The DiffuseData() method
is used to get the segments of data from the user programmer.
GatherData() is used to get the processed segments of data
back from the user. OneIterationCompute() is used as the
main computation method. Because the algorithms are loop-
parallel and the framework needs to gain back control in
order to organize multiple patterns, the user is instructed
the method should only run one iteration of the main loop
in the application. initializeModule() is used to allow the
user programmer to pass string arguments to the remote
instantiation just after the modules get initialized.

p u b l i c c l a s s H e a t D i s t r i b u t i o n ex tends S t e n c i l {
p r i v a t e s t a t i c f i n a l long s e r i a l V e r s i o n U I D = 1L ;
i n t LoopCount ;
p u b l i c H e a t D i s t r i b u t i o n () {

LoopCount = 0 ;
}
@Override
p u b l i c S t e n c i l D a t a D i f f u s e D a t a (i n t segment) {

i n t w = 10 , h = 1 0 ;
double [] [] m = new double [1 0] [1 0] ;
/ * * i n i t m a t r i x m w i t h f i l e or u s e r i n p u t * /
H e a t D i s t r i b u t i o n D a t a h e a t = new

H e a t D i s t r i b u t i o n D a t a (m, w, h) ;
re turn h e a t ;

}
@Override
p u b l i c vo id G a t h e r D a t a (i n t segment , S t e n c i l D a t a d a t) {

H e a t D i s t r i b u t i o n D a t a h e a t = (H e a t D i s t r i b u t i o n D a t a) d a t ;
/ * * p r i n t or s t o r e r e s u l t s * /

}
@Override
p u b l i c boolean O n e I t e r a t i o n C o m p u t e (S t e n c i l D a t a d a t a) {

H e a t D i s t r i b u t i o n D a t a h e a t = (H e a t D i s t r i b u t i o n D a t a) d a t a ;
double [] [] m = new double [h e a t . Width] [h e a t . He ig h t] ;
/ * * compute core m a t r i x * /
/ * * compute s i d e s (b o r d e r s) * /
/ * * compute c o r n e r s * /
/ * * s e t i f t h i s node i s done * /
h e a t . m a t r i x = m;
re turn f a l s e ;

}
@Override
p u b l i c i n t g e t C e l l C o u n t () {

re turn 4 ; / / f o u r nodes f o r t h i s example
}
@Override
p u b l i c vo id i n i t i a l i z e M o d u l e (S t r i n g [] a r g s) {

/ * n o t used * /
}

}

Fig. 3: HeatDistribution class extends Stencil and fills in the
required interfaces.

Figure 4 shows the TerminationDetection class, which
extends CompleteSyncGraph. Similar to the stencil pattern,
CompleteSyncGraph also requires some signature methods.
The pattern has a DiffuseData() and GatherData() method
but they are not used for this example since the second
pattern in the operator is used for its computation function
only. getCellCount() is the number of processes needed for

p u b l i c c l a s s T e r m i n a t i o n D e t e c t i o n ex tends CompleteSyncGraph {
@Override
p u b l i c A l l T o A l l D a t a D i f f u s e D a t a (i n t segment) { / / n o t used

re turn n u l l ;
}
@Override
p u b l i c vo id G a t h e r D a t a (i n t segment , A l l T o A l l D a t a d a t a) {

/ / n o t used
}
@Override
p u b l i c boolean O n e I t e r a t i o n C o m p u t e (A l l T o A l l D a t a d a t a) {

H e a t D i s t r i b u t i o n D a t a d = (H e a t D i s t r i b u t i o n D a t a) d a t a ;
re turn d . T e r m i n a t e d ;

}
@Override
p u b l i c i n t g e t C e l l C o u n t () { / / n o t used r e a l l y

re turn 4 ;
}
@Override
p u b l i c vo id i n i t i a l i z e M o d u l e (S t r i n g [] a r g s) { / * n o t used * / }

}

Fig. 4: Termination detection using all-to-tall pattern.

the computation and must return the same number on both
patterns so that communication patterns fit together.

Figure 5 shows the main data object used for both the
patterns. The main advantages sought in using the pattern
adder is to provide the user programmer with the ability to
have two communication patterns work on the same data.
Our approach to patterns has the requirement of having all
information used for communication travel in the form of
serializable objects. Additionally, the stencil pattern adds
other signature methods that are needed in order to con-
trol the communication on behalf of the user programmer.
CompleSyncGraph also adds signature methods. HeatDistri-
butionData implements both StencilData and AllToAllData
so that it can be handled by both patterns.

Both of these modules are inserted into the framework
using a bootstrapping executable class. Figure 6 shows the
executable the user programmer implements in order to add
the stencil pattern plus the CompleteSyncGraph pattern. The
two are added using an Operand class, which is used to hold
together three characteristics each pattern needs, which are:
the initialization arguments if any, the host anchors if any,
and an instance of the pattern’s module. Anchors are used
to tie a special node the host that has to run it. The main
use for the anchor is to specify where the source and sink
nodes are to be run, since they usually have to be where
the data is. The executable class also has some code to
start the framework and shutdown the framework, which
will self-deploy. After creating the operands, the pattern-
adder operator is deployed by starting a new pattern called
an AdderOperator. The framework, by default, will spawn
and monitor the new pattern on a separate thread. The user
programmer can just wait for the pattern to complete using
waitOnPattern() method.

124 Int'l Conf. Grid Computing and Applications | GCA'10 |

u b l i c c l a s s H e a t D i s t r i b u t i o n D a t a
implements S t e n c i l D a t a , A l l T o A l l D a t a {

boolean T e r m i n a t e d ;
p u b l i c double [] [] m a t r i x ;
p u b l i c i n t Width , He ig h t ;
SyncData [] S i d e s ;
p u b l i c H e a t D i s t r i b u t i o n D a t a (double [] []m

, i n t width , i n t h e i g h t) {
}
/ * * S t e n c i l da ta s i g n a t u r e methods * /
@Override
p u b l i c Data ge tBo t tom () {}
@Override
p u b l i c Data g e t L e f t () {}
@Override
p u b l i c Data g e t R i g h t () {}
@Override
p u b l i c Data getTop () {}
@Override
p u b l i c vo id s e t B o t t o m (Data d a t a) {}
@Override
p u b l i c vo id s e t L e f t (Data d a t a) {}
@Override
p u b l i c vo id s e t R i g h t (Data d a t a) {}
@Override
p u b l i c vo id s e tTo p (Data d a t a) { }
/ * * The A l l−to−A l l Data s i g n a t u r e methods * /
@Override
p u b l i c Data ge tSyncDa ta () { / * * r e t u r n da ta f o r a l l * / }
@Override
p u b l i c vo id s e t S y n c D a t a L i s t (L i s t <Data > d a t) {

/ * * g e t da ta from a l l * /
}

}

Fig. 5: The main data extends both the StencilData and
AllToAllData. The object is used to hold the state-full data
for the main processing loops.

p u b l i c c l a s s R u n H e a t D i s t r i b u t i o n {
p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

Dep loye r de p lo y ;
t r y {

Seeds . s t a r t (" / p a t h / o f / s h u t t l e / f o l d e r / pga f " , f a l s e) ;
/ * * f i r s t p a t t e r n * /
Operand f = new Operand (

(S t r i n g) n u l l
, new Anchor (" Kronos " , Da taF lowRol l . SINK_SOURCE)
, new H e a t D i s t r i b u t i o n ()) ;

/ * * second p a t t e r n * /
Operand s = new Operand (

(S t r i n g) n u l l
, new Anchor (" Kronos " , Da taF lowRol l . SINK_SOURCE)
, new T e r m i n a t i o n D e t e c t i o n ()) ;

/ * * c r e a t e t h e o p e r a t o r * /
AdderOpe ra to r add = new AdderOpe ra to r (

new ModuleAdder (100 , f , 1 , s)) ;
/ * * s t a r t p a t t e r n and g e t t r a c k i n g i d * /
PipeID p_ id = Seeds . s t a r t P a t t e r n (add) ;
/ * * w a i t f o r p a t t e r n t o f i n i s h * /
Seeds . w a i t O n P a t t e r n (p_ id) ;

Seeds . s t o p () ;
} catch (E x c e p t i o n e) {

/ * * c a t c h e x c e p t i o n s * /
}

}
}

Fig. 6: RunHeatDistribution is used to create the operator
and start the pattern.

2.2 Implementation Details
The SPs are divided into unstructured and structured. The

unstructured patterns are the templates such as the map,
reduce, and workpool/farm patterns. They are referred to as
unstructured because the number of processes can change
dynamically. A workpool/farm can work with 10 nodes the
same as it works with 1000 nodes without the need to modify
its implementation or having to add special code to the
framework to handle the change. These are features that are
inherent in the definition of these three skeletons. The other
algorithms that require a specific number of processes are
the pipeline skeleton, the synchronous loop-parallel patterns
such as the stencil and its modifications, and the complete
graph or all-to-all pattern.

