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Abstract.   In this work, we present a new radius for a modified trust region method and used 

them to solve the large-scale unconstrained optimization. Our approach increases and improves 

the robustness and efficiency of the trust-region frameworks as well as decrease the 

computational cost of the algorithm by decreasing the number of the trust-region subproblems 

that must resolved when the trail step rejected. Theoretical analysis shows that the new approach 

conserve the global convergence to the first-order critical points under classical assumptions. 

Moreover, the superlinear and the quadratic convergence are established under suitable 

conditions. The numerical results show that the new method is effective and promising for solving 

unconstrained optimization problems. 
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Introduction 

       Consider the following optimization problem 

                                                                 ,                                                                       (1) 

                                                                   , 

where      is the objective function,      is a feasible region or conditions set. One of the most 

important cases is when      , in this case , problem (1) is called an unconstrained 

optimization problem. 

       The optimization comes in large variety of fields such as applied mathematics, computer 

science, engineering, economics, etc. To optimize any object, first, we must determinate the 

measures of some objective and quantitative of the problem under study. The objective could be 

time, profit,  or any quantity or combination of quantities. In the simplest case, an optimization is 

used to find the best value of the variables that make the objective function in the best form 

(maximization or minimization). The process of determination the components of the given 

problem is known as modeling. The first step- sometimes the most important step- in the 
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optimization process is the construction an appropriate model. When the model is very simplistic, 

then it will not give useful ideas for the practical problem, and in the other hand, if it is very 

complex, it may become too difficult to solve.  

     The efficient algorithm for solving optimization problems doesn't require too much 

computation time and data storage. The performance of an algorithm is indicated by the number 

of iterations, the number of function calculations and the required time to run the algorithm (CPU 

time). 

      There are many algorithms for solving the optimization problems, such like the line search 

algorithms which are the classical methods for optimization and the trust region methods (TRM).  

      The (TRM) are one of the famous methods in this field. These methods  are used also to solve 

the nonlinear systems of equations. They begin with defining a region around the current best 

solution, in which a certain model can make some extent approximation to the original objective 

function. Then, the next step is taken according to the model depicts within the region. Un like 

the line search methods, (TRM) usually determines the step size before improving the direction 

(or at the same time). If the value of the function decreases, the model is believed to be a good 

representation to the original objective function.  

     The concept of (TRM) has developed over 50 years. The first paper in this area appeared in 

(1944) by Levenberg [6] who consider adding a multiple of the identity to the Hessian matrix as a 

stabilization procedure in the context of the solution of nonlinear least-squares problems. In 1983 

A review paper in (TRM) was given by More' [7]. Recently, Conn, Gould and Toint have 

finished an enormous monograph on (TRM) [3]. Most researches on trust region algorithms are 

done in the last twenty years. In recent years, the trust region methods are very necessary and 

active methods in the area of unconstraint optimization, and its algorithms have attracted 

attention from more and more researchers. 

The iterative methods for optimization are classified in two classes, one class is called the line 

search methods and the other is the trust region methods. Trust region methods are iterative 

method in which a model (  ) approximate the objective function      and this model is 

minimized in a neighborhood of the current iterate.  

(TRM) start with an initial point   , and with the arbitrary approximation initial radius   , then 

the following subproblem must be solved 

                                                                   
 

 
                                         (2) 

                                                                        s.t.  ‖ ‖    , 

where              is the gradient at (  ),    is  the approximates of the Hessian of   ( ) and  

      is the radius. 

Many authors used the following subproblem to find the trail step     

                                                               
   

 

 
                                                       (3) 



                                                                        s.t.  ‖ ‖    , 

Then the ratio    must be defined and computed  

                                                                
              

                
                                                (4) 

where                is the actual reduction and                  the predicate 

reduction, where    is the current iterate and    is the trial step direction. The next iteration will 

be decided depending on the value of    , either setting         , or            . 

Then, when     closes to 1, then the model has a good agreement with the original problem at the 

current iterate   . If    is greater than a positive constant  , then we will accept the trial step    

and             , so, the trust-region radius can be expanded or kept the same. If     is near 

to zero or negative, then the trust-region radius must be diminished and the subproblem (2) must 

be solved again to possibly find an acceptable trial point in the sequel of the process [9]. 

(TRM) can be traced back to the classical Levenberg-Marquardt method for nonlinear equations 

      , which chooses the step as follows  

                                                             
       

                                               (5) 

where      is the Jacobian matrix of       and       is a parameter which is updated from 

iteration to iteration. The original idea of Levenberg- Marquardt method is to overcome the ill 

condition of       by introducing the parameter   , in other words, to prevent ‖  ‖  being too large. 
 

        In this paper, a new adaptive radius has been introduced to improve the trust-region 

methods for solving an optimization problems, that is prevent the increasing and decreasing the 

radius by controlling the size of the radius of the trust-region algorithm. 

Trust region algorithm 

      The first issue of the trust region algorithms relates to how to choose the trust region radius 

   at each iteration. The ratio   , we will note since  (  ) is obtained by minimizing the model 

(  ) on a region that includes     ,the predicted reduction Always be non-negative, thus if 

(  ) is negative then  (  +  )[objective value ] is greater than  (  )[current value] so the step 

should be rejected. If (  ) is closed to  1, then there is a good agreement between (  ) and (   ) 

on this step, so it is safe to expand the trust region for next iteration. If (  ) is positive, then we 

don't alter (TR), but close to zero or negative [2], As well as before the implementation of the 

trust region algorithms, we must define all the parameters we use in algorithms. 

Trust region subproblem   

        The trust region subproblems are one of the basic parts of trust region algorithms, since in 

each iteration in the requires solution, a trust region sub problem (3) must be solved. 

