Using ψ -Operator to Formulate a New Definition of Local Function

¹Prof.Dr.Luay A.A.AL-Swidi ²

² Ass.prof.Dr.Asaad M.A.AL-Hosainy

³Msc.St. Reyam Q.M.AL-Feehan

drluayha11@yahoo.com zsene12(

zsene12@yahoo.com

reyamqays27@yahoo.com

^{1,2,3} Department of Mathematics, College of Education for Pure Science Babylon University

ABSTRACT: In this paper, we use ψ -operator in order to get a new version of local function. The concepts of maps, dense, resolvable and Housdorff have been investigated in this paper, as well as modified to be useful in general.

الخلاصة: استخدمنا في هذا البحث العملية ابساي من أجل الحصول على نسخه جديده من الدالة المحلية.وقد تم التحقيق في مفاهيم الدوال, الكثافة,المجموعات القابلة للحل و فضاء الهاوسدورف,وكذلك تعديلها لتكون مفيدة بشكل عام.

Keywords: ψ^* -operator, ψ -dense, ψ -resolvable, ψ -map and ψ - \mathscr{G} -Housdorff.

1. INTRODUCTION AND PRILMINARIES

As requirements for our work, we define here the following concepts sequentially: Ideal space, local function, Kuratowski closure, dense, \mathcal{T}^* -dense, \mathcal{J} -dense, codense, Ψ -operator, resolvable, \mathcal{J} -open, pre- \mathcal{J} -open, scattered set and Housdorff space.

We start define the ideal space. Let (X, T) be a topological space with no separation properties assumed. The subject of ideal topological space has been studied by (Kuratowski, 1966) and (Vaidyanathaswamy, 1960). An ideal \pounds on a topological space (X, T) is a nonempty collection of subsets of X which satisfies the following two conditions:

(1) If $A \in \mathcal{J}$ and $B \subseteq A$, then $B \in \mathcal{J}$ (heredity).

(2) If $A \in \mathcal{J}$ and $B \in \mathcal{J}$, then $A \bigcup B \in \mathcal{J}$ (finite additivity).

Moreover a σ -ideal on a topological space (X, T) is an ideal which satisfies (1), (2) and the following condition:

3.If $\{A_i : i = 1,2,3,...\} \subseteq \mathcal{I}$, then $\bigcup \{A_i : i = 1,2,3,...\} \in \mathcal{I}$ (countable additivity).

An ideal space is a topological space (X, T) with an ideal \mathcal{J} on X and is denoted by (X, T, \mathcal{J}). For a subset A \subseteq X,

A*(\mathscr{I})={x \in X : U \cap A $\notin \mathscr{I}$ for every U $\in \mathscr{T}$ (x)} is called the local function of A with respect to \mathscr{I} and \mathscr{T} (Kuratowski, 1933).We simply write A* instead of A*(\mathscr{I}) in case there is no chance for confusion.

It is well known that $Cl^*(A) = A \bigcup A^*$ defines a Kuratowski closure operator for a topology $T^*(\mathfrak{G})$ which is finer than T. During this paper, for a subset $A \subseteq X$, Cl (A) and Int (A) denote the closure and the interior of A ,respectively. A subset A of an ideal space (X, T, \mathfrak{G}) is said to be dense (resp, T^* -dense (Dontcher, Gansster and Rose, 1999), \mathfrak{G} –dense (Dontcher, Gansster and Rose, 1999) if Cl (A) = X (resp Cl*(A) = X, A*= X). An ideal \mathfrak{G} on a space (X, T) is said to be codense (Devid, Sivaraj and Chelvam, 2005) if and only if $T \cap \mathfrak{G} = \{\Phi\}$. For an ideal space (X, T, \mathfrak{G}) and for any $A \subseteq X$, where \mathfrak{G} is codense. Then: dense, T^* -dense and \mathfrak{G} -dense are equivalent (Jankovic and Hamlett, 1990). (Natkanies, 1986) used the idea of ideals to define another operator known as Ψ -operator defined as follow: For a subset $A \subseteq X$, $\Psi(A) = X-(X-A)^*$. Equivalently $\Psi(A) = \{M \in T:M-A \in I\}$. It is obvious that $\Psi(A)$ for any A is a member of T.

