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Abstract

We consider the development heat equation witaliioundary conditions. The uniqueness of
the solution is hold by using the maximum-minimurmgiple and some reflection methods.

1.Introduction

In [1], they are studied investigate the ieerproblem involving recovery of initial
temperature from the information of final temperatprofile in a disc, this inverse problem
arises when experimental measurements are talaty &fiven time, and it is desired to calculate
the initial profile, they considered the usuahihequation and the hyperbolic heat equation with
Bessel operator. In [2] ,they addressed two ssiseally encountered when simulating thermal
processes in forming processes involving tape-typemetries, as is the case of tape or tow
placement, surface treatments, The first issue eroscthe necessity of solving the transient
model a huge number of times because the therradtlare moving very fast on the surface of
the part and the thermal model is usually non-linda [3], they studies coupled heat equations
with multi-nonlinearities of six nonlinear Parammstethe critical blow-up exponent is established
via a complete classification for all the six nowelar parameters, where a precise analysis on the
geometry ofQ and the absorption coefficients is given for tleahced interaction situation
among the multi-nonlinearities, the main attentia® contributed to non-simultaneous
phenomena in the model to determine the necessady safficient conditions of non-
simultaneous blow-up with suitable initial data,vesl as the conditions under which any blow-
up must be non-simultaneous. In [4], they preskentenew upper bound of the life span of
positive solutions of a semi linear heat equatmninitial data having positive limit inferior at
space infinity. The upper bound is expressed bydtia in limit inferior, not in every direction,
but around a specific direction, It is also showattthe minimal time blow-up occurs when
initial data attains its maximum at space infinity[5], they considered a one-dimensional semi

linear parabolic equatiom, =u, +€"™, for which the spatial derivative of solutions bewes

unbounded in finite time while the solutions thelmss remain bounded, they are established
estimate of blowup rate upper and lower boundsy ire proved that in this case the blowup
rate does not match the one obtained by the regcahiethod. In [6], they considered
simultaneous and non-simultaneous blow-up solutionkeat equations coupled via exponential
sources, subject to null Dirichlet boundary comohg, the main results complete the previously
known results on the optimal classification for sitaneous and non-simultaneous blow-up
solutions by covering the whole ranges of exponangreover, all kinds of simultaneous and
non-simultaneous blow-up rates are obtained.In §7§y are studied the inverse problem of
identifying a time dependent unknown coefficientairparabolic problem subject to initial and
non-local boundary conditions along with an ovezcsfied condition defined at a specific point
in the spatial domain, due to the non-local boupdamndition, the system of linear equations
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resulting from the backward Euler approximation énav coefficient matrix that is a quasi-
tridiagonal matrix. In [8], an inverse analysispsrformed for simultaneous estimation of
relaxation time and order of fractionality in fremxtal single-phase-lag heat equation, this
fractional heat conduction equation is applied wo physical problems, in inverse procedure,
solutions of a previously validated linear dual-g&dag model on the physical problems under
study have been used as the measured temperdaheeasyerse fractional single-phase-lag heat
conduction problem is solved using the nonlineaapeeter estimation technique based on the
Levenberg—Marquardt method. In [9] they are studasgmptotic behavior in time of small
solutions to nonlinear heat equations in subctlitese, they found a new family of self-similar
solutions which change a sign. They showed thattisols are stable in the neighborhood of
these self-similar solutions. Some results on thestruction of asymptotics for solutions of
singularly perturbed problem with first-order partierivatives can be found in [10]. In [11], the
authors proposed an algorithm of asymptotic intiigmaof semi-linear initial-boundary-value
problems whose minor coefficients are functionsliaging in time with high frequencyw. In
[12], the methods proposed in [10] and [11] werenbimed and an algorithm of asymptotic
integration of the initial-boundary-value problear the heat-conduction equation with nonlinear

sources of heat terms oscillating in time with freqcy w™ was developed. Recent studies of
asymptotic analysis of differential equations inwo) large high-frequency terms have been
carried out in [13,14]. For a singularly perturbit-order partial differential equation, a
theorem was proved in [15] on the passage to thé for the case in which the root of the
degenerate equation intersect and the root intérsdne meets the initial segment on which the
initial condition is posed. In [16], the authorsnsidered second-order ordinary differential
eguation whose coefficients contain smooth anddigjaiscillating summands proportional to the
positive powers of the oscillation frequency. Agifarly perturbed system of two second-order
differential equations(one rapid and one slow), wassidered in [17], which proved the
existence of a solution and obtained its asym@dbc the case in which the degenerate equation
has two intersecting roots. Recent studies of asyticpanalysis of differential equations
involving large high-frequency terms have beeniedriout in [18,19]. Our principal in the
present paper we are study the uniqueness of tlwiosois hold by using the maximum-
minimum principle and some reflection methods fbe tdevelopment equation with some
conditions.

