T_{i} Spaces with Respect to Weak Forms of ω-Open

 Sets, for $i=0,1,2$By
L. A. Al-Swidi And M. H. Hadi
University of Babylon, College of Education Ibn-Hayaan, Mathematics Department.

Abstract

In this paper we introduce the associative separation axioms of the weak ω-open sets defined in [5], and then give some new theorems about them.

Key words. Weak separation axioms, weak ω-open sets, weak T_{0} spaces, weak T_{1} spaces, weak T_{2} spaces.

1. Introduction and Preliminaries

Through out this paper, (X, T) stands for topological space. Let (X, T) be a topological space and A a subset of X. A point x in X is called condensation point of A if for each U in T with x in U, the set $U \cap A$ is un countable [3]. In 1982 the ω-closed set was first introduced by H. Z. Hdeib in [3], and he defined it as: A is $\boldsymbol{\omega}$-closed if it contains all its condensation points and the ω-open set is the complement of the ω-closed set. Equivalently. A sub set W of a space (X, T), is ω-open if and only if for each $x \in W$, there exists $U \in T$ such that $x \in U$ and $U \backslash W$ is countable. The collection of all ω-open sets of (X, T) denoted T_{ω} form topology on X and it is finer than T. Several characterizations of ω-closed sets were provided in $[1,3,4,6]$.

In 2009 in [5] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced and investigated new notions called $\alpha-\omega$-open, pre - ω-open, $b-\omega$-open and $\beta-\omega$-open sets which are weaker than ω-open set. Let us introduce these notions in the following definition:

Definition 1.1. [5] A subset A of a space X is called

1. $\alpha-\omega$-open if $A \subseteq \operatorname{int}_{\omega}\left(c l\left(\operatorname{int}_{\omega}(A)\right)\right)$.
2. pre $-\omega-$ open if $A \subseteq \operatorname{lnt}_{\omega}(c l(A))$.
3. $\boldsymbol{b}-\omega-o p e n$ if $A \subseteq \operatorname{int} t_{\omega}(c l(A)) \cup c l\left(\operatorname{int} \epsilon_{\omega}(A)\right)$.
4. $\beta-\omega$-open if $A \subseteq c l\left(\operatorname{int}_{\omega}(c l(A))\right)$.

For a subset A of X, the ω-interior of the set A defined as the union of all ω-open sets contained in A, and denoted by $i n t_{\omega}(A)$. The closure of A will be denoted by $c l(A)$.

Remark 1.2. [5] Any ω-open (resp. $a-\omega$-open, pre- ω-open, $b-\omega$-open and $\beta-\omega$-open) sets need not be open (resp. α-open, pre-open, b-open and β-open) as can be seen in the following example:

In [5] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced relationships among the weak open sets above by the lemma below:

Lemma 1.3. [5] In any topological space:

1. Any open set is ω-open.
2. Any ω-open set is $\alpha-\omega$-open.
3. Any $\alpha-\omega$-open set is pre- ω-open.
4. Any pre - ω-open set is $b-\omega$-open.
5. Any $b-\omega$-open set is $\beta-\omega$-open.

The converse is not true [5].

Remark 1.4. [5] The intersection of two pre- ω-open, (resp. $b-\omega$-open and $\beta-\omega$-open) sets need not be pre $-\omega$-open, (resp. $b-\omega$-open and $\beta-\omega$-open) sets. As can be seen in the following example:

Example 1.5. [5] Let $X=\mathbb{R}$ with the usual topology T. Let $A=Q$ and $B=(R \backslash Q) \cup\{1\}$, then A and B are pre $-\omega$-open, but $A \cap B=\{1\}$, is not $\beta-\omega$-open since $c l\left(\operatorname{int} \omega_{\omega}\right.$ $(c l(\{1\})))=c l\left(\right.$ int $\left._{\omega}(\{1\})\right)=c l(\{\varnothing\})=\varnothing$.

Lemma 1.6. [5] The intersection of an $\alpha-\omega$-open (resp. pre- ω-open, $b-\omega$-open and $\beta-\omega$-open) subset of any topological space and an open subset is $\alpha-\omega$-open (resp. pre - ω-open, $b-\omega$-open and $\beta-\omega$-open) set.

Theorem 1.7. The union of an $\alpha-\omega$-closed (resp. pre $-\omega-$ closed, $b-\omega-$ closed and $\beta-\omega-$ closed) subset of any topological space and a closed subset is $\alpha-\omega-$ closed (resp. pre $-\omega-$ closed, $b-\omega-$ closed and $\beta-\omega-$ closed) set.