For an ideal space (X, \mathcal{T} , \mathscr{J}) and $Y \subseteq X$ then (Y, \mathcal{T}_y , \mathscr{J}_y) is an ideal space where $\mathcal{T}_y = \{U \cap Y : U \in \mathcal{J}\}$ and $\mathscr{J}_y = \{U \cap Y : U \in \mathscr{J}\} = \{U \in \mathscr{J} : U \subseteq Y\}.$

In 1943, Hewitt introduced the concept of a resolvable space as follows: A nonempty topological space (X, T) is called resolvable (Hewitt, 1943) if X is the disjoint union of two dense subsets. Given a space (X, T) and $A \subseteq X$, A is called \mathscr{J} -open (Jankovic and Hamlett, 1990) (resp per- \mathscr{J} -open(Donkhev,1996) if $A \subseteq$ Int (A*)(resp $A \subseteq$ Int CI*(A).A set $A \subseteq X$ is said to be scattered (Jankovic and Hamlett, 1990) if A contains no nonempty dense-in-itself subset. A space (X, T, \mathscr{J}) is called \mathscr{J} -Housdorff (Dontcher,1995) if for each two distinct points $\mathbf{x} \neq \mathbf{y}$, there exist \mathscr{J} -open sets U and V containing \mathbf{x} and \mathbf{y} respectively, such that $U \cap V = \Phi$. Throughout this paper we define a new local function and generalizations .Many characterizations, proprieties and relation between them are obtained.

2- ψ^* -Operator

In this section we introduce a new type of local function by using ψ -operator, in order to do this we have to have a deep looking in(Jankovic and Hamlett, 1992) work of the local function in ideal space.

Definition 2.1

Let $(X, \mathcal{T}, \mathcal{J})$ be an ideal space. An operator $\psi *(.): \mathcal{P}(x) \to \mathcal{P}(x)$, called ψ -local function of A with respect to \mathcal{J} and \mathcal{T} , is define as follow: for any A \subseteq X,

 Ψ *(A) (\mathscr{J} , \mathbb{T}) = {x \in X : Ψ (U) $\bigcap A \notin \mathscr{J}$, for every open subset U $\in \mathbb{T}(x)$ }, where $\mathbb{T}(x)$ ={U $\in \mathbb{T}$, x \in U}.

When there is no chance for confusion ψ *(A) (\mathfrak{I} , \mathfrak{I}) is briefly denoted by ψ *(A).

Fact

Let (X, $\mathbb{T},\,\mathbb{J})$ be an ideal space .Then $A^* \subseteq \,\psi$ *(A), for any $A \subseteq X.$

Now we define a new closure operator in terms of $\boldsymbol{\psi}$ -local function.

Definition 2.2

Let $(X, \mathcal{T}, \mathcal{J})$ be an ideal space. For any $A \subseteq X$, we define

1. ψ -Cl (A) = {x \in X: ψ (U) \cap A $\neq \Phi$ for every U \subseteq X, x $\in \psi$ (U)}. It is clear that Cl (A) $\subseteq \psi$ -Cl (A).

2. ψ -CI*(A) (ℐ, ℑ) = A ∪ ψ *(A)

When there is no chance for confusion ψ -Cl*(A) (4, \Im) is briefly denoted by ψ -Cl*(A).

Note

Let (X, T, \mathfrak{A}) be an ideal space. Then ψ -Cl*(A) $\subseteq \psi$ -Cl (A), for any A \subseteq X.

We discuss the properties of ψ -local function in following theorem:

Theorem 2.3

Let (X, \mathbb{T}) be a topological space, \mathcal{J} and \mathcal{J} be two ideals on X, and let A and B be subsets of X. Then the following properties hold:

1. If $A \subseteq B$, then $\psi^{*}(A) \subseteq \psi^{*}(B)$.

2. If $\mathscr{I} \subseteq \mathscr{J}$, then $\psi^{*}(A)$ $(\mathscr{J}) \subseteq \psi^{*}(A)$ (\mathscr{I}) .

- $3. \ \psi \ {}^{\ast} (A) = CI \ (\psi \ {}^{\ast} (A)) \ \subseteq \ \psi \ {}^{\ast} CI \ (A).$
- 4. $(\psi^*(A))^* \subseteq \psi^*(A)$.
- 5. $\psi^{*}(A \cup B) = \psi^{*}(A) \cup \psi^{*}(B)$.
- 6. $\psi^{*}(A \cap B) \subseteq \psi^{*}(A) \cap \psi^{*}(B)$.
- 7. For every I $\in \mathcal{A}$, then $\psi^*(A \cup I) = \psi^*(A) = \psi^*(A \setminus I)$.