Our Seeds framework implements the differences by
using UnorderedTemplate for the unstructured skeletons,
and OrderedTemplate for the structured SP’s. Furthermore,
each template is inherited to implement the specific pattern.
PipeLineTemplate inherits OrderedTemplate to implement
the skeletons. Figures 7 and 8 show the UML for the differ-
ent classes that inherit OrderedTemplate and UnorderedTem-
plate respectively.

Map and reduce skeletons are not implemented. There is
a template created for convenience called LoaderTemplate.
LoaderTemplate inherits UnorderedTemplate and its goal is
to load some initial data into the computation units for
OrderedTemplate algorithms. Once the computation units are
loaded, they can start working on one of the OrderedTem-
plate implementations. At the end of the OrderedTemplate
SP, control is returned to LoaderTemplate, which sends
back the data to the sink node. The data may have been
modified during the computation as it would happen when
implementing a stencil, or the data may not have any
significance once the job is complete.

Communicator
edu.uncc.grid.pgaf.communication

OrderedTemplate

PatternAdderTemplate
edu.uncc.grid.pgaf.operators

CompleteSyncGraphTemplate
edu.uncc.grid.pgaf.templates

StencilTemplate
edu.uncc.grid.pgaf.templates

PipeLineTemplate
edu.uncc.grid.pgaf.templates

Template

Fig. 7: The OrderedTemplate needs a specific number of
processes. The Stencil and CompleteSyncGraph inherit this
class.

In order to provide structure to the user programmer, an
interface is created using abstract classes that inherit the
BasicLayerInterface abstract class. This is used to provide

Int'l Conf. Grid Computing and Applications | GCA'10 | 125

the user programmer with the signature functions that must
be implemented in order to successfully interact with the
framework. The interface is like a form presented to the
user with instructions on how it should be filled in. Figure 9
shows the UML diagram for the BasicLayerInterface class
and some interfaces that inherit it.

Template

UnorderedTemplate

PatternLoaderTemplate
edu.uncc.grid.pgaf.p2p.compute

WorkpoolTemplate
edu.uncc.grid.pgaf.templates

Fig. 8: Template class. OrderedTemplate and
UnorderedTemplate extend it.

The basic layer: If the user wants to implement some
skeleton or pattern, he needs to create at least three classes:
the module that implements an SP interface, at least one class
that implements a Data interface, and an executable class
that connects the module to the framework, and deploys the
framework if it is not running already. An example of this
procedure can be seen in Section 2.1.

The advanced layer: This advanced layer user is inter-
ested in implementing a pattern that cannot be implemented
with the existing skeletons/patterns, or he wants to test a new
optimization method, or he wants to provide a pattern that
is more convenient to use than the options already offered
by the framework. In this case, the user needs to implement
at least two classes, and one interface. The advanced user
must decide if the SP needs a structured or unstructured
implementation, a class that inherits one or the other must
be created. If an unordered template is created, only one
class is needed. If the SP is structured, then the advanced
user must also implement a LoaderTemplate. The advance
user may see the need to create Data interfaces to be able to
steer the user programmer into the communication patterns
that are required by the advanced user’s SP; however, this
is optional.

The expert layer: The expert layer is the machine room -
it has many primitive data structures and behavioral patterns
that look like an MPI implementation. The objects that
the expert layer provide to the layer above tend to be
complicated because the heterogeneity of the environment. It
has long if statements that account for each type of network
the nodes might be in, and each type of memory management
system potentially available. The expert layer is only for Grid
computing experts and parallel programming researchers.

2.3 The Operators
The operators at present are only implemented for the

OrderedTemplate SPs because only the addition operator

seems to be beneficial in reducing SPs complexity for the
user programmer. Future endeavors may include adding
operators to unstructured skeletons, to get similar benefits
as we show can be had from the addition operator.

The operators are implemented by inheriting OrderedTem-
plate. Once this OrderedTemplate is loaded, OperatorTem-
plate runs the first SP to load the initial computational units.
Then it enters into the main loop-parallel cycle. It run the
first operand for n iterations, and then it runs the next SP
for x iterations until either one of the SPs return true. The
computation for these SPs return false if the program is
not done computing. When the main loop-parallel cycle is
done, the operator pattern returns the processed data units
to the first operand’s GatherData() method. The operator
implements LoaderTemplate to load and unload the initial
data from the first SP. The second SP only contributes the
computation operation, and the Diffuse/Gather operations are
ignored for this SP. Figure 9 shows a diagram that describes
most of the interaction among the classes that happens when
running the operator template. The small tabs inside the
square are used to mention the BasicLayerInterface class
that is used by the Template class. For example: Stencil class
inherits BasiclayerInterface, and it is used by StecilTemplate
class. Together, both classes implement a stencil pattern.
The two patterns are added into the PatternAdder interface,
which is then executed by the AdderTemplate. Because the
adder template is an OrderedTemplate, it must specify a
PatternLoader interface, which is the PatternAdderLoader
class. PatterAdderLoader inherits PatternLoader interface,
and it is executed by the PatternLoaderTemplate. Finally,
Seeds can execute the LoaderTemplate directly because it is
an UnorderedTemplate. All templates implement a function
for the client side node and one function for the server side
node. The server side corresponds to the source and sink
nodes, and the client side corresponds to the compute nodes.

3. Results
Tests were performed to validate the pattern adder op-

erator. The two main concerns for extensions to the SP
programming approach are the performance impact created
by the extension, and programmability of the extension. In
order to measure the performance overhead created by the
pattern adder operator, we implemented a simple algorithm
that uses both the stencil pattern and the complete pattern.
The algorithm is trivial; it consists of sending a long integer
type to the neighbor processes in the stencil pattern, and it
repeats the process for the complete pattern. We consider
this an empty grain size pattern. The time to run through
one iteration is measured for the stencil pattern and for the
complete pattern. The time taken to run the process is also
measured for the pattern adder operator. The overhead is
the difference between the pattern operator’s time and the
stencil plus the complete pattern’s time. Figure 10 shows
the result of this test. The test was performed on a 16-core

126 Int'l Conf. Grid Computing and Applications | GCA'10 |

Fig. 9: Interface + Template pairs are drawn on the same
square. The diagram shows the hierarchical interaction be-
tween the classes in order to execute a PatternAdder operator.

Xeon 2.93GHz server with 64GB memory. The number of
processes is varied from 4 to 16. All the communications for
this experiment were through shared memory. The results
show that the overhead goes down as more processes are
used for the computation. This is in part because the in-
creasing communication overhead helps mask the overhead
due to the operator. The overhead in comparison to an empty
grain size is 15%, so grain size has to be adjusted to justify
the use of the operator. The network speed also has an
effect on the overhead. As Figure 10 shows, the increase
in communication overhead reduces the overhead incurred
due to the operator. The same test was done on a cluster
of 3 dual-CPU Xeons (3.4GHz) with 8GB memory running
four threads per server. The overhead for this test on an
empty grain size pattern was 0.03% for nine processes. The
network used was a Gigabit Ethernet.

Fig. 10: Operator overhead measured on a shared-memory
multi-core server.

Next, we measured the programmability. For this test
we implemented the heat distribution algorithm using MPJ-
Express. We also implemented the problem using the Seeds

framework, and a serial version of the problem was used
as control. The lines of code (LOC) were tagged on each
implementation with the tags: functional, non-functional,
automatic, comment, and log. The main tags are:
• Functional: The code that is dedicated to solving the

problem. Most of the LOC in the serial implementation
are considered functional.

• Non-functional: Is code primarily written to organize
parallel processes and communications. MPJ-Express,
and Seeds include code of this type to solve the problem
in parallel.

• Automatic: This code is generated code by the IDE.
Eclipse was used for the test. The generated code
includes the class declaration, import lines, package
declaration, and interface signature functions. Setters
and getter can also be included as automatic code.

The programmability index is defined as:

functional
functional + non-functional

(1)

A higher ratio means a program with less non-functional
code, and therefore we assume more readable and paral-
lelized in less time. Figure 11 shows the result from this
assessment. Seeds reduces the number of non-functional
code by 27.31% over MPJ implementation. MPJ’s pro-
grammability index for this implementation is 9.85%, and
Seed’s programmability index is 13.50%.

Fig. 11: the y axis shows the number of lines of code
for each implementation. The LOC were counted for the
serial implementation as well as for the Seeds and MPJ
implementation.

