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Abstract 

We consider the development heat equation with initial boundary conditions. The uniqueness of 
the solution is hold by using the maximum-minimum principle and some reflection methods. 

1.Introduction 

     In [1], they are studied investigate the inverse problem involving recovery of initial 
temperature from the information of final temperature profile in a disc, this inverse problem 
arises when experimental measurements are taken at any given time, and it is desired to calculate 
the initial profile, they  considered  the usual heat equation and the hyperbolic heat equation with 
Bessel operator. In [2] ,they  addressed  two issues usually encountered when simulating thermal 
processes in forming processes involving tape-type geometries, as is the case of tape or tow 
placement, surface treatments, The first issue concerns the necessity of solving the transient 
model a huge number of times because the thermal loads are moving very fast on the surface of 
the part and the thermal model is usually non-linear.  In [3],  they studies coupled heat equations 
with multi-nonlinearities of six nonlinear Parameters, the critical blow-up exponent is established 
via a complete classification for all the six nonlinear parameters, where a precise analysis on the 
geometry of Ω and the absorption coefficients is given for the balanced interaction situation 
among the multi-nonlinearities, the main attention is contributed to non-simultaneous 
phenomena in the model to determine the necessary and sufficient conditions of non-
simultaneous blow-up with suitable initial data, as well as the conditions under which any blow-
up must be non-simultaneous. In [4], they  presented  a new upper bound of the life span of 
positive solutions of a semi linear  heat equation for initial data having positive limit inferior at 
space infinity. The upper bound is expressed by the data in limit inferior, not in every direction, 
but around a specific direction, It is also shown that the minimal time blow-up occurs when 
initial data attains its maximum at space infinity. In [5], they considered  a one-dimensional semi 
linear parabolic equation ux

t xxu u e= + , for which the spatial derivative of solutions becomes 

unbounded in finite time while the solutions themselves remain bounded, they are  established 
estimate of  blowup rate upper and lower bounds, they are  proved  that in this case the blowup 
rate does not match the one obtained by the rescaling method. In [6], they considered  
simultaneous and non-simultaneous blow-up solutions for heat equations coupled via exponential 
sources, subject to null Dirichlet boundary conditions, the main results complete the previously 
known results on the optimal classification for simultaneous and non-simultaneous blow-up 
solutions by covering the whole ranges of exponents, moreover, all kinds of simultaneous and 
non-simultaneous blow-up rates are obtained.In [7], they are studied the inverse problem of 
identifying a time dependent unknown coefficient in a parabolic problem subject to initial and 
non-local boundary conditions along with an over specified condition defined at a specific point 
in the spatial domain, due to the non-local boundary condition, the system of linear equations 
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resulting from the backward Euler approximation have a coefficient matrix that is a quasi-
tridiagonal matrix. In [8],  an inverse analysis is performed for simultaneous estimation of 
relaxation time and order of fractionality in fractional single-phase-lag heat equation, this 
fractional heat conduction equation is applied on two physical problems, in inverse procedure, 
solutions of a previously validated linear dual-phase-lag model on the physical problems under 
study have been used as the measured temperatures, the inverse fractional single-phase-lag heat 
conduction problem is solved using the nonlinear parameter estimation technique based on the 
Levenberg–Marquardt method. In [9] they are studied asymptotic behavior in time of small 
solutions to nonlinear heat equations in subcritical case, they found a new family of self-similar 
solutions which change a sign. They showed that solutions are stable in the neighborhood of 
these self-similar solutions. Some results on the construction of asymptotics for solutions of 
singularly perturbed problem with first-order partial derivatives can be found in [10]. In [11], the 
authors proposed an algorithm of asymptotic integration of semi-linear initial-boundary-value 
problems whose minor coefficients are functions oscillating in time with high frequency ω . In 
[12], the methods proposed in [10] and [11] were combined and an algorithm of asymptotic 
integration of the initial-boundary-value problem for the heat-conduction equation with nonlinear 
sources of heat terms oscillating in time with frequency 1ω−  was developed. Recent studies of  
asymptotic analysis of differential equations involving large high-frequency terms have been 
carried out in [13,14]. For a singularly perturbed first-order partial differential equation, a 
theorem was proved in [15] on the passage to the limit for the case in which the root of the 
degenerate equation intersect and the root intersection line meets the initial segment on which the 
initial condition is posed.  In [16], the authors considered second-order ordinary differential 
equation whose coefficients contain smooth and rapidly oscillating summands proportional to the 
positive powers of the oscillation frequency. A singularly perturbed system of two second-order 
differential equations(one rapid and one slow), was considered in [17], which proved the 
existence of a solution and obtained its asymptotics for the case in which the degenerate equation 
has two intersecting roots. Recent studies of asymptotic analysis of differential equations 
involving large high-frequency terms have been carried out in [18,19]. Our principal in the 
present paper we are study the uniqueness of the solution is hold by using the maximum-
minimum principle and some reflection methods for the development equation with some 
conditions. 

