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Abstract
We study the development wave equationwith somaditons and proving the
existence and uniqueness solutionbyusing thectegte method .
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1. Introduction

The first-order asymptotic form is obtained andvea for the solution of a system of
two partial differential equations with small paweters in the derivatives for the regular part,
two boundary-layer parts and corner boundary pdoime results on the construction of
asymptotics for solutions of singularly perturbedtgem with fist-order partial derivatives
can be found in [1] and [2]. For a singularly péed system of two second-order differential
equations (one rapid and one slow), they are praivecaxistence of a solution and obtain its
asymptotics for the case in which the degeneratetean has two intersecting roots in
[3]and[4]. In[5], proposed an algorithm of asymjptointegration of the initial-boundary-
value problem for the heat-conduction equation wiihor terms (nonlinear sources of heat)

in a thin rod of thickness=w™” oscillating in time with frequenay™.In[6],considered
nonlinear systems of singularly perturbed integftecential equations with fast varying
kernels, it is assumed that the spectrum of thditigh operator lies in the closed left half-
plane Ré\ < 0, and derived an algorithm for obtaining regakd (in the sense of Lomov)
asymptotic solutions in both the no resonance @&sdrrance cases. In [7], considered the
second order ordinary differential equations whaosefficients of the unknowns contain
smooth and rapidly oscillating summands proportiotta the positive powers of the
oscillation frequency. Examples [8-11], of applioas of second order partial differential
equations in modeling can be found in elasticitg packed-bed electrode .In[12], to predict
the wave propagation in a given region over tintes often necessary to find the numerical
solution for wave equation. With the techniquesdidcrete differential calculus , they
proposed two unconditional stable numerical schefoesimulation wave equation on the
space manifold and the time. The integral bifumratmethod is used to study a nonlinearly
dispersive wave equation of Camasa- Holm type. Lsolion solution and periodic loop
soliton solution, solitary wave solution and saljtausp wave solution, smooth periodic wave
soliton and non-smooth periodic wave solution a$ #quation are obtained, their dynamic
characters are discussed in [13]. They are invastithe initial value problem for a semi-
linear wave equation in n-dimensional space basethe decay estimate of solutions to the
corresponding linear equation, they defined a $etinbe-weighted Sobolev space. Under
small condition on the initial value, and provee tjlobal existence and asymptotic behavior
of the solution in the corresponding Sobolev spdmethe contraction mapping principle in
[14]. In [15], they studied a dispersive countetprthe classical gas dynamics problem of
the interaction of a shock wave with a counter-pggiing simple rarefaction wave, often
referred to as the shock wave refraction. The céifra of a one-dimensional dispersive shock
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wave due to its head —on collision with the cerden@refaction wave is considered in the
framework of the defocusing nonlinear Schrédingguagion . The present a new mesh less
method developed by combining the quasi-linear oettbf fundamental solution and the
finite difference method to analyze wave equatidie method of fundamental solution is an
efficient numerical method for solution Laplace agon for both two- and three-dimensional
problems. The method has also been applied forstietion of Poisson equations and
transient Poisson-type equations by finding thei@aar solution to the non-homogeneous
term . In general ,approximate particular solutians constructed using the interpolation of
the non-homogeneous term by the radial basis iimat [16]. The element —free Galerkin
method is a promising method for solving partidfedential equations in which trial and test
functions employed in the discretization processulte from moving least-squares
approximation, by employing the improved movingskesquares approximation they are
derived formulae for an improved element-free Gatemethod for the modified equal width
wave equation in [17]. Our principal aim in the g#at paper is concerned the development
wave equationwith initial boundary conditions andying the existence and unigueness
solutionbyusing the reflection method.

2.Statement of the problem

We study the second-order partial differential eique define for the following
problem:

éﬁﬁLﬁanﬁgﬁlaa)
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ou(x,t) _
ot |, v, XHR (2.2)
u(x,t)),_, =#x), x OR

wherex signifies the spatial variable or "position" t, the "time" variable y(X,t)the
unknown continuous function aa@k,t)is an arbitrary continuous function dependent with
respect variable x and t. Physically u(x,t) represents the "value" of the normal
displacement of a particle at positisrand timet .The initial boundary conditions are hold in
equations (2.2), where The functiong(t) and ¢(x) are continuous and infinitely

differentiable with respect to each of their argatsdn what follows we construct and justify
of initial boundary-value type for the solution thie problem (2.1) and (2.2) , subject to the
following requirements:

. The functiora®(x,t)>0 for all x R ,t >0

1. ¢,(0)=¢,(0),a(0,0f =¢' (0) ensures the compatibility of the initial and bouryda
functions at the corner point (Q,&nd (1,0.