8. If G ϵ T, then G $\cap \psi$ *(A) $\subset \psi$ *(G \cap A).

9. If U ϵ T, then U $\cap \psi$ -CI*(A) $\subset \psi$ -CI*(U \cap A).

10. If A ϵ 4, then ψ *(A) = Φ .

Proof.

Straight from Definition2.1 and Definition 2.2

3. ψ - Dense and Generalizations:

Definition 3.1

A subset A of an ideal space (X, T, \mathfrak{I}) is called:

- (1) ψ -dense, if ψ -Cl (A) = X.
- (2) ψ -J^{*}-dense, if ψ -Cl*(A) = X.
- (3) ψ - \mathscr{J} -dense, if ψ *(A) = X.
- (4) nowhere ψ -dense, if Int ψ -Cl(A) = Φ .
- (5) nowhere ψ *-dense, if Int* ψ -Cl(A)= Φ .

The following remark is immediate from above definitions:

Remark 3.2

- (1) If A is ψ -4-dense, then A is ψ -T*-dense.
- (2) If A is ψ -T*-dense, then A is ψ -dense.

(3) If A is nowhere ψ *-dense, then A is nowhere ψ -dense.

The study of ideal got new dimension when Codense ideal [10] has been incorporated in ideal space. In the following definition we introduce a new concept of condense by using ψ -operator.

Definition 3.3

An ideal \mathcal{J} on a topological space (X, \mathcal{T}) is said to be ψ -codense if, $\psi(\mathcal{T}) \cap \mathcal{J} = {\Phi}$.

Lemma 3.4

Let (X, \mathcal{T} , \mathscr{J}) be an ideal space and for every subset A \subseteq X. If A $\subseteq \psi$ *(A), then the following relations hold:

 $\psi^{*}(A) = CI(\psi^{*}(A)) = \psi - CI(A) = \psi - CI^{*}(A).$

Proof.

By Definition 2.2: (1), and Theorem 2.3: (3).

Theorem 3.5

Let $(X, \mathcal{T}, \mathcal{J})$ be an ideal space, and for every subset $A \subseteq X$. If \mathcal{J} is ψ -codense, then the following relations hold: (1) If A is ψ -dense, then it is ψ - \mathcal{T}^* -dense.

(2) If A is ψ - \mathfrak{T}^* -dense, then it is ψ - \mathfrak{I} -dense.

Proof.

This is an immediate consequence of Lemma 3.4.

The following theorem related to $\boldsymbol{\psi}$ -codense ideal:

Theorem 3.6 If X is finite, then $X=X^*$ if and only if **§** is ψ -codense.

Proof.

Necessity. By Theorem 2.5,[1]. we have $\mathbb{T} \cap \mathbb{I} = {\Phi}$. Since $\Psi(\mathbb{T}) \cap \mathbb{I} \subseteq \mathbb{T} \cap \mathbb{I}$. It follow that $\Psi(\mathbb{T}) \cap \mathbb{I} = {\Phi}$. So \mathbb{I} is Ψ -codense.

Sufficiency. Assume that \mathscr{J} is ψ -codense. Since X-X* is open, let $x \in X$ -X*. Then there exists $U_x \subseteq X$ -X*, and $x \notin X^*$. Then there exists $V_x \in \mathfrak{T}(x)$, such that $U_x \bigcap V_x \in \mathscr{J}$. Assume that $W_x = U_x \bigcap V_x \in \mathscr{J}$. But X-X* = $\bigcup W_x$. Hence X-X* $\in \mathscr{J}$ and ψ (\mathfrak{T}) $\bigcap \mathscr{J} \neq \{\Phi\}$, a contradiction. Therefore $X = X^*$.

Corollary 3.7 Let X be any nonempty set .If $(X, \mathcal{T}, \mathcal{J})$ is an ideal space where \mathcal{J} is σ ideal, then the following statement are equivalent: (1) X = X*; (2) $\mathcal{T} \cap \mathcal{J} = \{\Phi\}$; (3) $\psi(\mathcal{T}) \cap \mathcal{J} = \{\Phi\}$.