2. Formulation of the problem    

We consider the second-order partial differential equation for the following problem       

( ) ( ) ( )
2

2

( , ) ( , )
( , ) 0, , 0 0 ,

u x t u x t
a x t x t x l t T

t x

∂ ∂− = ∈Ω = < < × < <
∂ ∂

                                      (2.1)                        

( ,0) ( ), 0 ,u x f x x l= ≤ ≤  

1 2

0

(0, ) , ( , ) , 0,

( , ) ( , )
0, 0.

x x l

u t T u l t T t

u x t u x t
t

x x= =

= = >
∂ ∂= = >

∂ ∂
 

where ( , )u x t the function of the bar at the point x at the time t, ( , )a x t be a continuous function 
depends on the variable x  and t , ( )f x  is a given function. In order to determine the temperature 
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in the bar at any time t . However it turns out that suffices to consider the case 1 2 0T T= =  only. 

We can also assume that the ends of the bar are insulated so that no heat can pass through them, 
which implies 

2

2

( , ) ( , )
( , ) 0, 0 , 0,

u x t u x t
a x t x l t

t x

∂ ∂− = < < >
∂ ∂

                                                              (2.2)                 

where ( , )u x t  satisfies the initial condition  
( ,0) ( ), 0 ,u x f x x l= < <                                                                                               (2.3) 

And the boundary conditions  

(0, ) ( , ) 0, 0,u t u l t t= = >                                                                                                   (2.4) 

In the same way, we can obtain  

0

( , ) ( , )
0, 0.

x x l

u x t u x t
t

x x= =

∂ ∂= = >
∂ ∂

                                                                                (2.5) 

The problem (2.2), (2.3), (2.4)  is known as the Dirichlet problem for the diffusion equation, 
while (2.2), (2.3), (2.5)  as the Neumann problem. At first we discuss a property of the diffusion 
equation , known as the maximum-minimum principle. 
let   

{( , ) : 0 ,0 }R x t x l t T= ≤ ≤ ≤ ≤  be a closed rectangle and  

{( , ) : 0 0 } .x t R t or x or x lΕ = ∈ = = =  

3. Procedure of solving the problem  

In this section, we study the following theorem 

Theorem 3.1.  

 Let ( , )u x t  be a continuous function in R which satisfies equation (2.2) in \R Ε . Then   

max ( , ) max ( , ),R u x t u x tΕ=                                                                                                         (3.6) 

min ( , ) min ( , ),R u x t u x tΕ=                                                                                                          (3.7)                                          

max ( , ) max ( , )R a x t a x tΕ=                                                                                                         (3.8) 

min ( , ) min ( , )R a x t a x tΕ= .                                                                                                         (3.9) 
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Proof: 

We use the method of contradiction.  Assume that the maximum value of ( , )u x t attained at an 

interior point 0 0( , )x t . Let maxM uΕ= , thus there exists a finite 0ε >  such that  

                                                      0 0( , )u x t M ε= +  

Furthermore, at the maximum point 0 0( , )x t , we have  

                                                      
2

0 0 0 0 0 0
2

( , ) ( , ) ( , )
0, 0, 0

u x t u x t u x t

x x t

∂ ∂ ∂= ≤ ≥
∂ ∂ ∂

 

In order to show contradiction, we need to rule out the possibility of equality. 