3. Procedure of solving the problem

The characteristic equation of (2.1) is



(dx)? =a(x,t)(dt )

and

x+a(x,t)t =a
{x —a(x,t)t:az}'

Are two families of real characteristics . . Intuathg the new variables

. $=x+a(x,th o X =(+n)/2
'{/7=x—a(x,t)t '{tz(f—fy)/Za(x,t)

We define the following functions:

U (x +a(x,t),x —a(x,tx ,

U (&n)=u(((e+n)12,(e-n) 122k 1)).
The equation (2.1) reduces to
U, (&n)=0. (2.3)
Therefore
Uy, (&) =F (&),
U (&)= [F(&)dé+gln) =t )+ ).

And in the original variables =u (x,t)is of the form

u(x,t)=f (x +ax,t)t)+g(x —ax,.tx).2.4)

Known as the general solution of (2.1) .1t is thensof the functiong(x —a(x,t)t) which
presents a shape traveling without change to tpbt nwith speedc and the function
f (x +a(x,t)t). Another shape , traveling to the left with spegd,t).Consider the Cauchy
(initial value) problem for (2.1)

gt—zl::az(x,t)gx—zuz,
uix,0)=¢), xOR (2.5)

x0OR,t >0

gt—u(x,O):z//(x), xOR



where ¢ andy are continuous arbitrary functions with respect toFurther we
denoteR* ={t :t =0} . Then the following theorem is holds:

Theorem(1)if ¢Oc?*(R) and ¢Oc'(R) the problem (2.5) has a unique solution
uOc?(RxR™) given by the formula:

1 x+a(x,t)t

260 w(s)ds (2.6)

x—a(x t)t

u(x,t)=%(¢(x +a(x )+ (x —akx tx))+

Proof: We are looking for a solution of the problem in fleem (1.3) satisfying the initial
conditions at =0

f(x)+g(x)=¢(x),(2.7)
a(x,t)f '(x)-a(x,t)g'(x)=¢(x).(2.8)

Differentiating (2.7) with respect to and solving the linear system fbrand g ',we obtain

2 2a(x t)
, 1, 1
§'() =59 ()~ 5o ¢ () 10

Integrating (2.9) and (2.10) fro@to X we get

() =29 (x)+ [wis)is+(t ©-2 $(0)

2r’:l( o

000 =3 (x) + - [0(5) +(9(0)- 39(0)

1
2a(x t)y
Using equation (2.7), we haf/g0)+g (0) =¢( 0) . Therefore;

u(x,t)=f (x +a(x,t)t)+g(x —a.t))

X +a(x ,t)t x-a(x t)t
=S (B0crateax) v (x-apan)) s g [ (o) | p(s)es
1 1 x+a(x,t)t
:§(¢(x+a(x,t)t)+¢(x—a(x,t)t)) D) w(s)ds.

x—a(x t)t



Conversely, it is easy to see that fpilc’(R) andy Oc'(R) this formula gives the solution

uOc?*(RxR") of problem (2.5) . Note that i =¢ = ,Qhen it followsu =0. The proof of
the theorem is complete.

We are study some corollaries from theorem (1)garfollows:

. Domain of dependence . The valueuddt (X,,t,) is determined by the restriction of initial
functions g andyin the interval [xo—a(x ) X +ax ,tlo] on the x-axis, whose end-
points are cut out by the characteristics :

Il. X =X, =%a(x,t)(t —t,), through the poin{x,,t,).

The characteristic trianglé(x,,t,) is defined as the triangle ®x R* with vertices

A (Xo=a(x,tt,,0) By(Xotak £ ¥o,0,Po(X ot o, O(Xyt) O (Xot,) .
We can obtain

[Xl_a‘(xit)tl'xl+a(x at)tl] O [Xo_aé( I )oxo+aé( t D(il

V(x,t,) O(Xot,)-

andu (x,,t,) is determined by the valuesgéndy on [x,—a(x tX, x,+a(x t },],domain

of influence .

The point(xO,O) on the x-axis influences the value wfat (x,t) in the wedge —shaped
region

1 (X,) :{(x,t):xo—a(x trsxsx +aX txt= q
For any
P (x,t) O1 (X o) MX ,t )1 1 (x o)z o,

P (x,t) 01 (Xo), Xt )l 1(xo)=9.
ll.For v(x)Oa’(R) and w(x,t)0a’(Rx[0,c))introduce uniform  norms

], =suph 0.

andlw_, = sup w (x 1)]

xOR,0st<T

For a given T > 0 by (2.6) it follows :
1 x+a(x,t)t
+

1
ol <300 +lo)+ el | o

x—a(x,t)t




<[] +T 1.

Then for anye>0 there exists|u|,, <& and |¢|, <J it follows |u],, <&, which

proves the continuous dependence .