Proof. Similar to the proof of Theorem 3.6.

By Remark 3.2, and Theorem 3.5, the following relations hold:

 ψ -dens $\rightleftharpoons^* \psi$ -J*-dense $\rightleftharpoons^* \psi$ -J-dense.

^𝕄: ∮ is ψ -codense.

By Theorem 2.3 :(2), we have the following remark:

Remark 3.8

(1)Let (X, T, \mathscr{J}) and (X, T, \mathscr{J}) be two ideal spaces, with $\mathscr{J} \subseteq \mathscr{J}$, if A is ψ - \mathscr{J} -dense with respect to \mathscr{J} for any A \subseteq X.

(2) Let $(X, \mathcal{T}, \mathcal{J})$ and (X, σ, \mathcal{J}) be two ideal spaces, with $\mathcal{T} \subseteq \sigma$, if A is ψ - \mathcal{J} -dense with respect to σ , then A is ψ - \mathcal{J} -dense with respect to \mathcal{T} for any $A \subseteq X$.

By Remark 3.2 and Remark 3.8: (1), (2) we get the following corollary:

Corollary 3.9

(1)Let (X, \mathfrak{T} , \mathfrak{I}) and (X, \mathfrak{T} , \mathfrak{I}) be two ideal spaces, with $\mathfrak{I} \subseteq \mathfrak{I}$, if A is ψ - \mathfrak{T}^* -dense (ψ -dense) with respect to \mathfrak{I} , then A is ψ - \mathfrak{T}^* -dense (ψ -dense) with respect to \mathfrak{I} for any A \subseteq X.

(2) Let (X, \mathfrak{T} , \mathfrak{I}) and (X, σ , \mathfrak{I}) be two ideal spaces, with $\mathfrak{T} \subseteq \sigma$, if A is ψ - \mathfrak{T}^* -dense (ψ -dense) with respect to σ , then A is ψ - \mathfrak{T}^* -dense (ψ -dense) with respect to \mathfrak{T} for any A \subseteq X.

Definition 3.10

A function f: $(X, \mathcal{T}, \mathcal{J}) \rightarrow (Y, \sigma)$ is called ψ -map if, f (ψ -Cl (A)) \subseteq Cl f (A), for any A $\subseteq X$.

Note

Where $f:(X,\mathcal{T},\mathcal{J}) \rightarrow (Y,\sigma)$ is a bijection map ,then $f(\mathcal{J})$ will be an ideal on Y.

Theorem 3.11

If f: $(X, \mathcal{T}, \mathcal{J}) \rightarrow (Y, \sigma)$ is ψ - bijection map .Then the image of any ψ -dense subset A of X is dense in Y.

Proof.

Assume that A is ψ -dense in X. Since f is ψ -map, then f (ψ -Cl (A)) \subseteq Cl f (A).

Implies that f (X) \subseteq CI (f (A)) and since f is surjection .Therefore, Y= CI (f (A)). Hence f (A) is dense in Y.

Definition 3.12

A function $f:(X, \mathcal{T}, \mathcal{J}) \rightarrow (Y, \sigma, \mathcal{J})$ is called : (1) $\psi - (\mathcal{J}, \mathcal{J})$ map , if $f(\psi - Cl^*(A)) \subseteq Cl^* f(A)$. (2) $\psi_0 - (\mathcal{J}, \mathcal{J})$ map , if $f(\psi^*(A)) \subseteq (f(A))^*$. (3) ψ_1 - (\mathscr{G}) map, if f (ψ *(A)) $\subseteq \psi$ * f(A). (4) ψ_2 - (\mathscr{G}) map, if f (ψ -Cl*(A)) $\subseteq \psi$ -Cl* f(A). (5) ψ_3 - (\mathscr{G}) map, if f(ψ -Cl(A)) $\subseteq \psi$ -Cl f(A).

For any $A \subseteq X$.