Consider 0( , ) ( , ) ( )w x t u x t t tδ= + −  for a positive constant 0δ > . At the point 0 0( , )x t , we have 

                                                       0 0( , )w x t M ε= +  

Since both 0,t t T≤ , 

                                                        0( )t t Tδ δ− ≤  

Now we choose δ such that, 
2

T
εδ ≤  , Since, max u MΕ = , we have  

                                                         max ,
2

w M
ε

Ε ≤ +  

Since u is continuous, so is w. Thus, w must have a maximum value at some point 1 1( , )x t in the 

interior   

                                                        1(0 ,0 )t T x l< ≤ < <  

1 1 0 0( , ) ( , )w x t w x t M ε≥ = +  

Therefore, 

2
1 1 1 1
2

( , ) ( , )
0, 0

w x t w x t

x t

∂ ∂≤ ≥
∂ ∂

 

Since  

2 2
1 1 1 1 1 1 1 1
2 2

( , ) ( , ) ( , ) ( , )
.

u x t w x t u x t w x t

x x t t
δ∂ ∂ ∂ ∂= = +

∂ ∂ ∂ ∂
 

We conclude that     
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2
1 1 1 1
2

( , ) ( , )
0, 0,

u x t u x t

x t
δ∂ ∂≤ ≥ >

∂ ∂
 

which is contradictory to  

                                

2( , ) ( , )
( , ) .

u x t u x t
a x t

t x

∂ ∂=
∂ ∂

 

Therefore max ( , ) max ( , )R u x t u x tΕ= .The same way above we get (3.8).  

Considering the function ( , ) ( , )v x t u x t= −  we have (3.7), and considering the function 
( , ) ( , )s x t a x t= − we get (3.9). 

4. Non-homogeneous for the second-order partial differential equation 

By maximum-minimum principle it follows the uniqueness of the solution of the Non-
homogeneous for the second-order partial differential equation 

2

2

1 2

( , ) ( , )
( , ) ( , ) 0 ,0 ,

( ,0) ( ) 0 ,

(0, ) ( ) , ( , ) ( ) 0 .

u x t u x t
a x t f x t x l t T

t x
u x f x x l

u t g t u l t g t t T

∂ ∂− = < < < ≤
∂ ∂

= ≤ ≤
= = ≤ ≤

                                (4.1)                       

 

Suppose  

1 2

1 2

( , ) ( ) ( ) [0, ],

( ) [0, ] ( ) [0, ],

(0) (0) ( ) (0).

f x t C R f x C l

g t C T g t C T

f g f l g

∈ ∈
∈ ∈
= =                                                                                         (4.2)

 

By a solution we mean a function  which is differentiable inside R and satisfies the 
equation along with the initial and the boundary conditions of (4.1). 

Theorem 4.1. the problem in (4.1) and (4.2) has no more than one solution. 

Proof: suppose ( , )u x t  and ( , )v x t  are two solutions of (4.1).  

Let    ( , ) ( , ) ( , )k x t u x t v x t= −  

Then 

2

2

( , ) ( , )
( , ) 0, 0 ,0 ,

( ,0) 0, 0 ,

(0, ) ( , ) 0, 0 .

k x t k x t
a x t x l t T

t x
k x x l

k t k l t t T

∂ ∂− = < < < ≤
∂ ∂

= ≤ ≤
= = ≤ ≤
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By theorem 3.1 it follows  

max ( , ) min ( , ) 0

max ( , ) min ( , ) 0
R R

R R

k x t k x t

a x t a x t

= =
= =

 

Therefore ( , ) 0k x t ≡ , so that    

( , ) ( , )u x t v x t≡  for every ( , )x t R∈ .  