Proof:

Let A be an $\alpha-\omega$-closed subset of a topological space X and B is a closed subset of X. Then A^{c} is $\alpha-\omega$-open subset of X and B° is an open subset of X. Then by Lemma 1.6 we have $A^{\bullet} \cap B^{\circ}$ is an is $\alpha-\omega$-open subset of X and $\left(A^{\bullet} \cap B^{c}\right)^{\circ}$ is an $\alpha-\omega$-closed subset of X Therefore $\left(A^{\circ} \cap B^{\circ}\right)^{\circ}=A \cup B$ is $\alpha-\omega$-closed subset of X

Theorem 1.8. [5] If $\left\{A_{\alpha}: \alpha \in \Delta\right\}$ is a collection of $\alpha-\omega$-open (resp. pre- ω-open, $b-\omega$-open and $\beta-\omega$-open) subsets of the topological space (X, T), then $\mathrm{U}_{\alpha \in \Delta} A_{\alpha}$ is $\alpha-\omega$-open (resp. pre $-\omega$-open, $b-\omega$-open and $\beta-\omega$-open) set.

Theorem 1.9. If $\left\{A_{\alpha \alpha}: \alpha \in \Delta\right\}$ is a collection of $\alpha-\omega$-closed (resp. pre- ω-closed, $b-\omega$-closed and $\beta-\omega$-closed) subsets of the topological space (X, T), then $\cap_{\alpha \in \Delta} A_{\alpha}$ is $\alpha-\omega-$ closed (resp. pre $-\omega$-closed, $b-\omega$-closed and $\beta-\omega$-closed) set.

Proof:

Let $\left\{A_{\alpha}: \alpha \in \Delta\right\}$ be a collection of $\alpha-\omega$-closed subsets of X, then $A_{\alpha}{ }^{0}$ (the complement set of A_{α}) is $\alpha-\omega$-open set for each $\alpha \in \Delta$. Then by Theorem 1.8 we have $U_{\alpha \in \Delta}$ $A_{\alpha}{ }^{0}$ is $\alpha-\omega$-open set. Therefore $\left(\mathrm{U}_{\alpha \in \triangle} A_{\alpha}{ }^{\varrho}\right)^{c}=\cap_{\alpha \in \mathbb{A}} A_{\alpha}$, is $\alpha-\omega$-closed subsets of X. A similar proof for the other cases

Definition 1.10. [5] A space (X, T) is called a door space if every subset of X is either open or closed.

Lemma 1.11. [5] If (X, T) is a door space, then every pre- ω-open set is ω-open.

Theorem 1.12. Let A be a $\beta-\omega$-open set in the topological space (X, T), then A is $b-\omega$-open, whenever X is door space.

Proof:

Let A be a $\beta-\omega$-open subset of X. If A is open then by Lemma 1.4 it is $b-\omega$-open. Then if A is closed we get $A \subseteq c l\left(i n t_{\omega}(A)\right) \subseteq \operatorname{int}_{\omega}(c l(A)) \cup c l\left(i n t_{\omega}(A)\right)$. Thus A is b $-\omega$-open set in X

Definition 1.13. [5] A subset A of a space X is called

1. An $\omega-\boldsymbol{t}-$ set, if $\operatorname{int}(A)=\operatorname{int}_{\omega}(c l(A))$.
2. An $\omega-B-$ set if $A=U \cap V$, where U is an open set and V is an $\omega-t-$ set.
3. An $\omega-\boldsymbol{t}_{\alpha}-$ set, if $\operatorname{int}(A)=\operatorname{int}_{\omega}\left(c l\left(\operatorname{int}_{\omega}(A)\right)\right)$.
4. An $\boldsymbol{\omega}-\boldsymbol{B}_{\alpha}-$ set if $A=U \cap V$, where U is an open set and V is an $\omega-t_{\alpha}-$ set.
5. An $\omega-\operatorname{set}$ if $A=U \cap V$, where U is an open set and $\operatorname{int}(V)=\operatorname{int} \omega_{\omega}(V)$.

Definition 1.14. Let (X, T) be topological space. It said to be satisfy

1. The ω-condition if every ω-open set is ω-set.
2. The $\boldsymbol{\omega}-\boldsymbol{B}_{\alpha}$-condition if every $\alpha-\omega$-open set is $\omega-B_{\alpha}-$ set.
3. The $\boldsymbol{\omega}-\boldsymbol{B}$-condition if every pre- $\boldsymbol{\omega}$-open is $\omega-B-$ set.

Now let us introduce the following lemma from [5].