The following remark is immediate from above definitions:

Remark 3.13

(1) ψ_0 - ($\mathfrak{G},\mathfrak{G}$) map $\rightarrow \psi$ - ($\mathfrak{G},\mathfrak{G}$) map

(2) $\psi_1 - (\mathcal{J}, \mathcal{J}) \operatorname{map} \to \psi_2 - (\mathcal{J}, \mathcal{J}) \operatorname{map} \to \psi_3 - (\mathcal{J}, \mathcal{J}) \operatorname{map}.$

Theorem 3.14

If f: (X, T, I) \rightarrow (Y, σ) is ψ_0 -(I, I) bijection map .Then the image of any ψ -Idense subset A of X is f (I)-dense in Y.

Proof.

Assume that A is ψ - \mathscr{G} -dense in X. Since f is ψ_0 -(\mathscr{G} , \mathscr{G}) map, then f (ψ *(A)) \subseteq (f (A))*. Implies that f(X) \subseteq (f (A))*, and since f is surjection .Therefore, Y= (f (A))*.Hence f (A) is f (\mathscr{G})-dense in Y.

By Remark 3.13(1), and Theorem 3.14we get the following corollary:

Corollary 3.15

If f: (X, $\mathfrak{T}, \mathfrak{I} \to (Y, \sigma)$ is $\psi - (\mathfrak{I}, \mathfrak{I})$ bijection map .Then the image of any $\psi - \mathfrak{T}^{*}$ -dense subset A of X is \mathfrak{T}^{*} -dense in Y.

Theorem 3.16

If f: (X, T, I) \rightarrow (Y, σ , I) is ψ_1 - (I, I) bijection map. Then the image of any ψ -Idense subset of X is ψ -f (I)-dense in Y.

Proof.

Assume that A is ψ - \mathscr{I} -dense in X. Since f is ψ_1 -(\mathscr{I}, \mathscr{I}) map then f (ψ *(A)) $\subseteq \psi$ *(f (A)), and since f is surjection .Therefore, Y = ψ *(f (A)).Hence f (A) is ψ -f (\mathscr{I})-dense in Y.

Corollary 3.17

If f: (X, $\mathfrak{T}, \mathfrak{I} \to (Y, \sigma, \mathfrak{I})$ is ψ_2 -($\mathfrak{I}, \mathfrak{I})$ [ψ_3 -($\mathfrak{I}, \mathfrak{I})$] bijection map. Then the image of any ψ - \mathfrak{T}^* -dense (ψ -dense) subset of X is R - \mathfrak{T}^* -dense (ψ -dense) in Y.

Proof. This is an immediate consequence of Remark 3.13(2), and Theorem 3.16.

4: ψ -Resolvability and Generalizations:

In this section we define ψ - resolvable space and recall some of the generalizations of ψ -resolvable and their relationship with Housdorff space.

Definition 4.1

A nonempty topological space (X, T) is called:

(1) ψ -resolvable, if X is the disjoint union of two ψ -dense subsets.

(2) ψ -T*-resolvable, if X is the disjoint union of T*-dense and ψ -dense subsets.

(3) ψ -4-resolvable, if X is the disjoint union of 4-dense and ψ -dense subsets.

It is clear that: ψ - \mathscr{I} -resolvable $\rightarrow \psi$ - \mathfrak{T}^* -resolvable $\rightarrow \psi$ -resolvable.

Theorem 4.2

Let (X, \mathbb{T}) be a nonempty topological space. Then if X is ψ - \mathbb{T} -resolvability, then X is ψ - \mathfrak{I} -resolvability.

Question

We claim that ψ -resolvability does not imply ψ -T*-resolvability, but we could not find an example.

Remark 4.3

Let (X, T, \mathscr{I}) and (X, T, \mathscr{I}) be two ideal spaces, with $\mathscr{I} \subseteq \mathscr{I}$, if X is ψ -resolvable with respect to \mathscr{I} .

This is an immediate consequence of Corollary 3.9.

Definition 4.4

A function $f:(X, T, \mathcal{J}) \rightarrow (Y, \sigma, \mathcal{J})$, is said to be bi*-map if :

(1) f: $(X, \mathcal{T}, \mathcal{J}) \rightarrow (Y, \sigma)$ is ψ_3 - $(\mathcal{J}, \mathcal{J})$ map;

(2) f: $(X, \mathbb{T}^*) \rightarrow (Y, \sigma^*)$ is a continuous map.