Consider the  problem  (4.2), with 1 2 0f g g= = = , that is  

2

2

( , ) ( , )
( , ) 0 0 ,0 ,

( , 0) ( ) 0 ,

(0, ) ( , ) 0 0 .

u x t u x t
a x t x l t T

t x
u x x x l

u t u l t t T

ϕ

∂ ∂− = < < < ≤
∂ ∂

= ≤ ≤
= = ≤ ≤

                                             (4.3)           

  

As a corollary of theorem 3.1 the continuous dependence of solution of (4.3) with respect to 
initial data follows. 

Corollary 4.1. let ( , )iu x t  be a solution of (4.3) with  initial data ( ), 1,2if x i = . Then  

1 2 1 2
0 0
max ( , ) ( , ) max ( ) ( )

x l x l
u x t u x t f x f x

≤ ≤ ≤ ≤
− ≤ −                                                                                 (4.4)    

For every [0, ]t T∈  

Proof:  consider the function  1 2( , ) ( , ) ( , )v x t u x t u x t= − , which satisfies  

2

2

1 2

( , ) ( , )
( , ) 0 0 ,0 ,

( ,0) ( ) ( ) 0 ,

(0, ) ( , ) 0 0 .

v x t v x t
a x t x l t T

t x
v x f x f x x l

v t v l t t T

∂ ∂− = < < < ≤
∂ ∂

= − ≤ ≤
= = ≤ ≤

 

By theorem 3.1 it follows that  

1 2 1 2
0

1 2
0

( , ) ( , ) max{ max ( ( ) ( )),0}

max ( ) ( )
x l

x l

u x t u x t f x f x

f x f x
≤ ≤

≤ ≤

− ≤ −

≤ −
  

And 

1 2 1 20

1 2
0

1 2
0

( , ) ( , ) min{min( ( ) ( )),0}

max{max( ( ) ( )),0}

max ( ) ( )

x l

x l

x l

u x t u x t f x f x

f x f x

f x f x

≤ ≤

≤ ≤

≤ ≤

− ≥ −

≥ − −

≥ − −
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Which imply (4.4).  

The uniqueness and stability of solution to (4.3) can be derived by another approach, known  as 

the energy  method. Let u be a solution of the problem (4.3). The quantity   2

0

( ) ( , )
l

H t u x t dx= ∫   is 

referred to as the thermal energy at the instant t . we shall show that H(t) is a decreasing function 
. 

Theorem 4.2. 

 (a) let ( , )u x t  be a solution of (4.3).then  

1 2( ) ( ),H t H t≥ if  1 20 t t T≤ ≤ ≤ . 

(b) let ( , )iu x t  be a solution of (4.3) corresponding to the initial data ( ), 1,2if x i = .then  

2 2
1 2 1 2

0 0

( ( , ) ( , )) ( ( ) ( ))
l l

u x t u x t dx f x f x dx− ≤ −∫ ∫ . 

Proof: (a) Multiplying the equation by u, using  

2( , ) 1
( ),

2

u x t
u u

t t

∂ ∂=
∂ ∂

          
2 2

2

( , ) ( , ) ( , )
( )

u x t u x t u x t
u u

x x x x

∂ ∂ ∂ ∂= −
∂ ∂ ∂ ∂

 

And integrating, we obtain  

2

2
0

2
2

0

2
2

00 0

( , ) ( , )
0 ( , )

1 ( , ) ( , )
( ) ( , ) ( ) ( , )

2

1 ( , ) ( , ) ( , )
0 ( , ) ( , ) ( , ) (0, ) (0, ) ( , )

2

l

l

l l

x l x

u x t u x t
a x t udx

t x

u x t u x t
u a x t u a x t dx

t x x x

d u x t u x t u x t
u x t dx a l t u l t a t u t a x t dx

dt x x x= =

 ∂ ∂= − ∂ ∂ 

 ∂ ∂ ∂ ∂= − + ∂ ∂ ∂ ∂ 

∂ ∂ ∂= − + +
∂ ∂ ∂

∫

∫

∫ ∫

          