4. Related Work
As referenced in Section 1. our work builds upon several

frameworks designed to implement skeletons, patterns or
both. Cole proposed a series of guidelines that must be met
in order to create feasible skeleton interfaces [6]. McDonalds

Int'l Conf. Grid Computing and Applications | GCA'10 | 127

et al. created the three-layer development environment for
the CO2P3S project. On that project, the three layers were
created as a way to leave some flexibility in the frame-
work; it allows the programmer to create new patterns if
needed. We have incorporated that idea into Seeds. Simi-
larly, Aldinucci et al. has provided three layer development
environments to explored the use of skeletons as a way
to manage non-functional requirements on behalf of the
user programmer [11]. Future research will give Seeds non-
functional requirement features such as scalability and load-
balancing. The same middle layer (the advanced layer) will
be used for that purpose. Seeds assumes all the other non-
functional requirements, such as security, are done by the
Grid middleware. The nested feature is important for any SP
framework. Lithium [1], Muskel [2] and other frameworks
have implemented the feature [6]. Our work comes closest to
the work of Gomez et al. Their pattern operators implement
the same concept that set us in the direction to create the
pattern operators [12]. Their work is based on workflows
and includes other types of operators that are used to manage
non-functional concerns. The user programmer, in the Triana
framework is given more control over the resources where
the program runs. Our work differs from Triana in that
we provide the pattern operators as a pure object-oriented
framework without the need for XML language constructs,
scripts, or a GUI. Also, we have measured the effects
of the tool. The use we intend for pattern operators is
targeted toward high performance parallel computing in a
heterogeneous environment. A similar idea by Gomez et
al. that can be useful to port from the problem solving
environment (PSE) into SP frameworks is to use pattern
operators to add a behavioral pattern (such as check pointing,
visualization, and interaction) to a SP parallel application.

5. Conclusion and Future Work
Much of the literature focuses on skeletons, and somewhat

on patterns. Our work shows how the number of synchronous
patterns can be reduced by using the addition operator.
However, it does not show how the synchronous patterns
can be scaled automatically for the number of resources.
Specifically, the interfaces shown require the user to specify
how many processes need to be used to work on the program.
A better approach would allow for an automatic scalability
of these patterns. Aldinucci has mentioned these goals in his
literature. We also believe this goal would better promote
patterns for the grid and cloud environments.

We presented an object oriented implementation to pro-
vide an adder operator to skeletons/pattern parallel appli-
cations. A sample program was shown and its creation
was discussed from the user programmer’s perspective.
Subsequently, the implementation of the pattern adders was
presented. The advance user’s perspective was discussed,
and some notes about the Seeds framework and the expert
programmer’s perspective was also discussed. The pattern

operator can be used to reduce the number of patterns that
are needed by the user programmer. We believe that provid-
ing a basic set of skeletons/patterns plus useful operators will
increase the popularity of this parallel programming model.

6. Acknowledgment
We thank the UMLGraph.org team for providing the

tools create class diagrams from source code [13]. The
Seeds framework uses packages for SSH access using the
Ganymed libraries [14]. Globus [15] access is done through
Java Cog [16]. Network overlay organization is done using
JXTATM [17], and use of the UPNP communication protocol
for routers is also implemented [18]. Thanks to all these
software providers.

References
[1] M. Aldinucci, M. Danelutto, and P. Teti, "An advanced environment

supporting structured parallel programming in Java," Future Generation
Computer Systems, vol. 19, 2003, pp. 611-626.

[2] Marco Aldinucci, Marco Danelutto, and Patrizio Dazzi, "Muskel: an
Expandable Skeleton Environment," Scalable Computing: Practice and
Experience, 2008, pp. 325-341.

[3] R. Hempel, "The MPI Standard for Message Passing," Proceedings of
the nternational Conference and Exhibition on High-Performance Com-
puting and Networking Volume II: Networking and Tools, Springer-
Verlag, 1994, pp. 247-252.

[4] L. Dagum and R. Menon, "OpenMP: an industry standard API for
shared-memory programming," Computational Science & Engineering,
IEEE, vol. 5, 1998, pp. 46-55.

[5] S. MacDonald, K. Tan, J. Schaeffer, and D. Szafron, "Deferring design
pattern decisions and automating structural pattern changes using
a design-pattern-based programming system," ACM Trans. Program.
Lang. Syst., vol. 31, 2009, pp. 1-49.

[6] M. Cole, "Bringing skeletons out of the closet: a pragmatic manifesto
for skeletal parallel programming," Parallel Computing, vol. 30, 2004,
pp. 389-406.

[7] K. Matsuzaki, H. Iwasaki, K. Emoto, and Z. Hu, "A library of
constructive skeletons for sequential style of parallel programming,"
Proceedings of the 1st international conference on Scalable information
systems - InfoScale ’06, Hong Kong: 2006, pp. 13-es.

[8] S. Siu, M.D. Simone, D. Goswami, and A. Singh, Design patterns for
parallel programming, 1996.

[9] J. Dean and S. Ghemawat, "MapReduce," Communications of the
ACM, vol. 51, 2008, p. 107.

[10] T. Mattson, Patterns for parallel programming, Boston [u.a.]: Addison-
Wesley, 2007.

[11] M. Aldinucci, M. Danelutto, and P. Kilpatrick, "Autonomic manage-
ment of non-functional concerns in distributed & parallel application
programming," Parallel and Distributed Processing Symposium, Inter-
national, Los Alamitos, CA, USA: IEEE Computer Society, 2009, pp.
1-12.

[12] M.C. Gomes, O.F. Rana, and J.C. Cunha, "Pattern operators for grid
environments," Sci. Program., vol. 11, 2003, pp. 237-261.

[13] "UMLGraph - Declarative Drawing of UML Diagrams,"
http://www.umlgraph.org/index.html, Mar. 2010.

[14] "Ganymed SSH-2 for Java," http://www.ganymed.ethz.ch/ssh2/, Mar.
2010.

[15] I. Foster, "Globus Toolkit Version 4: Software for Service-Oriented
Systems," Network and Parallel Computing, 2005, pp. 2-13.

[16] G. von Laszewski, I. Foster, and J. Gawor, "CoG kits," Proceedings of
the ACM 2000 conference on Java Grande - JAVA ’00, San Francisco,
California, United States: 2000, pp. 97-106.

[17] "jxta: JXTATM Community Projects," https://jxta.dev.java.net/, Mar.
2010.

[18] "UPNPLib," http://www.sbbi.net/site/upnp/index.html, Mar. 2010.

128 Int'l Conf. Grid Computing and Applications | GCA'10 |

Compass: a Data Aggregation and Recommendation
Technology in the Efficient and Scalable Grid Monitory

System (ESGMS)

Weiqing Yang 1, 2, Xuebin Chi1, Hong Wu1, Siran Ye 3
1Supercomputing Center, Computer Network Information Center, Chinese Academy of Sciences, Beijing, China

2Graduate University of Chinese Academy of Sciences, Beijing, China
3Joint Institute of University of Michigan and Shanghai Jiaotong University
E-mail: wqyang@sccas.cn; chi@sccas.cn; wh@sccas.cn; yesiran@163.com

Abstract - Grid monitoring is a process to collect information
regarding the current and past status of large-scale
distributed grid computing resources. In the monitoring
process, a variety of data packages will be delivered through
Internet. When such monitoring system is used by the vast grid
computing end users, the potential number of inquiries and
the data bandwidth needed to passing the data packages can
be significant, which can make the monitoring system
intrusive and reduce the remaining communication capacity
for the grid computation itself. As the Computer Network
Information Center (CNIC) in China, we found that this
potential network jamming is an important issue in the daily
operation of the grid. This paper presents a “Compass”
technology developed in CNIC. We have designed and
implemented Compass on our Efficient and Scalable Grid
Monitory System (ESGMS), which works on the Scientific
Computing Grid (SCGrid), the biggest computing grid in
China. Our tests indicate that, compared to the common XML
method, the Compass technology can reduce the memory
usage by 10%, the computation time by 30%, decrease the
response time by a factor of 3, reduce the communication
bandwidth usage by a factor of 2, and reduce the number of
communication packets by 30%. Compass not only guarantees
relatively low performance overhead, it can also provide
overall information of the grid and resource allocation
recommendations to the end users.