2. Formulation of the problem
We consider the second-order partial differentiplagion for the following problem

ou(xt) 0°u(x,t) _

Ak —7==0, (xt)0Q=(0<x<I)x(0<t<T), (2.1)
u(x,0)= f (x), O< x<l,
uO,t)=T,, u( t)=T,, t>Q
du(xt)| _du(xt) _ 0 s

OX |X:0 OX

x=I

where u(x,t) the function of the bar at the point x at the time(x,t) be a continuous function
depends on the variabbe andt, f(x) is a given function. In order to determine the penature
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in the bar at any timé. However it turns out that suffices to considex gaseT, =T, =0 only.
We can also assume that the ends of the bar arated so that no heat can pass through them,
which implies

ou(xt) a(x.t) 9°u(x,t) _

o =0 0<x<lt>Q 2.2)
X

whereu(x,t) satisfies the initial condition
u(x,0)= f (x), O<x<I, (2.3)

And the boundary conditions
u(o,t)=u(,t)=0, t>Q (r.4
In the same way, we can obtain

du(x.t)|  _ du(x.t)|
aX |x=0 aX |x=|

=0, t>0 (2.5)

The problem(2.2),(2.3),(2.4 is known as the Dirichlet problem for the diffusi@quation,
while (2.2),(2.3),(2.% as the Neumann problem. At first we discuss agnypof the diffusion
equation , known as the maximum-minimum principle.

let

R={(x1):0<x<l1,0<t<T} be a closed rectangle and
E={(xt) OR:t=00r x=0o0r x=1}.

3. Procedure of solving the problem

In this section, we study the following theorem

Theorem 3.1.

Let u(x,t) be a continuous function in R which satisfies ¢igma(2.2) in R\E. Then

max,u(Xt)= maxu &t ) (3.6)
ming u(x,t)=minzu(x.t), (3.7)
maxga(xt)= maxakt . (3.8)
min, a(x,t) = min, ax.t). (3.9)



Pr oof:

We use the method of contradiction. Assume thatmiaximum value ofi(x,t) attained at an
interior point(x,,t,) . Let M =max. u, thus there exists a finite>0 such that

U(X:t)) =M +&

Furthermore, at the maximum poifx,,t,) , we have

au(XO’tO) - 0 azu(XO’tO) < 0 au(XO’tO) > O
0Xx ' "ot

In order to show contradiction, we need to ruletbetpossibility of equality.

Considerw(x,t) =u(x,t)+Jd(t —t,) for a positive constand >0. At the point(x,,t,), we have
WX t) =M +&
Since botht,t, <T,

3(t—t,) < oT

Now we choose such that, T s% , Since,max: u=M , we have

max. ws M +§,

Since u is continuous, so is w. Thus, w must hawg&imum value at some poifx,,t,)in the
interior

(0<t, <T,0<x<lI)

WX, 1) 2 W(X,,t) =M +&

Therefore,

W) g W) | g
e o
Since

Ou(Xyty) _ 0W (xyty) Qu(xyty) _ ow (Xt ,

0.
ox? ox ? ot ot

We conclude that



d u(xl,tl) ou(xyty) 550
ox 2 0 o ’
which is contradictory to

= a(x t)azu(x t)

ou(x,t) _
ot
Thereforemax, u (xt)= maxu &t . The same way above we get (3.8).

Considering the functionv(x,t)=-u(x,t) we have (3.7), and considering the function
s(x,t) = —a(x,t) we get (3.9).

4. Non-homogeneous for the second-order partial differential equation

By maximum-minimum principle it follows the uniquess of the solution of the Non-
homogeneous for the second-order partial diffeadetjuation

"“((;t‘t) a(x t)"zu( Dt xt) 0<x<l,0<t<T,

u(x,0)= f (x) o< x<lI, (4.1)
uO,t)=g,t).ul.t)=9,() Ost<T

Suppose

f(x,t) OC(R) f(x)0C[o,],
g,(t) O C[O,T] g,(t) UC[O, T],
£(0)=g,(0) f)=0,0. 4.2)

By a solution we mean a functian€ C(R) which is differentiable inside R and satisfies the
equation along with the initial and the boundargaitons of (4.1).