Lemma 1.15. [5] For any subset A of a space X, We have

1. A is open if and only if A is ω-open and ω-set.
2. A is open If and only if A is $\alpha-\omega-$ open and $\omega-B_{\alpha}-$ set.
3. A is open if and only if A is pre $-\omega$-open and $\omega-B-$ set.

Lemma 1.16. [5] Let (X, T) be a topological space, and let $A \subseteq X$. If A is $b-\omega$-open set such that $\operatorname{int}_{\omega}(A)=\emptyset$, then A is pre $-\omega$-open.

Definition 1.17. Let X be a topological space. We say that a subset A of X is $\boldsymbol{\omega}$-compact [2] (resp. $\alpha-\omega$-compact, pre- ω-compact, $b-\omega$-compact and $\beta-\omega$-compact) if for each cover of ω-open (resp. $\alpha-\omega$-open, pre $-\omega$-open, $b-\omega$-open and $\beta-\omega$-open) sets from X contains a finite subcover for A.

Definition 1.18. A function $f:(X, \sigma) \rightarrow(Y, \tau)$ is called $\boldsymbol{\omega}$-continuous (resp. $\boldsymbol{\alpha}$ - $\boldsymbol{\omega}$-continuous, pre- $\boldsymbol{\omega}$-continuous, $\boldsymbol{b}-\boldsymbol{\omega}$-continuous and $\boldsymbol{\beta}-\boldsymbol{\omega}$-continuous), if for each $x \in X$, and each
ω-open (resp. $\alpha-\omega$-open, pre - ω-open, $b-\omega$-open and $\beta-\omega$-open) set V containing $f(x)$, there exists an ω-open (resp. $\alpha-\omega$-open, pre $-\omega$-open, $b-\omega$-open and $\beta-\omega$ open,) set U containing x, such that $f(U) \subset V$.

2. weak T_{0} spaces

In this article, let us introduce the weak T_{0} spaces with some relations, propositions and theorems.

Definition 2.1. Let X be a topological space. If for each $x \neq y \in X_{s}$ either there exists a set U, such that $x \in U, y \notin U_{s}$ or there exists a set U such that $x \notin U_{s} y \in U$. Then X called

1. $\omega-\boldsymbol{T}_{0}$ space, whenever U is ω-open set in X.
2. $\boldsymbol{\alpha}-\boldsymbol{\omega}-\boldsymbol{T}_{0}$ space, whenever U is $\alpha-\omega$-open set in X.
3. pre- $\boldsymbol{\omega}-\boldsymbol{T}_{0}$ space, whenever U is pre $-\omega-$ open set in X.
4. $\boldsymbol{b}-\boldsymbol{\omega}-\boldsymbol{T}_{0}$ space, whenever U is $b-\omega$-open set in X.
5. $\boldsymbol{\beta}-\boldsymbol{\omega}-\boldsymbol{T}_{0}$ space, whenever U is $\beta-\omega$-open set in X.

Using Lemma 1.3 we can write the following proposition:
Proposition 2.2. Let (X, T) be a topological space.

1. If (X, T) is T_{0}, then it is $\omega-T_{0}$.
2. If (X, T) is $\omega-T_{0}$, then it is $\alpha-\omega-T_{0}$.
3. If (X, T) is $\alpha-\omega-T_{0}$, then it is pre- $\omega-T_{0}$
4. If (X, T) is pre $-\omega-T_{0}$, then it is $b-\omega-T_{0}$.
5. If (X, T) is $b-\omega-T_{0}$, then it is $\beta-\omega-T_{0}$.

Remark 2.3. The converse of the above theorem is not true as we see in the following example:
Example 2.4. Let $X=\{1,2,3\} \quad$ with the topology $T=\{\emptyset, X,\{1\}\}$. It is clear that (X, T) is $\omega-T_{0}$ space but not T_{0} space.

Theorem 2.5. Let (X, T) be a door space. Then we have:

1. Every pre $-\omega-T_{0}$ space is $\omega-T_{0}$.
2. Every $\beta-\omega-T_{0}$ space is $b-\omega-T_{0}$.

Proof:

Directly from Definition 2.1, Lemma 1.11 and Theorem 1.12

Theorem 2.6. Let (X, T), be a topological space.

1. If (X, T) is $\omega-T_{0}$ topological space satisfies the ω-condition, then it is T_{0} topological space.
2. If (X, T) is $\alpha-\omega-T_{0}$ topological space satisfies the $\omega-B_{\alpha}$-condition, then it is T_{0} topological space.
3. If (X, T) is pre- $\omega-T_{0}$ topological space satisfies the $\omega-B$-condition, then it is T_{0} topological space.