Keywords: grid monitoring; Compass; Data Aggregation
Mechanism; Resource Recommendation Mechanism

1 Introduction
Grid computing aims to integrate distributed, heterogeneous,

and possibly miscellaneous computing resources seamlessly
for some overall computational tasks [1]. It provides an
alternative way to the homogeneous supercomputing. There
are varieties of computational problems suitable for grid
computing, including: protein folding, climate simulation,
earth quake prediction, drug discovery, social and economical
simulations. Collectively, the grid can provide huge
computational resources. For example, the BOINC (Berkeley

Open Infrastructure for Network Computing) project has
reached 4.76 Pflops as of March 13, 2010, while the protein
folding project: Folding@Home has reached 5 Pflops in
March 17, 2009. The operation of the grid is mostly managed
by the grid middleware, which helps to parse a computational
task into small pieces, and then send these pieces into different
resources distributed throughout the grid. While, ideally,
everything can be dealt with by the middleware automatically
without much user intervention, in reality however, it is highly
desirable to have a human monitory system which can track
the current status of the grid, the usage loads of different parts
of the grid, the communication/traffic information, the
dispatching pattern of a given job, and recommends the
resources to users. With such monitory system, the user can
make human decisions for how and where to launch their jobs.
To provide these services, the monitory system needs to
collect vast amount of data for fault detection, performance
analysis, performance tuning, performance prediction, and
scheduling [3]. Overall, grid monitoring is a critical part of the
grid computing. It can also be viewed as a part of the grid
middleware.
 The developments of grid system prototypes and grid
monitoring technologies are being carried out in a number of
countries and regions, including the United States, European
Union, China, Japan, and Korea, etc. In China, the grid has
aroused the interests of many researchers in information
technology and applied sciences [12]. China is experiencing a
rapid growth in internet bandwidth and computing resources.
The desire for cooperation and volunteering resources is
abundant, and there are national initiatives for large scale grid
computing projects. A test-bed for the grid technologies, the
Scientific Computing Grid (SCGrid), is being developed in
Chinese Academy of Science under the supports of the
National High-tech Research and Development Program (the
863 program) and Informatization Construction Project of
Chinese Academy of Sciences during the 11th Five-Year Plan
Period. SCGrid consists of thirteen high performance
computing centers across the country. Applications running on
the grid includes: protein folding, earth quake simulation and
financial simulations etc. The goal of SCGrid is to promote
the development and application of high performance
computers and to develop grid technologies that enable

Int'l Conf. Grid Computing and Applications | GCA'10 | 129

mailto:chi@sccas.cn�
mailto:wh@sccas.cn�
mailto:yesiran@163.com�

resource sharing and cooperative work in the Internet
environment. The Efficient and Scalable Grid Monitory
System (ESGMS) is developed in our institute as a monitoring
system for SCGrid.

The purpose of ESGMS is to satisfy the requirements of all
the grid users, including: Grid operators, site administrators,
Virtual Organization (VO) managers and Grid end users. It
used GMA (Grid Monitoring Architecture) monitoring
architecture [13], the most important feature of which is the
separation of the discovery and retrieval operations. We have
adopted the Web Service to implement the GMA in our
ESGMS. However, there are particular issues need to be
addressed in using the Web Services. Both GMA and Web
service can deal with loose communication effectively for the
heterogeneous systems. However, using Web Service, the
system reporting data is often complex and bulky [10][11].
For example, Web service uses XML for data representation,
which significantly increases the data volume and transmission
frequency. In real operation, due to the large number of users
and inquiries, this could cause communication traffic jam and
hamper the non-intrusiveness of ESGMS. Thus, a light weight
communication technology is needed. In this paper, we present
the “Compass” technology for this aim, which is a central part
of ESGMS. Compass reduces the package size and frequency
by onsite data aggregation guided by past statistics.

There are many ways to reduce the communication burden
of the monitoring system. Data Compression Technology--
compressing XML can be used to reduce the XML data
volume before transmission, but the compression and
decompression take time. Optimizing XML parser is another
method, but its RPC technology increases waiting time for a
remote call. As we will show, Compass technology avoids
these pitfalls, and it is based on intelligent data aggregation
and pre-processing, and is more efficient than these straight
forward methods.

In addition to provide the information for the overall status
of the grid, the monitoring system is also crucial for the
following activities (cases): scheduling, performance analysis
and optimization of distributed tasks or individual
applications. Although some monitoring systems have
proposed specific API to those cases, their overhead may
cause performance problems for grid monitoring system. To
address this problem, Compass also developed a resource
recommendation mechanism.

Thus, Compass has two aspects: Data Aggregation
Mechanism (DAM) and Resource Recommendation
Mechanism (RRM). DAM focuses on data aggregation to
yield smaller packages and less number of packages when the
number of sensory data inquiry increases sharply. The DAM
is an intelligent based agent. It guesses what do the average
users want from past statistical data of the users’ sensory
inquiries. Based on such predictions, a local DAM agent will
pre-processes the local raw data, and prepare a local database
for different kind of summary and possible inquiries. Such
aggregated and summarized data distributed at different sites
can be used to fill in the actual inquiry when requested, thus
provide much smaller package size, and faster response time.

As implemented today, the ESGMS can aggregate data either
by extracting or calculating the most concerned data of users
from the Web service provided XML, or directly sensor the
resource layer. RRM is in charge of recommending suitable
resources to users based on the information from DAM
through a recommendation algorithm.

The remainder of this paper is organized as follows. First,
in section II, we briefly describe the overall architecture of
ESGMS and the component design of Compass. Section III
illustrates the data preparation process in Compass. Section
IV introduces the details of the data aggregation mechanism
(DAM), including the design and implementation of DAM
and the time complexity analysis of aggregation. Section V
introduces RRM recommendation algorithm. In Section VI,
we present our evaluation of Compass and analyze the testing
results. At last, we summarize the work and discuss future
research directions.

2 System overview

Figure 1 shows the architecture of ESGMS. ESGMS
includes three layers: Resource Layer, Monitoring Service
Layer and Presentation Layer. Note that, these three layers are
different from the usual three layers structure of the grid
computing itself, which are: user, middleware and resources.
Resource Layer of ESGMS consists of a variety resources of
grid system, such as Ganglia [5][6], PBS, Middleware, etc.
Monitoring Service Layer provides public monitoring services
for resource information retrieving, aggregating, processing
and delivering. Presentation Layer uses data or API both
offered by Monitoring Service Layer for web presentation,
scheduling, data replication, accounting, performance analysis
and so on. Some snapshots of the presentation layer are shown
in Fig 2.

 Figure 1．The architecture of ESGMS

Fig.2.1 The situation of CPU usage history (different lines indicate different
centers)

130 Int'l Conf. Grid Computing and Applications | GCA'10 |

Fig.2.2 The recommendation of Compass (the big green ball is the
recommended object)

In the Monitoring Service Layer, there are five
subservices. Trigger Service is used to report alarm messages
to system manager by e-mail or other ways. Archive Service is
in charge of collecting historic data. Index Service is mainly
developed to locate, name and describe the grid data with
structured characteristics [7]. Sensor service is to manage
sensors’ working in the lower layer, which helps to build a
hierarchical architecture to achieve better scalability. Finally,
the Compass service is used for releasing aggregated
information and recommending suitable resources to users.
Note that, in our current design, the Compass Service can be
switched ON/OFF in the Monitoring Service Layer. This
provides us a way to test our Compass system compared to the
conventional direct XML based system.
 ESGMS also adopts many other technologies such as
Ganglia, LSF and PBS for sensors, XML/AL for data
representation, Web Service for data transport, Java Servlet
for MSU, Ajax for data display request [8], Amcharts and
FusionCharts for chart generation [9]. In the rest of the paper,
we will mainly focus on the Compass Service. Figure 3 shows
the component design of Compass, and its relationship to
other services and layers in ESGMS.

Figure 3．The component design of Compass

3 Data preparation
ESGMS is targeted at satisfying the requirements from the

following main categories of users: Grid managers, site

administrators, Virtual Organization (VO) managers and Grid
users. Grid managers have the highest authority, they can
monitor and manage all sites. Site administrator and Virtual
Organization (VO) can monitor and manage the site situation
or the VO situation respectively. Grid users can browse the
overall grid information, including CPU usage, Memory usage,
average load of all sites. The end users can only see their own
job status, but cannot see other users’ job situation. All of our
grid users access ESGMS through web interface. Before we
designed the Compass service, we had made a survey on what
are the users’ most concerned data through a users’ login
ESGMS questionnaire. Through the collecting and analyzing
the results of these questionnaires, we found the following:

Grid users (the fourth class of users) play an important role
(99%) in contributing to the suddenly sharp increase of data
inquiries. On the other hand, they only care about some
specific information of their own jobs running on the grid,
such as: whether the operation status is running or hang, the
total operating time, the queue situation at each site，which
queue in one site is idle or has high CPU usage and Memory
usage, the node with the least number of waiting jobs, etc.
After the users understand the current situations, they can
submit their jobs to the suitable resource of grids. However,
they do not care about the situations of all nodes in each site.
A naïve monitoring system using all the data provided by the
Web service XML for all the nodes will give too much
unneeded information, and overwhelm the network. Based on
this understanding, we have designed a new ESGMS with
Compass. Compass uses DAM to aggregate data from XML
which are already generated by Sensor Service and the data
directly obtained by sensors. These are primitive detail raw
data with high data volume. Compass then extract or process
the data onsite, and only transmit the user interested
information through the net. The results in smaller data
packages and less number of packages, but at the mean time,
still satisfy the need for various users of ESGMS.