Where the last equality is a consequence of the boundary condition (2)   

2
2

0 0

2

0

1 ( , )
0 ( , ) ( , )

2

( , )
( ) 2 ( , )

l l

l

d u x t
u x t dx a x t dx

dt x

dH u x t
t a x t dx

dt x

∂= +
∂

∂= −
∂

∫ ∫

∫

 

This implies that  ( ) 0
dH

t
dt

≤  
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Thus H(t) is a non-increasing function of time t, i.e., 

1 2( ) ( )H t H t≥ for all 2 1 0.t t≥ ≥  

(b) the function 1 2( , ) ( , ) ( , )v x t u x t u x t= −  satisfies (4.3) with  

1 2( ) ( ) ( )x x xϕ ϕ ϕ= − . Therefore for 0t ≥  by (a) 

( )

2 2
1 2 1 2

0 0

2

1 2

0

( ( , ) ( , )) ( ( ,0) ( ,0))

( ) ( ) .

l l

l

u x t u x t u x u x dx

x x dxϕ ϕ

− ≤ −

= −

∫ ∫

∫

 

Now to show that  
2

2
2

0

( )
4

l

t

d H t
u dx

dt
= ∫

 

We can multiply by 
( , )u x t

t

∂
∂

 and integrate with respect to and get 

2 2

2
0 0

2 2

0 0

2 2

0

( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , ) ( , ) (
( , ) ( , )

l l

l l

l

u x t u x t u x t
dx a x t dx

t t x

u x t u x t u x t u x t u x t
dx a x t dx

t x x t x x t

u x t u x t u x t u x t u
dx a x t dx a x t

t x x t x

∂ ∂ ∂=
∂ ∂ ∂

 ∂ ∂ ∂ ∂ ∂ ∂ = −  ∂ ∂ ∂ ∂ ∂ ∂ ∂  

∂ ∂ ∂ ∂ ∂ ∂ = − ∂ ∂ ∂ ∂ ∂ 

∫ ∫

∫ ∫

∫
0 0

2 2

0 00 0

, )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
( , ) (0, ) ( , )

l l

l l

x l x l x x

x t
dx

x t

u x t u x t u x t u x t u x t u x t u x t
dx a l t a t a x t dx

t x t x t x x t= = = =

∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂= − −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∫ ∫

∫ ∫
 

By the chain rule, we get 

2 2

2 2

0 0

2 2

0 0

( , ) ( , ) ( , )
2

( , ) ( , ) ( , ) (0, ) (0, ) 1 ( , )
( , ) (0, ) ( , )

2

1 ( , ) ( , ) ( , ) ( , )
( , ) ( , ) (0

2

l l

l l

u x t u x t u x t

t x x x t

u x t u l t u l t u t u t u x t
dx a l t a t a x t dx

t x t x t t x

d u x t u x t u l t u l t
a x t dx dx a l t a

dt x t x t

∂ ∂ ∂ ∂=
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂= − −
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂= − + −
∂ ∂ ∂ ∂

∫ ∫

∫ ∫
(0, ) (0, )

, )
u t u t

t
x t

∂ ∂
∂ ∂

 

According to the boundary condition (2), 

(0, ) ( , ) 0u t u l t= =  for all 0t >  
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Since (0, )u t  and  ( , )u l t  are constant with respect to time, we conclude that  

(0, ) ( , ) 0t tu t u l t= =  for 0t > .Thus, we get that   

2 2

0 0

2 2

0 0

2 2

2
0

( , ) ( , )
( , ) 2

( , ) ( , )
2 ( , ) 4

( ) ( , )
4

l l

l l

l

d u x t u x t
a x t dx dx

dt x t

d u x t u x t
a x t dx dx

dt x t

d H t u x t
dx

dt t

∂ ∂= −
∂ ∂

∂ ∂− =
∂ ∂

∂=
∂

∫ ∫

∫ ∫

∫

 