Theorem 4.1. the problem in (4.1) and (4.2) has no more thansmiution.

Proof: supposei(x,t) andv(x,t) are two solutions of (4.1).

Let Kk(xt)=u(xt)—-v(x,t)

Then
2
M—a(x,t)&xz’t):o 0<x <I,0<t <T,
ot 0x
k(x,0)=0, O<x<l,
k(O¢t)=k(,t)=0, O<t <T .



By theorem 3.1 it follows

maxg kK (X t)= mingk &kt )=0
max, axt)= minakt)=0

Thereforek(x,t) =0, so that
u(xt) =v(x,t) forevery(x,t)UR.m

Consider the problem (4.2), with=g, =g, =0, that is

aug’:’t) (t)a“(“) 0 0<x<l,0<t<T,
u(x,0)=¢(x) O<sx<lI, 4.3)
u(0,t)=u(,t)=0 0<t<T.

As a corollary of theorem 3.1 the continuous deperd of solution of (4.3) with respect to
initial data follows.

Corollary 4.1. let u,(x,t) be a solution of (4.3) with initial dat§(x),i =1,2. Then

max

o<x<|

u (X t)-u, Xt)< ma*f k) f, &) (4.4)
For everytJ[0, T]

Proof: consider the functiow(x,t) =u, (x,t) —u,(x,t), which satisfies

avgt(t) (t)aV(Xt) 0 O<x<I|,0<t<T,
v(x,0)=f, (x)- f2(x) O<x<l,
v(0,t)=v(,t)=0 O<t<T

By theorem 3.1 it follows that
ul(x’t) —UZ(X,t)S max{ max (fl (X )_ fz (X )), @

(97|

f, )= f, (x)

< max

O<xsl

And
u(xt)—u,(x,t) = min{grgxig(fl(x) - f,(x). G

> -max{max(, )~ f, 6)).0
f, )= f, (x)

= —Mmax

O=sxsl




Which imply (4.4)m

The unigueness and stability of solution to (4&) be derived by another approach, known as
|

the energy method. Let u be a solution of the lgrol(4.3). The quantity H (t) = qu(x,t)dx is
0

referred to as the thermal energy at the instamtet shall show that H(t) is a decreasing function

Theorem 4.2.

(a) letu(x,t) be a solution of (4.3).then

H(t) = H(t,), if 0<t <t ,<T.

(b) let u (x,t) be a solution of (4.3) corresponding to the ihtiataf, (x),i =1,2.then

j.(ul(xit) - UZ(X,t))ZdX = j. (fl(x) - f2(X))2dx .

Proof: (a) Multiplying the equation by u, using

uau(x,t) _ 1i(u2) o’u(xt) _ ( 6u(xt)) ou®(x,t)

— , u
ot 2 ot ox? oX

And integrating, we obtain

O:J‘(%—a(x,t)a l;f()z(’t)judx

J[__( u?) - a(x t)—( au(x,t))+a(x,t)6u2(x,t)}dx
0X

au(x t)

u(xt) au® (x,t)

_——ju (x,t)dx—-a,tud t) +j (1 =

x=|

Where the last equality is a consequence of thademy condition (2)

ou? (xt)d

o_——ju (xt)dx+Ia( 1)

ou? (x t)
E(t) 2[ a(x,t)——-2dx

This implies thatdd—T(t) <0



Thus H(t) is a non-increasing function of time e, i

H(t)=H(t,)forall t,>t >0.
(b) the functionv(x,t) =u,(X,t)—u,(x,t) satisfies (4.3) with

#(X) = @,(X) - @,(X) . Therefore fort =0 by (a)
[0 -t (0) < j (Uy(%, 0)=u, (x, ) dx

= [(#:(0-,(0)’

2 |
Now to show thatd d|_t|2(t) = 4J.u[2dx
0

We can multiply by% and integrate with respect to and get

FOUR(X,t) au(x t) 02u(x,t)
j—dx_ja(x, o dx

0 0 a ?