4 Data aggregation mechanism (DAM)

Compass’s DAM continuously computes summaries of the
data filtered from XML already generated by Sensor Service
or offered directly by sensors, and it asks Index Service for
resource addresses. DAM is controlled by SQL queries, and
can be viewed as a type of data mining process like a virtual
database which does not reside on a centralized server and not
support atomic transactions. DAM is also intended as a
summarizing mechanism which uses aggregates that
summarize the overall state for the grid system as a whole,
and also for the local domain for which a DAM agent is
responsible for. DAM can be accessed and manipulated by
using database integration mechanisms like ODBC and JDBC
standard database programming tools.

DAM must limit (set an upper bound) the rate of
information flow at each participating node, so that even
under worst-case scenario, the traffic will be independent of
system size. For example, DAM can count the number of
nodes having some given property, but not to concatenate

Int'l Conf. Grid Computing and Applications | GCA'10 | 131

their names into a list, since that list could be of unbounded
size. Each aggregate in DAM is restricted to some domains,
within which it is computed on behalf of and visible to all
nodes. Only aggregates with high global value should have
global scope. As grid information changes, DAM will
automatically and rapidly re-compute the associated
aggregates and report the changes to Recommend Service
which will recommend new suitable resources (services) to
users.

4.1 Design and implementation of DAM
In order to support self-management and self-monitoring

better, ESGMS system uses the distributed multi-center
structure and adopts center resource autonomy ideology:
setting up local resource monitoring system, then integrating
the information of various local resources, and providing a
unified query interface. Therefore, the whole grid system is
divided into two layers physically: the global monitoring and
the local monitoring. This structure can prevent single point
of failure, facilitate system software upgrade, and improve the
system scalability. Thus the ESGMS is a hierarchical tree
structure, the overall framework is as follows:

 Figure.4 The hierarchical architecture of ESGMS

Figure.4 shows the architecture of ESGMS, which adopts
hierarchical architecture style viewed as a three-tier structure
and has a corresponding relationship with actual physical
resources and connections. In the Figure.4, the red frame
indicates Beijing Supercomputing Center (BeijingSC) of the
first level of ESGMS three-tier structure. The cyan ellipses
mean sub-centers in the ESGMS second level, such as Dalian
Center, Qingdao Center, etc. The violet ellipses represent
centers in the third level, such as Suzhou Center, Nanjing
Center, etc. Authority becomes smaller and smaller form the
first level to the third. Each center has its own clusters with
one representative node to aggregation. Compass agent will
be deployed in the representative node of each cluster, and
aggregates not only the information of each cluster but also
the information of its child agent. Compass agent on each
cluster offer external API. The tree structure of the ESGMS
and the Compass is in line with the actual physical network
topology and connection of the grid. This would help to reach
a balanced and efficient Compass system. If the representative
node in a cluster deployed with Compass agent fails or
becomes unsuitable, Compass will automatically select
another node to take its place.

Each representative node in a cluster runs a Compass agent.
System administrator initializes these agents with their unique
names which are local domain identifiers within their parent
domain. Those names are strings consisting of their path of
domain identifiers from the root, separated by dots (e.g.,
“BeijingSC.ShanghaiSC.Cluster0 "). Compass hierarchy is
implicitly specified when the agents are initialized. For
example, the ‘BeijingSC.Dalian.Cluster0’ agent creates the
‘BeijingSC’ domain and the ‘BeijingSC.Dalian’ domain if
they did not exist already. Thus the Compass hierarchy is
formed in a decentralized manner.

Associated with each Compass agent is an Attribute List
(AL) which contains the information associated with the
domain. AL attributes are not directly writable, but generated
by so-called Computing Function (CF), through which one
could query the states of resources. Each Compass agent has a
set of CFs calculating attributes for the center's ALs. CF is an
SQL program, which takes a list of the ALs of the center’s
child center and produces a summary of their attributes.

If one thinks of Compass as a form of decentralized
hierarchical database, AL will be a table (a relation) for each
center, with a row for each child center. Each column in a leaf
node is a value extracted from the corresponding object on
that node. Each column in an internal center is a value
computed by CF to summarize its children. These columns
might be very different from those of the children centers. For
example, the child centers might report lowest loads, biggest
CPU usage, etc. In comparison, their father domain could
have one column giving the mean load on its children, another
counting the biggest CPU usage based on its children, and a
third listing the three child nodes with the strongest matches.

AL is relatively small objects, which is bounded in size
(about a few hundred or even thousand bytes). ALs export
information about resource, such as a time stamp, biggest
CPU usage, average load and so on. One might design a CF to
count all nodes that match some predicates, yet might not use
CF to make a list of all such nodes. In fact, by traversing the
Compass hierarchy it is easy to enumerate the nodes that
contribute to a counting calculation. We will analyze the time
complexity of traversing DAM Tree in the next section.

CFs are programmable. The code of CFs is embedded in
the so-called Computing Function Letters (CFLs), which are
signed and time stamped certificates that are installed as
attributes inside ALs. CFLs also specify two other important
questions: what information users want to retrieve at each
participating node, and how to compute this information in the
Compass hierarchy.

Table1. Computing Function Interface (CFI)
Method Description
FindContacts(time, center) find Compass agents in the given

center
SetContacts(IP) specify addresses of initial agents

to connect to
GetAttributes(center, new
values)

report updates to attributes of
center

GetChildren(center, new
values)

report updates to domain
membership

SetAttribute(attribute, new
value)

update the given attribute

132 Int'l Conf. Grid Computing and Applications | GCA'10 |

Users can invoke Compass interfaces through calls to CFs
(see Table 1). Besides CFs native interface, Compass has an
SQL interface that allows users to view each center as a
relational database table, with a row for each child zone and a
column for each attribute. The programmer can then simply
invoke SQL operators to retrieve data from the tables. Using
selection, join, and union operations, the programmer can
create new views of the DAM data. An ODBC driver is
available for this SQL interface, so that many existing
database tools can be used in Compass directly, and many
databases can import data from Compass. SQL does not
support instant notifications of attribute changes, so that
applications that need such notifications would need to obtain
them using the native interface. Compass agents also act as
web services, hence information can be browsed using any
standard web browser instead of going through the CFI.

4.2 Time complexity analysis of DAM
aggregation

As mentioned before, the ESGMS architecture tree is based
on the actual physical distribution of Grid resource, which
makes it scalable for large centers/layers. In the DAM
computing process, we need to enquire nodes from the root of
ESGMS Tree to leaf-node recursively. It means that we
appoint some search qualifications and reference values to
find the nodes matching our search conditions by traversing
ESGMS Tree from its root. Traversing step number is
equivalent to the depth of ESGMS Tree (log (N)). So the time
complexity of traversing ESGMS Tree is O(1og (N)), the
average time complexity is also O(1og (N)).

Above all, the hierarchical structure of ESGMS Tree has
reduced the time of CFs inquiring nodes’ ALs, and the time
complexity is just log (N).

5 Resource recommendation mechanism

(RRM)
Based on DAM, we can design CFs or use SQL statements

to get desired information to users. For example, we can get a
node’s URL which has the biggest CPU usage in a domain
(even the top several nodes), or an average Memory usage of
a domain, as follows:

SELECT
 CPU
 WHERE CPU= (SELECT MAX (CPU));
 SELECT
 AVE (MEM) AS MEM
 WHERE ZONENAME = DEEPCOMP 7000;
The computing results of CFs or SQL statements can serve

as inputs of RRM. RRM recommends resources (services) to
grid users based on the following algorithm. Here we define
nodes in Grid system as the resources to be recommended.

We use PPC (Potential Processing Capability) to indicate
the potential processing capability of node. PPC is affected by
two factors: Available Resource Factor (ARF) and Waiting
Tasks Factor (WTF).

ARF indicates the processing capability of the node. The
value of ARF is related to the Available CPU Usage (ACU)
and Available Memory Usage (AMU) of node.

WTF indicates the degree of tasks assignment on the node.
We define the value of WTF as the number of tasks waiting
(NTW) on the node.