5. Study Some Applications For Equation (2.1)  

5.1. We can solve the problem (2.1) , when ( , )a x t xt= ,with ( ) 3 ,f x x=  

2

2

( , ) ( , )
0 0 2, 0 ,

( , 0) 3 0 2,

(0, ) (2, ) 0 0 .

u x t u x t
x t x t

t x
u x x x

u t u t t

∂ ∂− = < < <
∂ ∂

= ≤ ≤
= = ≤

 

2 2

2

( , )4

1

0

2

0

( , ) sin[ ]

2
( )sin[ ]

2
3 sin[ ]

2 2

12
( 1)

a x t n t

l
n

n

l

n

n

n x
u x t B e

l

n x
B f x

l l

n x
x dx

n

π π

π

π

π

−

=

=

=

=

−= −

∑

∫

∫

 

Then the general solution of (5.1) is 

2 2 2
4

4

1

12
( , ) ( 1) sin[ ]

2

x n t
n

n

n x
u x t e

n

π π
π

−

=

−= −∑  



10 

 

 

Figure (1)  Graph of the function ( , )u u x t=  in problem (5.1) 

5.2. If we consider solve the problem (2.1), when ( , ) sin( )a x t xt= ,with 5( ) xf x e= : 

2

2

5

( , ) ( , )
sin( ) 0 0 3,0 ,

( ,0) 0 3,

(0, ) (3, ) 0 0 .

x

u x t u x t
xt x t

t x

u x e x

u t u t t

∂ ∂− = < < <
∂ ∂

= ≤ ≤
= = ≤

 

2 2

2

( , )4

1

0

3
5

0

15 15

2 2

( , ) sin[ ]

2
( )sin[ ]

2
sin[ ]

3 2

3 3
4 4 cos[ ] 40 sin[ ]

2 2
300 3

a x t n t

l
n

n

l

n

x

n x
u x t B e

l

n x
B f x

l l

n x
e dx

n n
n e n e

n

π π

π

π

π ππ π

π

−

=

=

=

=

− +
=

+

∑

∫

∫
 

Then the general solution of problem (5.2) is: 

2 215 15
sin[ ]4

4
2 2

1

3 3
4 4 cos[ ] 40 sin[ ]

2 2( , ) sin[ ]
300 3 2

xt n t

n

n n
n e n e n x

u x t e
n

π
π ππ π π

π

−

=

− +
=

+∑  
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Figure (2)  Graph of the function ( , )u u x t=  in problem (5.2) 

 

5.3. We can solve the problem for the equation (2.1), when ( , )a x t x t= ,with ( ) sinh( )f x x=  

2

2

( , ) ( , )
0 0 5,0 ,

( ,0) sinh( ) 0 5,

(0, ) (5, ) 0 0 .

u x t u x t
x t x t

t x
u x x x

u t u t t

∂ ∂− = < < <
∂ ∂

= ≤ ≤
= = ≤

 

2 2

2

( , )4

1

0

5

0

2 2

( , ) sin[ ]

2
( )sin[ ]

2
sinh[ ] sin[ ]

5 5

2( 5cosh[5]sin[ ] cos[ ]sin[5]

25

a x t n t

l
n

n

l

n

n x
u x t B e

l

n x
B f x

l l

n x
x dx

n n n

n

π π

π

π

π π π
π

−

=

=

=

=

− += −
+

∑

∫

∫

 

Then the general solution of problem (5.3) is 

2 2
4

25
2 2

1

2( 5cosh[5] sin[ ] cos[ ] sin[5]
( , ) sin[ ]

25 5

xt n t

n

n n n n x
u x t e

n

ππ π π π
π

−

=

− += −
+∑  
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Figure (3)  Graph of the function ( , )u u x t=  in problem (5.3) 

Conclusion: 

We have developed a heat equation and by relying on a function ( ),a x t  instead of using 

constant which is common in all previous studies have reached to the existence and oneness of 
the solution to the equations (2.1). And then we can apply some examples of scientific 
importance that confirms the fact our findings. 
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