Theorem 4.5

Let $f : (X, \mathcal{T}, \mathcal{J}) \to (Y, \sigma)$ be bi*- bijection map, and if X is ψ -T*-resolvable space .Then Y is ψ -T*-resolvable with respect to the ideal f (\mathcal{J}). Proof.

Assume that X is ψ -T*-resolvable space, then there exists two disjoint ψ - dense and T*-dense subsets such that ψ -Cl (A) = Cl*(B) = X. It is clear by Corollary 3.19, and Definition 4.4 that Y is ψ -T*-resolvable.

Lemma 4.6

Let $U \in \mathbb{T}$ and $\psi^{*}(D) = X$, then $U \subseteq \psi^{*}(D \cap \psi(U))$.

Proof.

Let $x \in U$, and suppose if possible that $x \notin \psi^*(D \cap \psi(U))$ Then $(D \cap \psi(U)) \cap \psi(V) \in \mathcal{J}$, and since $\psi(U) \cap \psi(V) \in \mathcal{T}$. Therefore, $x \notin \psi^*(D) = X$. This is a contradiction .That is $U \subseteq \psi^*(D \cap \psi(U))$.

Corollary 4.7

(1) Let $U \in \mathbb{T}$ and ψ -Cl^{*}(D) = X, then $U \subseteq \psi$ -Cl^{*} (D $\cap \psi$ (U)).

(2) Let $U \in \mathfrak{T}$, and ψ -Cl (D) = X. Then $U \subseteq \psi$ -Cl (D $\cap \psi$ (U)).

Using Remark 3.2: (1), (2), and similar to the proof of Lemma 4.6.

Theorem 4.8

Let $y \in \mathfrak{T}$, and $\psi^{*}(A) = X$. Then $\psi_{y}^{*}(A_{1}) = Y$, where $A_{1} = A \cap y$.

Proof.

By lemma 4.6 $Y \subseteq \psi_x^*(A \cap Y) = \psi_x^*(A_1)$.

Then $Y = \psi_x^*(A_1) \cap y = \psi_y^*(A_1)$.

Using Remark 3.2:(1),(2), and Theorem 4.8we get the following corollary;

Corollary 4.9

(1)Let $y \in \mathcal{T}$, and ψ -Cl*(A) = X. Then ψ - Cl_y*(A₁) = Y, where A₁ = A \cap Y.

(2) Let $y \in \mathbb{T}$, and ψ -Cl (A) = X. Then ψ - Cl_y (A₁) = Y, where A₁ = A \cap Y.

Theorem 4.10

Let (X, T, I) be ψ -I-resolvable space, if Y is open .Then (Y, T_y, I_y) is ψ -I_y-resolvable.

Proof.

Assume that (X, T, I) is ψ -I-resolvable space .Then there exists two disjoint ψ -dense, and I-dense subsets such that: $A \bigcup B = X$, and ψ -Cl (A) = B^{*} = X.

Note that $Y = Y \cap X = Y \cap (A \cup B) = (Y \cap A) \cup (Y \cap B)$, and $(Y \cap A) \cap (Y \cap B) = Y \cap (A \cap B) = \Phi$.

Put $A_1 = A \cap Y$ and $B_1 = B \cap Y$. Then $Y = A_1 \cup B_1$, $A_1 \cap B_1 = \Phi$.

By corollary 3.10: (2), we have ψ -Cl _y (A₁) = Y, and by lemma we have B^{*}₁y = Y. Hence (Y, $\mathcal{T}_y, \mathcal{J}_y$) is ψ - \mathcal{J}_y -resolvable.

Corollary 4.11

(1) Let (X, $\mathfrak{T}, \mathfrak{I}$) be ψ - \mathfrak{T}^* -resolvable space, if Y is open .Then (Y, $\mathfrak{T}_y, \mathfrak{I}_y$) is ψ - \mathfrak{T}^*_y - resolvable.

(2) Let (X, T, \mathcal{J}) be ψ -resolvable space, if Y is open .Then (Y, \mathcal{T}_y , \mathcal{J}_y) is ψ - resolvable.

Definition 4.12

A subset A of an ideal space (X, $\mathfrak{T}, \mathfrak{I}$) is said to be ψ -pre-open if A \subseteq Int ψ -Cl (A).