The trust region subproblem presents two modulations: 

(i)  Updating the radius in different way if hard case occurs. 



(ii) Using techniques and sensitivity analysis are provided followed by the algorithms on un 

constrained optimization. 

The trust region subproblems are using to minimize the trust region methods and working to 

improve them. 

Below, our trust region algorithm for unconstrained optimization with new adaptive radius. 
 

Algorithm 1 (The trust region algorithm for unconstrained optimization) 

Given                                                              

                         

Step 1:  For  k=0, 1, 2, ... 

              Use             
   

 

 
            to compute     

              Use      
              

                
    to compute    . 

                   {
                           
                               

 

Step 2:  Compute the new radius                                       

                                    {

 

 
‖  ‖                              

 

 
                                

    ( 

  
     )               

 

 
      ‖  ‖     

                                                                             

                           (6) 

Step 4: Update                go to Step 1. 

              End For. 

End    

The next lemma proves that  d  is a solution of (3) . 

Lemma 1  [8]:  A vector     is a solution of the following problem, where        

                                                                  
 

 
                                                   (7) 

                                                                        s.t.  ‖ ‖   , 

where               is a symmetric matrix, and       .  

Lemma 2 [8]:  There is       , such that for a positive definite      , ‖ ‖     and  

     ‖  ‖     we have   

                                                                                                                                    (8) 



where     is Lagrange multiplier.  

So, Instead of identifying the exact Lagrange multiplier   , there are algorithms directly 

computing an approximation to the solution    of  (6). There are three different approaches: the 

truncated conjugate gradient method, the 2-dimensional search method and the dog-leg method. 
 

Convergence properties  

         The convergence can be ensured that the size of the (TRM) in each iteration would depend 

on improvement previously iterate. Overall, the (TRM) have the quadratic convergence rate 

while being globally convergent [2]. 

         The convergence of trust region algorithms for constrained optimization, similar to 

unconstrained optimization, depends on some lower bound condition of the predicted reduction 

of the form 

                                                                    *   
  

‖  ‖
+                                                  (9)                                    

where   is some positive constant. 

         To prove the convergence of algorithm 1, we benefit from Powell [10], who gave the first 

convergence result for algorithm 1 under the assumption that the matrices    are bounded. Also, 

he proved that if there exist a subspace S of   , and    is any solution of the subproblem  

       ‖ ‖       , and if    , then  

                                                               

 
‖ ‖    *  

‖ ‖ 

‖ ‖ 
+                                      (10) 

The relation (10) prevents the predicted reduction from being very small, unless either  ‖ ‖    

or ‖ ‖ 
  ‖ ‖  is very small. 

Now, if     satisfies the following property, then the global convergence can be showed as a 

long as the trial step    , 

                                                                    *   
‖  ‖ 

‖  ‖ 
+                                      (11) 

where     is some positive constant. 

     After that, it was shown that ‖  ‖            , where    is any positive constant [11], [12]. 

Lemma 3   Assume that        is differentiable and        is uniformly Lipschitz continuous. 

Let     be generated by Algorithm 1 with    satisfies (10) for all k. If there exists a positive 

constant     such that  ‖  ‖     ¸    , for all k, then there exists a constant        such 

that           holds for all k, where    is defined by               ‖  ‖    . 

Lemma 4   Let {  } and  {  } be two sequences such that             for all k, where    is 

a positive constant. Let J  be a subset of {1, 2 ,3 , ... }, Assume that                          

                                                  and ∑            where           

are positive constants, Then  



∑    

 

   

    

Theorem 1  Assume that      is differentiable and        is uniformly Lipschitz continuous. 

Let    be generated by Algorithm 1 with    satisfies (10). If    defined by      

        ‖  ‖   satisfy that  

∑    

 

   

    

In algorithm 1, if we chose     , and if  {     }  is bounded below, then    

   
   

‖  ‖     

So, the matrices    can be updated by some known quasi-Newton formulae such as Powell's or 

by the BFGS method. With some additional conditions, Shultz et.al [13] reinforced theorem 1. 

The techniques of Dennis and More' [8] are used to show that the trial step    converges 

superlinearly. 
 

Numerical results 

        In this section, some numerical experiments are reported to compare the performance of the 

new method along with the following three algorithms: 

DFPB1 : This method is coming from Ahookhosh.et al [1]. 

M1  : This method is coming from  Li and Li [5]. 

M2: This method takes the direction (2.8) in [5] with a different line search. 

The experiments were run on a PC with CPU 2.20 GHz and 8 GB RAM. All of the codes were 

written in MATLAB R2014b  programming environment. The running of the codes will check if 

the presented data converges to the corresponding points. All of the algorithms terminate 

whenever ‖  ‖         or the number of iterates surpasses 500000. In all of the algorithms, the 

parameters are specified as follows                                             . 

 

       The performances of these methods are compared with respect to the number of iterations 

  , the number of function evaluations    and CPU time. In order to compare these algorithms, 

some famous test problems are used where the dimensions are trapped between 5000-50000 for 

the following initial points [1] [5] 
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To have a comprehensive comparison for the above methods, the performance profile introduced 

by Dolan and More´[4] is used as a well-known procedure to present some wealth information 

including efficiency and robustness. The proposed performance profiles of algorithms (MTR, 

DFPB1, M1 and M2) are exploited depending on the number of iterates, the number of function 

evaluations and CPU time in Figures 1-3 respectively. From these Figures, it is easy to see that 

the new proposed method obtains the most wins on approximately 89 %, 75 % and 70 % of 

problems respectively and this clearly shows the efficiency of the new algorithm. 



 

Fig. 1. Performance profile of the iteration number. 

 
 

Fig. 2. Performance profile of the function evaluations 

  
Fig. 3. Performance profile of CPU time 
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