ARF have a positive effect on PPC, while WTF has a
negative effect on PPC. To combine their effects, PPC for a
given node is calculated as in the following formula:

*ACU AMU
ACU AMU

PPC NTW
NTW

= ∑ ∑

∑

 (1)

 The summation goes for different nodes in a domain. The
recommendation mechanism works as follows: Supposing
there is a resource set NODE = {N0, N1,…, Nn }; ACU[i],
AMU[i], NTW[i] and PPC[i] respectively representing the
value of ACU, AMU, NTW and PPC of node Ni. The best
node recommended to the users satisfies:

()[] max{ []} 0,1,..., 1PPC i PPC j j n= = −
(2.1)

 [] 0ACU i > (2.2)
 [] 0AMU i > (2.3)

Formula (2.2) and Formula (2.3) indicate that Compass
cannot recommend the unavailable resource to users.

However, in order to compare the PPC of two nodes i, j, we
don’t really need to compute PPC (which involves
summation). Instead, we can judge that from the following
formula.

 Firstly, we can define the symbol “?” as the meaning of
“comparing different nodes for PPC value”, and Ni, Nj are the
nodes in NODE set. PPC values of Ni and Nj are respectively
as follows:

 [] []*
[] []

ACU i AMU i
ACU AMU

PPC i NTW i
NTW

= ∑ ∑

∑

[] []*
[] []

ACU j AMU j
ACU AMU

PPC j NTW j
NTW

= ∑ ∑

∑

Thus formula (2.1) (PPC[i] ？PPC[j]) is also written as:
[] [] [] []* *

?[] []

ACU i AMU i ACU j AMU j
ACU AMU ACU AMU

NTW i NTW j
NTW NTW

∑ ∑ ∑ ∑

∑ ∑ (3)
Since ΣACU, ΣAMU and ΣNTW are constants in this

recommendation ， there is no need to divide by ΣACU,
ΣAMU and ΣNTW. Formula (3) can be simplified as:

[]* [] []* []?

[] []
ACU i AMU i ACU j AMU j

NTW i NTW j (4)
It can be further rewritten as:

[]* []* []? []* []* []ACU i AMU i NTW j ACU j AMU j NTW i (5)
Therefore, comparing two nodes for PPC value can directly

use formula (5), there is no need for perform the summation.
Algorithm 1 shows the code of RRM’s recommendation
algorithm.

Int'l Conf. Grid Computing and Applications | GCA'10 | 133

6 Test and evaluation
In order for Compass technology to be widely used, it must

first meet the prerequisites of having efficiency and low
performance overhead. To quantify this, we have carried out a
series of experiments to evaluate the Compass performance
implemented in ESGMS. We have been focused on the
execution overheads and the response time. The response time
denotes the average amount of time required for a
recommendation from being sent till response received.

6.1 Experiment environment
At this stage, the experiments were done in the

Supercomputing Center of CAS. In the future, we will perform
a series of experiments in more centers. The experiments were
run on the SCEYE Test bed at Supercomputing Center of CAS,
including three computers with names PC{ 0, 1, 2 }and a high
performance computer DeepComp7000, which has ranked No.
19 in the TOP500 Supercomputer list in November, 2008.
DeepComp7000 has two clusters: IBM HS21 Node cluster
and IBM X3950 Node cluster. The machines are connected
within the 100M Ethernet. PC0, PC1 and PC2 are equipped
with one 2590MHz Intel Core Duo CPU and 2G main
memory. PC0 runs Windows XP Profession Service Pack3 as
its operating system. PC1 and PC2 run Linux kernel 2.6.18.
Each of PC0-2 and DeepComp7000 has a corresponding part
of ESGMS deployment. PC0 is used to Web display. PC1 is
the representative (aggregating) node of the IBM HS21 Node
cluster, PC2 is the representative (aggregating) node of the
IBM X3950 Node cluster. PC1-2 run Compass agent. The
monitoring system ESGMS retrieve resource information from
DeepComp7000 periodically. The size of XML is about 1.5M,
but AL is just about 550 bytes.

This test was done over a 12 hour period on ESGMS system.
During that test period, there are 4,000 jobs running on the
DeepComp7000 machine.

6.2 Experiment strategies and results

6.2.1 Overhead and Responsiveness
Table 2 shows local per-node monitoring overhead in

ESGMS with and without Compass. As mentioned above, the
Compass system can be turned off. Without Compass system,
the communication is done with the conventional XML
method.

Table 2, Compass overheads

 From the experimental results, we can see that, the
performance overhead (both for CPU and memory) of
ESGMS with Compass is lower than ESGMS without
Compass. The reduction is about 30% in CPU and 10% in
memory.

Table 3 compares Compass-based recommendation method
with XML-based recommendation method for the response
time, net bandwidth usage, and packet numbers.
 Table 3 Compass response time, bandwidth usage, and packet numbers.

Mechanism Respons
e time(s)

Net bandwidth
Usage (Kbits/s)

Packets
(number/s)

Compass 0.5 30 550

Common method
(XML)

1.8 68 850

The response time in table.3 denotes the average amount of

time required for a recommendation from being sent till
response received. Net bandwidth usage indicates Network
bandwidth consumed for local monitoring. Packets indicate
the number of packet casted per second. From the
experimental results, we can see, the response time of
Compass is a factor of 3 smaller than Common method based
on XML. The Network bandwidth consumed for local
monitoring is factor of 2 smaller, and the number of packets
casted per second has decreased by 40%. These are significant
improvements. As we discussed before, the current test is only
for a limited grid system. We expect an even bigger saving for
the real larger grid systems as the information increases
dramatically in the conventional XML method, while it is
bounded in our Compass system, as it will be shown in the
following scalability test.

6.2.2 Scalability
In the following experiments, we measure the scalability of

ESGMS with Compass system and ESGMS with the Common
method (XML) as we scale the number of nodes within
DeepComp7000.

 (a) Local-area multicast bandwidth usage for monitoring

System CPU(%) PhyMem(
MB)

VirMem(
MB)

ESGMS without Compass <0.56 8.0 10.02

ESGMS with Compass <0.405 7.2 9.01

134 Int'l Conf. Grid Computing and Applications | GCA'10 |

 (b) Local-area multicast packets per second for monitoring
 Figure 5．Scalability as a function of cluster size

In Fig. 5a and b, we quantify the scalability of ESGMS
with Compass running on DeepComp7000. As a direct
consequence of using native IP multicast, we observe a linear
scaling of ESGMS with Compass in local-area bandwidth
usage as a function of DeepComp7000 size. Although ESGMS
without Common method (XML) is also linear, the slope of it
is bigger than ESGMS with Compass. We also observe a
linear scaling in packet rates of both ESGMS with Compass
and with Common method (XML), but the slope of former is
less than the later, again due to our use of native IP multicast
as opposed to point-to-point connections in XML. The
reduction in the bandwidth usage and the number of packets
can be at least partially attributed to ESGMS’s use of
thresholds.

In conclusion, Compass maintains excellent
responsiveness even as the system becomes very large, and
even if it exhibits significant dynamic. The work loads
associated with the technology are small and bounded, both
for the message rates seen by participating machines and loads
imposed on communication links. Compass also has a small
“footprint" in the sense of computational and storage
overheads. ESGMS with Compass has better performance
than ESGMS without Compass. The improvements at different
aspects range from 30% to a factor of 3.
7 Conclusion

In this paper, we have presented a Compass technology
based on DAM and RRM. We have designed and
implemented Compass technology in ESGMS. We show that
significant improvement can be achieved in terms of reducing
the computation and communication overheads and memory
footsteps of the monitoring system.

Our tests show that, compared to the common XML
method, the Compass technology can reduce the memory
usage by 10%, the computation time by 30%, increase the
response time by a factor of 3, reduce the communication
bandwidth usage by a factor of 2, and reduce the number of
communication packets by 30%. These are significant
improvements. Our test also shows that the Compass has a
linear scaling to the size of the system. The design and
architecture of the Compass is discussed in the paper. The
algorithm used for the recommendation system is presented.

While we are still at the stage of further improving the
Compass system, we believe this system will play a very
important role in our ESGMS. It satisfies the needs for a good
monitoring system: low overhead, low intrusiveness, high
scalability and efficiency. These results show that we can
develop a very efficient and flexible grid monitoring system
based on the Compass technology. In the future, we will
perform a series of larger scale experiments including more
centers to evaluate the Compass performance. Furthermore,
we intend to explore new recommendation methodologies
based on some forecast methods, such as [4], to enhance
recommendation capability of Compass including accuracy
and non-intrusion.

ACKNOWLEDGMENT
We wish to thank Astrolabe system [2] for giving us some

inspiration when we developed ESGMS. This work was
supported by grants from Informatization Construction Project
of Chinese Academy of Sciences during the 11th Five-Year
Plan Period No.INFO-115-B01, the 863 program
No.2006AA01A117, and the 863 program
No.2006AA01A116.