Definition 4.13

(1) An ideal space (X, \mathcal{T} , \mathcal{J}) is said to be ψ - \mathcal{J} -Housdorff, if for every distinct point **x**, $\mathbf{y} \in X$, there exist two disjoint ψ -pre-open, and \mathcal{J} -open sets containing each respectively.

(2)An ideal space (X, \mathcal{T}, \mathcal{J}) is said to be ψ - \mathcal{T}^* -Housdorff, if for every distinct point **x**, $\mathbf{y} \in X$, there exist two disjoint ψ -pre-open, and pre- \mathcal{J} -open sets containing each respectively.

(3)An ideal space (X, T, I) is said to be ψ -Housdorff, if for every distinct point **x**, $\mathbf{y} \in X$, there exist two disjoint ψ -pre-open sets containing each respectively.

Lemma 4.14

If ψ ({x}) $\in \mathcal{J}$. Then ψ *({x}) = Φ .

Proof.

Assume that $\psi^{*}(\{x\}) \neq \Phi$, then there exist $y \in \psi^{*}(\{x\})$ such that $\psi(U) \cap \{x\} \notin \mathcal{I}$ for every $U \in \mathcal{I}(x)$. Implies that $\psi(\{x\}) \notin \mathcal{I}$. This is a contradiction.

Theorem 4.15

If an ideal space (X, T, \mathfrak{I}) is ψ - \mathfrak{I} -resolvable, and the scattered set of (X, T) are in \mathfrak{I} , then (X, T, \mathfrak{I}) is ψ - \mathfrak{I} -Housdorff.

Proof.

Let A and B be disjoint ψ -dense, and I-dense subsets of X such that X = A \bigcup B. Since ψ -Cl (A) = X and B* = X. Therefore, A \subseteq Int ψ -Cl (A) and B \subseteq Int B*, then A and B are ψ -pre-open and \mathscr{J} -open sets respectively. Let x, y be any two element of X and both x and y are in A .Take U = A\{y} and V = B \bigcup {y}. It is easily observed (see [6], Theorem 2.3 (h)]) that V also \mathscr{J} -open set and y in V. Now to show that U = A \bigcup {x} is ψ -pre-open.

 ψ - Cl (A \bigcup {x}) = ψ -Cl (A) \bigcup ψ -Cl ({x} = X \bigcup ψ -Cl ({x}) = X .Hence A \bigcup {x} \subseteq Int ψ -Cl (A \bigcup {x}), so U is ψ -pre-open. Hence (X, T. I) is ψ -I-Housdorff.

From the above theorem we get the following corollary:

Corollary 4.16

(1) If an ideal space (X, T, \mathfrak{I}) is ψ -T*-resolvable, and the scattered set of (X, T*) are in \mathfrak{I} , then (X, T, \mathfrak{I}) is ψ -T*-Housdorff.

(2) If an ideal space (X, T, \mathfrak{I}) is ψ -resolvable, and the scattered set of (X, T) are in \mathfrak{I} , then (X, T, \mathfrak{I}) is ψ -Housdorff.

References

Dontchev, J., Ganster, M., Rose, D., Ideal resolvability. Topology and its Appl. 93(1999), 1-16.

J Dontcher, On Housdorff spaces via topology ideals and I-irresolute functions Annals of the New York Academy of Sciences, Papers on General Topology and Applications, Vol.767(1995), 28-38.

J.Donkhev, On pre-I-open sets and a decomposition of I-continuity, Banyan Math. J., 2 (1996).

J. Dontcher, M.Ganster, D.Rose, Ideal resolvability, Topology and its Applications, 19(1999), 1-6.

E.Hewitt, A problem of set-theoretic topology, Duke Math.J,10 (1943),309-333.

D.Jankovic and T.R.Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(1990),295-310.

D. Jankovic and T.R.Hamlett, Compatible Extensions of Ideals, Bollettino U.M.I,7(1992),453-465.

K.Kuratowski,Topology,Vol 1,Academic Press, New York,1966. K. Kuratowski, Topology I, Warszawa, 1933.

T.Natkaniec, On I-continuity and I-semicontinuity points, Math Solvaca, 36:3 (1986), 297-312.

V.R.Devid.Sivaraj, T.T. Chelvam, Codense and completely codense ideals, Acta Nath. Hungar. 108 (2005) 197-205.

R.Vaidyanathaswamy, set topology, Ghelsea Publishing company (1960).