4.Study some applications for equations (2.1) an@.Q)

4.1Let consider the problem (2.1) and (2.2), witke* ¢ =0and

b(x)= % if x O(-7 m)
0 if x O(-7z,7)

Solution: The solution of the problem is(x,t) :%(¢(x +et)+ g (x —e*t)).(4.1)

Using Mathematica the profile af(x,t)is presented in Figure ( 1) at successive instants
t =0,1,77,3,4,5Note that at t=0 the amplitude is 1. After the amstt = /7the profile breaks

up into two traveling waves moving in opposite diiens with speecc and amplitude

%.The surfacar =u(x,t)is presented in figure (2) .We use the Mathematrogram:

ufx_,t_J:=(f[x+©x t t]+f[x-©x t t])/2
f[x_]:=Whi ch[ - .e=x<=11, Si n[ X] / 2x, Tr ue, 0]

hO=PI ot [ Eval uate[u[ x, 0] ], {x, -5, 5},

Pl ot Range- >{ 0, 1. 5}, Pl ot Label ->"Wave at t=0"]
h1=Pl ot [ Eval uate[u[ x, 1] ], {X, - 5, 5},

Pl ot Range- >{ 0, 1. 5}, Pl ot Label ->"Wave at t=1"]
h2=Pl ot [ Eval uate[u[ x, 2] ], {X, - 5, 5}, Pl ot Range- >{ 0, 1}, Pl ot Label -
>"Wave at t=m']

h3=Pl ot [ Eval uate[u[ x, 3] ], {X, -5, 5},

Pl ot Range- >{ 0, 1. 5}, Pl ot Label ->"Wave at t=3"]
h4=Pl ot [ Eval uat e[ u[ x, 4] ], {X, -5, 5},

Pl ot Range- >{ 0, 1. 5}, Pl ot Label ->"Wave at t=4"]
h5=Pl ot [ Eval uat e[ u[ x, 5] ], { X, - 5, 5},

Pl ot Range- >{ 0, 1. 5}, Pl ot Label ->"Wave at t=5"]
Show G aphi csArray[{{hO, h1}, {h1, h3}, {h4, h5}}],
Franme - True, FranmeTi cks - None]
Plot3D[u[x,t],{x,-5,5},{t, 0,5}, Pl ot Poi nt s -40,
AxeslLabel -

Pl ot Range - {0, 1. 5} Shadi ng - Fal se]
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Figure (2)Graph of the functiom =u(x,t)in problem (4.1).
4.2 Wecan Solve the problem (2.1) and (2.2), withit,w =0and
X

sin®x if x D(—Z?HZ—;TJ

¢(X)= 21T 21T
0 if m[-_,_j

3 3

The solution of the problem is:



u(x,t):%(¢(x +(—%[)t)+¢(x —(—t)t)) (4.2) Using Mathematica the profile af(x,t)is

X X
presented in figure (3) at successive instatnbsO,l,%T ,3,4,5Note that at t=0 the amplitude
is 1. After the instant =2?”the profile breaks up into two traveling waves nmgyiin

opposite directions with speeejf{ and amplitude%.The surfaceu =u(x,t)is presented in
X

figure (4).We use the Mathematica program:
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Figure (3) The wave at instaht O,l,z?n 3,4,5
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Figure (4)Graph of the functiom =u(x,t)in Problem (4.2).

4.3. Now, we study the problem(2.1) and (2.2), withe™ ,¢ =0 andy/(x) =sin(x)2 :



If ¢ =0, then the solution afi(x,t) can be expressed:

u(x,t):ziXt J' sin(x)2

1 —xt [t 1 i xt
=2ee t—Ecos( x) si 2°)t) (4.3)

Using Mathematica the profile af(x,t)is presented in figure (5) at the successive itstan
t =0,1, 2,3note that at =1the amplitude is}é and it remains the same for all next instants

. The surfacer =u(x,t) is plotted in figure (6) . We can use the follog/program:

ufx_,t_]:=1/2 ©t x (Gt x t-1/2 Cos[2 x] Sin[2 ©t x t])
hO=Pl ot [ Eval uate[u[ x, 0] ], {x, -8, 8},
Pl ot Range- >{ 0, 0. 5}, Pl ot Label ->"Wave at t=0"]
hl=Pl ot [ Eval uate[u[ x, 1]], {x, -8, 8},
Pl ot Range- >{ 0, 0. 5}, Pl ot Label ->"Wave at t=1"]
h2=Pl ot [ Eval uate[u[ x, 2] ], {x, -8, 8},
Pl ot Range- >{ 0, 0. 5}, Pl ot Label ->"Wave at t=2"]
h3=Pl ot [ Eval uate[u[ x, 3] ], {x, -8, 8},
Pl ot Range- >{ 0, 0. 5}, Pl ot Label ->"Wave at t=3"]
Show G aphi csArray[{{hO, hl}, {h2, h3}}],
Frame - True, FranmeTi cks - None]
Plot3D[u[x,t],{x,-8,8},{t, 0,3},

AxesLabel - Pl ot Points 20
Pl ot Range - {0, 0. 5} Shadi ng - Fal se]
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Figure (5)Wave at instants t=0,1,2,3.
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Figure (6)Graph of the functieélf\e'Xt (et —%cos( ) sin iex‘ )t)

Conclusion

Through the use of the relationsh{p.2) with (2.2) the search on the board and using the
equatior(2.6) proved the uniqueness of the solution as wellassiple give example applied
different confirm that we have reached so usergnam.
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