REFERENCES
[1] Jennifer M. Schopf, Ioan Raicu, Laura Pearlman, Neil Miller, Carl

Kesselman, Ian Foster, Mike D’Arcy, Monitoring and Discovery in a
Web Services Framework: Functionality and Performance of Globus
Toolkit MDS4, May 2006.

[2] ROBBERT VAN RENESSE and KENNETH P. BIRMAN and
WERNER VOGELS, “Astrolabe: A Robust and Scalable Technology
for distributed System Monitoring, Management, and Data Ming,”
ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1-42.

[3] N. Podhorszki, Z. Balaton, G. Gomb´as, Monitoring message passing
parallel applications in the grid with GRMand mercury monitor, in:
Proceedings of the Second European Across Grids Conference, Nicosia,
Cyprus, 2004..

[4] Dengpan Yin, Esma Yildirim, Tevfik kosar. A Data Throughput
Prediction and Optimization Service for Widely Distributed many-Task
Computing. MTAGS’09 November 16th, 2009, Portland, Oregon, USA.

[5] FD Sacerdoti, MJ Katz, ML Massie, DE Culler, Wide Area Cluster
Monitoring with Ganglia, In the Proceedings of the IEEE Cluster 2003
Conference, pp.289-298, 2003.

[6] Matthew L. Massie, Brent N. Chun, David E. Culler, The Ganglia
distributed monitoring system: Design, Implementation, and Experience,
Parallel Computing, Vol. 30, pp. 817-840,2004.

[7] Xuehai Zhang, Jeffrey Freschl, Jennifer M.Schopf, A Performance
Study of Monitoring and Information Services forDistributed Systems,
Proceedings of HPDC, vol. 30, August, 2003.

[8] Open Source Application Foundation, Survey ofAJAX/javaScript
libraries (24 libraries
surveyed), http://wiki.osafoundtion.org/bin/view/Projects/AjaxLibraries,
2007.

[9] Amcharts Foundation, Amcharts, the JavaScript
toolkit, http://www.amcharts.com.

[10] World Wide Web Consortium, http://www.w3.org.
[11] Fumio Machida, Masahiro Kawato, Yoshiharu Maeno, Guatantee of

Freshness in Resource Information Cache on WSPE: Web Service
Polling Engine, Proceedings of the Sixth IEEE International
Symposium on Cluster Computing and the Grid,Vol.1, pp.131-134,
June 2006.

[12] Qian Depei. CNGrid: A test-bed for Grid Technologies in China.
Proceeding of the 10th IEEE International Workshop on Future trends of
Distributed of Distributed Computing Systems (FTDCS’04).

[13] B. Tierney, R. Aydt, D. Gunter,W. Smith, M. Swany, V. Taylor and R.
Wolski, A Grid Monitoring Architecture, Technical report, Global Grid
Forum, January 2002.

Int'l Conf. Grid Computing and Applications | GCA'10 | 135

http://wiki.osafoundtion.org/bin/view/Projects/AjaxLibraries�
http://www.amcharts.com/�
http://www.w3.org/�

A New Technique to Improve the Makespan in

Computational Grids

Ass. Prof. Nahed M. El Desouky
1
 , Ass. Dr. Bayoumi. M. Ali Hassan

2
,and

Afaf Abd El-kader Abd El-hafiz
1

1
Department of Mathematics, Faculty of Science , Al-Azhar University(girls), Cairo, Egypt.

{nahedmgd@yahoo.com, afafoafaf@yahoo.com}
2
 DS Dep., Fci-Cu, Cairo University ,Cairo , Egypt.

{ bayoumi2000@hotmail.com}

Abstract - Divisible workload scheduling on distributed

systems has been one of the interesting research

problems over the last few years. Most of scheduling

algorithms are static, that is, they assume that grid

resources such as CPU power and network bandwidth

are constant. The most valuable static scheduling

algorithm for scheduling divisible loads on distributed

systems is the UMR (uniform multi-round) algorithm. A

dynamic extension to the UMR is proposed by Elnaffar

and Nguyen in [1]. They use the Mixed Tendency Based

prediction strategy to predict the CPU utilization. This

paper proposes a scheduling technique based on

Average Prediction of Utilization (APU) for predicting

the CPU utilization. The proposed technique is

compared with a scheduling technique based on the

Mixed Tendency Based prediction technique. The results

show that the APU method reduces the makespan by

17.5% to 13% depends on the length of the chunk. Also,

with same workload and different number of workers the

makespan is improved by values varies from 16.5% to

2% .We present simulation results to quantify the benefit

of our technique.

Keywords: Divisible workloads, Grid computing, CPU

utilization predction.

1 Introduction

 Some applications require large amounts of computer

resources. These applications consist of many independent

computational tasks and arise in many fields of science and

engineering [2]. The problem of scheduling these applications

on a network of computing resources is addressed in [2] and it

is studied for two different application models: fixed-sized

tasks and divisible workloads. In the first model of

applications, workload consists of a number of tasks whose

size is pre-determined. In the second model, the divisible

workload is continuous and the scheduler can partition the

workload in arbitrary different tasks (chunks). In this paper

we focus on the divisible workload problem i.e. the problem

of how to divide an application’s workload into many parts

and assign them to computers (workers) in a distributed

environment (grid) so that the execution time is minimum[2].

 Most of the scheduling algorithms assume that

computational resources are dedicated, which makes these

algorithms not practical for distributed systems as grids. In

grids, computational resources are expected to serve local

tasks in addition to the Grid tasks. A shortcoming of these

algorithms is that they do not take the dynamicity of Grids

into account. The UMR (uniform multi-round) algorithm is

the most valuable static algorithm that is used to solve the

divisible load problem. By this algorithm, the workload is

divided into multiple rounds where each round is divided into

identical chunks which are dispatched to computer resources.

The workload is submitted to the scheduler for processing. In

order for the scheduler to decide how to divide up the

workload and distribute the chunks on the workers, it needs to

know the available computational power (actual CPU speed)

of each worker. Therefore, the scheduler queries a prediction

component that performs short-term prediction by collecting

and analyzing a series of CPU utilization values [1]. An

improvement to the UMR algorithm is introduced in [1] which

makes it dynamic. They use the Tendency Based Prediction

method which is one-step-ahead that takes into consideration

the ascending and descending behavior of the CPU load of a

worker. By predicting the CPU load (or utilization), the speed

of the worker at that time can be computed and feed such

information to the UMR algorithm in order to make better

scheduling.

 The workers of Grid may be tree-shaped, star-shaped or

any other shape and they may be independent at all. The star-

shaped network consists of a master and a number of workers.

There is a communication link from the master to each

worker. In tree-shaped network, the tree is rooted at the

master that has a link to each one of its children. Each one of

the master's children may also have children to which they can

delegate work. Scheduling divisible loads in a single-level

tree network is considered in [3]. A number of significant

results on load sequencing and processor-link arrangement is

proved for this case. Scheduling Divisible Loads on Star and

Tree Networks is studied in [4] which gives many results and

open problems for this case. Here, we will concentrate on the

star-shaped network that consists of a master and a number

of workers. The master uses its network connection in a

136 Int'l Conf. Grid Computing and Applications | GCA'10 |

mailto:%7bnahedmgd@yahoo.com

sequential fashion. It does not send chunks to workers

simultaneously. This assumption is justified either by the

master's implementation, or by the properties of the network

links [1].

 This work is organized as follows. The next section

describes the application and platform models of the network

considered in this work. The UMR algorithm is discussed in

section 3. Section 4 briefly describes the prediction method

used to predict the CPU utilization method and the algorithm

that based on it. Section 5 gives the proposed technique APU.

Section 6 gives the experimental results. Finally, we conclude

and sketch future work in section 7.

1.1 Instructions for authors

 An electronic copy of your full camera-ready paper

must be uploaded (in PDF format) to Publication Web site

before the announced deadline. Please follow the submission

instructions shown on the web site. The URL to the website is

included in the notification of acceptance that has been

emailed to you by Prof. Arabnia.

2 Models

The following Grid model is considered in this paper:

2.1 Applications

 This work considers applications that consists of a

workload, Wtotal that is continuously divisible. The scheduler

determines the size of a chunk (the portion of workload that is

given to a worker). Only the transfer of application data input

will be considered.

2.2 Computing Platform

 The model considered here is a star-shaped

master/worker model with N workers. Chunks are sent out to

workers over a network by the master which uses its network

connection in a sequential fashion. It does not send chunks to

workers simultaneously. This is a common assumption and is

justified either by the master's implementation, or by the

properties of the network links[1]. The speeds of network

communications to each worker need not be identical.

Therefore, the platform topology consists of network links

with various characteristics to the set of heterogeneous

processors, as depicted in Figure 1.