_[ ou (x t)d —ja(x 0 (au(x,t)au(x,t)j_au(x,t)azu(x,t) dx

5 ox\  ox ot 0x oxot

rouZ(x,t) au(x,t) du(x,t) Au(x,t)d%u(x,t)

[ [ J HEDED o [an MO o

'Iau (1) 4 adl, t)au(xt)| au(xt)| —a(O,t)au(X’t)| u (x,t)| —la(x,t)au(x’t)azu(x’t)dx
) X | ot | X | Ot |oo 3 ox  oxot
By the chain rule, we get

9 au*(xt) _ 2au(x,t) d2u(x,t)

ot 0x 0x oxot

Iauz(x,t) dx:a(l,t)au(l’t)au(l ,t)_a(o’t)au(o,t)au (Ot )——1J‘a(x,t)gau2 &t )dx

, ot ot 0X ot 29 ot 0x

1d If au (xt)OI 'Iau %0 g4 2 adl, t)au(l Hou t)_ (Ot)au(Ot)au(Ot)

2dty 5 ot ox ot

According to the boundary condition (2),

u(0,t)=u(,t)=0 forallt>0



Sinceu(0,t) and u(l,t) are constant with respect to time, we conclude tha

u,(0,t)=u(,t)=0 for t >0.Thus, we get that
| 2
_J~ a(x t)au (x t)d _Zj-au (x,t)dx

| 2
— j —2a(x t )—au (X’t)dx = 4[ QuTOGY) g
dt ¢ ox ot

2 | 2
d Hz(t) :4J~GU (x,t)dx
dt , Ot

5. Study Some Applications For Equation (2.1)
5.1. We can solve the problem (2.1) , whafx,t) = xt ,with f (x) = 3x,

au(x,t) _Xtazu(x,t)

—=0 0<x< 2,0<t,
ot 0X
u(x,0)=3x 0<x< 2,
u(o,t)=u(2t)=0 O<t

—a(x,t)n’rt

u(x,t) = 24: Be " sinf—]

2! . N7IX
B, _l—l f(9sint=—]
_ 2§, o NIX
= 2£3xsm[—2]dx

=2y
nir

Then the general solution of (5.1) is

4 _ -xn’r%?
u(x,t):zninz(—l)“e a sir[%]

n=1




Figure (1) Graph of the functiom=u(x,t) in problem (5.1)

5.2. If we consider solve the problem (2.1), wha(x,t) = sin(xt) ,with f(x) =¢e™:

2
MUY _ginpay U = O<x< 3.0t
ot ox
u(x,0) = > 0< x< 3,
u(0,t)=u(3t)= 0 O<t.
—a(x,t)n’rt

u(x,t) = 24: Be " Siﬂ[@]
2! . n7X
B, _I—l f (9sin[=—]

27 5 . N7X
=—|e*sin[—]dx
3J; [ 2 ]

4Anm-4e®n ITCOS%T 4™ si|[13n7”]
B 300+ 3°7°

Then the general solution of problem (5.2) is:

4 An—4e®n ITCOS%T F 46" sin{%T l-snparrt o

”(X’t):; 300+ 3777 ¢t s
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Figure (2) Graph of the functiom=u(x,t) in problem (5.2)

5.3. We can solve the problem for the equation (2.hema(x,t) = /xt ,with f (x) = sinh(x)

au(x t) _Jxt azu(x t)_

0<x<5,0<t,
u(x, O) = smh@<) O<x< 5
u(0,t)=u(5t)=0 O<t.
4 —a(xt)n’mt
u(x,t)=>Be " sm[n—m(]
n=1
2] _ n7TX
Bn—l—gf(x)sm[l—]
_ 2% . N7IX
= 5'([smh[x] sm[?]dx
_ 2(=5cosh[5]sinp77 } nr cosfr ]sin[p
25+ n°mr

Then the general solution of problem (5.3) is

4 — tnnzt
U(X,t):z 2(-5cosh[5] Sl;gfn}:;zﬂ cosirz ] sin[5] =% sm[n—]sTX]
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Figure (3) Graph of the functiom=u(x,t) in problem (5.3)
Conclusion:

We have developed a heat equation and by relying danction a(x,t) instead of using

constant which is common in all previous studiegehaached to the existence and oneness of
the solution to the equations (2.1). And then we eg@ply some examples of scientific
importance that confirms the fact our findings.
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