 It is assumed that the workers can receive data from the

network and perform the computation simultaneously. To

formalize this model, consider a portion of the total workload

chunki ≤ Wtotal which is to be processed on worker wi, 1≤ i

≤ N. The time required to worker wi to perform the

computation, Tcompi is modeled as

Figure 1 Computing Platform Model

 Where cLati is a fixed overhead, in seconds, for starting

a computation (e.g. for starting a remote process), and Si is

the computational speed of the worker in units of workload

performed per second. Computation, including the cLati

overhead, can be overlapped with communication. We model

the time spent for the master to send chunk units of workload

to worker wi, Tcommi, as:

 where nLati is the overhead, in seconds, incurred by the

master to initiate a data transfer to worker wi (e.g. pre-process

application input data and/or initiate a TCP connection); Bi is

the data transfer rate to worker wi, in units of workload per

second; tLati is the time interval between when the master

finishes pushing data on the network to worker wi and the

time when worker wi receives the last byte of data. It is

assumed that the nLati + chunk/Bi portion of the transfer is

not overlappable with other data transfer. . All section

headings including the subsection headings should be flushed

left.

3 The UMR Algorithm

 The UMR algorithm [1] dispatches chunks of the

workload in rounds. We have

 Where

Site1

(worker

) 1

Sitei

(worker

)i

.

.

.

.

.

.

.

M

ast

er

Siten

n(worke

r) n

Int'l Conf. Grid Computing and Applications | GCA'10 | 137

- roundj: amount of workload the master delivers during

round j,

- chunkj,i: the fraction of the total workload, Wtotal ,

that the master delivers to worker i in round j (1≤ i

≤ N ; 1≤ j ≤ M).

- M is the number of rounds required to dispatch all

chunks to workers. The computation of M will be

given shortly

 The UMR algorithm splits the workload into chunks in

such a way that each worker in roundj finishes its computation

in a constant time, constj . That is

By combining the last two equations, we obtain a simple

induction relation on the chunk sizes

 Such that

Complete details on these derivations are provided in

technical report [5].

Figure. 2 shows how UMR algorithm dispatches chunks of

workloads in multiple rounds.

Figure 2 UMR dispatches workload chunks in rounds

 In order to achieve overlapping between communication

and computation, once the last worker N starts processing its

chunk received in roundj, the master starts sending N chunks

for roundj+1 (chunk j+1,1, chunkj+1,2, ..., chunkj+1,N) to N

workers. To maximize bandwidth utilization, the master must

finish sending all chunks of roundj+1 to all workers before

worker N finishes its computation for roundj

4 Scheduling based on Tendency Based

Prediction method

 In grids, workers are responsible for executing their

local tasks and, if they become underutilized, they can handle

incoming grid tasks. The priority is given to local tasks.

Consequently, and depending on the local load, we cannot

always assume the availability of the full processing speed, S,

to Grid tasks. Based on the measured CPU utilization, the

ActualSpeed that is available for Grid tasks can be computed

as follows

 ActualSpeed = S * (100%-Utilization)

 Therefore, if we predict the Utilization of a worker, we

can compute and send the anticipated processing speed (ES)

to the scheduling algorithm. The time series prediction

approach proposed in [6, 7] is used which has been

empirically effective in predicting the CPU load and

utilization. It predicts a one-step-ahead value of utilization

based on a fixed number of immediately preceding historical

data measured at a constant-width time interval

 The idea of the Mixed tendency-based prediction

strategy is based on the assumption that if the current value

increases, the next value will also increase, and if the current

value decreases, the next value will also decrease.
 The scheduling strategy arranges the workers based on

the difference between the current and previous utilization

values, ∆ut on an descending order. And then the longest

chunk is assigned to the worker with smallest difference

value.

5 Scheduling based on Average

Prediction of Utilization technique

APU

The main idea of our technique depends on calculating the

average of the current and previous utilization values for each

worker and assign the smallest chunk to the worker with

maximum average value. The algorithm is shown below:

for j := 0 m

 for i := 0 n

 ave := (ut-1 + ut) / 2.0;

 utilization[i] := ave

 sort utilization in decreasing order

 sort the chunk array in increasing order

for i := 0 n

assign chunk[i] to worker [i]

makespan the length of the longest queue

138 Int'l Conf. Grid Computing and Applications | GCA'10 |

6 Experimental Results

A simulation is performed for the APU algorithm and the

UMR algorithm to analyze the performance of each algorithm

so that the APU performance can be compared with the UMR

performance where the later is one of the most important

algorithms for divisible load scheduling. The simulation is

written using the C language. The model consists of n

workers with n varying from 5 to 20. The round length is

generated randomly using the gamma distribution function

with beta varying from 500 to 3000. The speed of processors

is chosen randomly. The values of bandwidth Bi, speeds and

overheads clati and nlati for n=20 are shown in table 1.

Table 1 bandwidth Bi, speeds and overheads clati and nlati

i 0 1 2 3 4 5 6 7 8 9

Speedi 1 2 3 4 5 8 2 10 13 6

Bandwidthi 2 3 4 5 6 5 3 6 11 12

clati .3 .4 .5 .6 .7 .4 .5 .6 .8 .8

nlati .4 .5 .6 .7 .8 .6 .9 .9 .5 .9

i 10 11 12 13 14 15 16 17 18 19

Speedi 9 12 14 9 7 8 2 10 13 6

Bandwidthi 6 13 9 19 16 5 3 6 11 12

clati .9 .6 .6 .9 .9 .4 .5 .6 .8 .8

nlati .7 .4 .8 .5 .5 .6 .9 .9 .5 .9

The local tasks is also generated using gamma distribution

function with fixed arrival time lunda=.5 and beta = 50. To

show the benefit of APU, Figure 3 plots the makespan versus

different workload for both the Mixed tendency and APU

Techniques.

Mixed Tendency and APU techniques for lunda

=.5 and considering local tasks

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

500 1000 1500 2000 2500 3000 3500

round length

m
a

k
e

s
p

a
n Mixed Tendency

technique

APU Technique

 Figure 3 The makespan versus the round length

 Figure 4 shows the effect of changing numbers of

workers (n) on makespan produced by both the Mixed

tendency and APU where beta=2500, lunda=.5 and n = 5, 10,

15, 20.

Mixed Tendency and APU techniques for beta =2500

and lunda=.5 for different values of n

80000

90000

100000

110000

120000

130000

140000

5 10 15 20 25

n values

m
a
k
e
s
p

a
n

Mixed Mendency

APU technique

Figure 4 the makespan with different number of workers.

7 Conclusions

 In this work, we proposed a scheduling strategy based

on prediction method augmented to the UMR algorithm. The

proposed method APU is compared with the linear way of

prediction which compares values of current and previous

values of utilizations to predict the next utilization. The

results shows that the APU method reduces the makespan by

17.5% to 13% depends on the length of the chunk. Also,

with different number of workers the makespan is improved

by values from 16.5% to 2% with same workload. As a

sketch of future work, we would try to apply the improved

prediction method to other scheduling algorithms.

8 References

[1] Said ElNaffar and Nguyen The Loc, "Enabling Dynamic

Scheduling in Computational Grids by Predicting CPU

Utilization".

[2] Y. Yang and H. Casanova. "UMR: A Multi-Round

Algorithm For Scheduling Divisible Workloads", Proceeding

of the International Parallel and Distributed Processing

Symposium (IPDPS’03), Nice, France, April 2003.

[3] Kim, HJ and Mani, V (2003), "Divisible load

scheduling in single-level tree networks: Optimal

sequencing and arrangement in the nonblocking mode

of communication", Computers & Mathematics with

Applications, 46 (10-11). pp. 1611-1623, 2009.

[4] O. Beaumont, H. Casanova, A. Legrand, Y.

Robert, and Y. Yang, "Scheduling Divisible Loads on Star

Int'l Conf. Grid Computing and Applications | GCA'10 | 139

and Tree Networks: Results and Open Problems", IEEE

Transactions on Parallel and Distributed Systems (TPDS),

16(3):207–218, 2005.

[5] Y. Yang and H. Casanova, "Multi-Round Algorithm

for Scheduling Divisible Workload Applications: Analysis

and Experimental Evaluation", Technical Report CS2002-

0721, Dept. of Computer Science and Engineering,

University of California, San Diego, 2002.

[6] L. Yang, J.M. Schopf, and I. Foster, "Conservative

Scheduling: Using Predicted Variance to Improve Scheduling

Decision in Dynamic Environments", SuperComputing

2003, Phoenix, Arizona USA November 2003.

[7] L.Yang, I. Foster, and J.M. Schopf, "Homeostatic

and Tendency-Based CPU Load Predictions", International

Parallel and Distributed Processing Symposium

(IPDPS'03), Nice, France, April 2003.

140 Int'l Conf. Grid Computing and Applications | GCA'10 |