Proof:

Directly from Definition 2.1, Definition 1.14 and Lemma 1.15

Proposition 2.7. If (X, T) is $b-\omega-T_{0}$ topological space with the property that any $b-\omega$-open subset has empty ω-interior. Then it is pre $-\omega-T_{0}$.

Proof:

Directly from Definition 2.1 and Lemma 1.16
One can summarize the theorems above by Figure 1.

- Door space
- $\boldsymbol{\omega}$ - condition
$-\omega-\boldsymbol{B}_{\boldsymbol{\alpha}}$-condition
- $\boldsymbol{\omega}-\boldsymbol{B}$-condition
- empty ω - interior

3. weak T_{1} space

Weak types of $\omega-T_{1}$ spaces is the subject of this article. Also we introduce some related results.

Definition 3.1. Let X be a topological space. For each $x \neq y \in X_{s}$ there exists a set U, such that $x \in U_{s} y \notin U$, and there exists a set V such that $y \in V_{s} x \notin V$, then X is called

1. $\omega-\boldsymbol{T}_{1}$ space if U is open and V is ω-open sets in X.
2. $\alpha-\omega-\boldsymbol{T}_{1}$ space if U is open and V is $\alpha-\omega$-open sets in X.
3. $\boldsymbol{\omega}^{\star}-\boldsymbol{T}_{1}$ space [3] if U and V are ω-open sets in X.
4. $\boldsymbol{\alpha}-\boldsymbol{\omega}^{\star}-\boldsymbol{T}_{1}$ space if U is ω-open and V is $\alpha-\omega$-open sets in X.
5. $\boldsymbol{\alpha}-\boldsymbol{\omega}^{* *}-\boldsymbol{T}_{1}$ space if U and V are $\alpha-\omega$-open sets in X.
6. pre $-\omega-T_{1}$ space if U is open and V is pre $-\omega$-open sets in X.
7. pre $-\omega^{\star}-T_{1}$ space if U is ω-open and V is pre $-\omega-$ open sets in X.
8. $\boldsymbol{\alpha}-$ pre $-\omega-\boldsymbol{T}_{1}$ space if U is $\alpha-\omega-$ open and V is pre $-\omega-$ open sets in X.
9. pre $-\omega^{\#}-\boldsymbol{T}_{1}$ space if U and V are pre $-\omega-$ open sets in X.
10. $\boldsymbol{b}-\boldsymbol{\omega}-\boldsymbol{T}_{1}$ space if U is open and V is $b-\omega-$ open sets in X.
11. $\boldsymbol{b}-\boldsymbol{\omega}^{\star}-\boldsymbol{T}_{1}$ space if U is ω-open and V is $b-\omega$-open sets in X.
12. $\boldsymbol{\alpha}-\boldsymbol{b}-\boldsymbol{\omega}-\boldsymbol{T}_{1}$ space if U is $\alpha-\omega$-open and V is $b-\omega$-open sets in X.
13.pre $-\boldsymbol{b}-\omega-\boldsymbol{T}_{1}$ space if U is pre $-\omega$-open and V is $b-\omega$-open sets in X.
13. $\boldsymbol{b}-\boldsymbol{\omega}^{\star t}-\boldsymbol{T}_{1}$ space if U and V are $b-\omega-$ open sets in X.
14. $\beta-\omega-\boldsymbol{T}_{1}$ space if U is open and V is $\beta-\omega$-open sets in X.
15. $\beta-\omega^{\star}-T_{1}$ space if U is ω-open and V is $\beta-\omega$-open sets in X.
16. $\alpha-\beta-\omega-T_{1}$ space if U is $\alpha-\omega$-open and V is $\beta-\omega$-open sets in X.
18.pre $-\beta-\omega-T_{1}$ space if U is pre $-\omega$-open and V is $\beta-\omega$-open sets in X.
17. $\beta-\omega^{* *}-T_{1}$ space if U and V are $\beta-\omega-$ open sets in X.
18. $\boldsymbol{b}-\boldsymbol{\beta}-\boldsymbol{\omega}-\boldsymbol{T}_{1}$ space if U is $b-\omega$-open and V is $\beta-\omega$-open sets in X

Theorem 3.2. Let X be a topological space,

1. X is $\omega-T_{1}$ space if and only if for each $x \neq y \in X,\{x\}$ is closed and $\{y\}$ is ω-closed set in X.
2. X is $\alpha-\omega-T_{1}$ space if and only if for each $x \neq y \in X,\{x\}$ is closed and $\{y\}$ is $\alpha-\omega$-closed set in X.
3. X is $\omega^{\star}-T_{1}$ space if and only if for each $x \in X_{s}\{x\}$ is ω-closed set in X.
4. X is $\alpha-\omega^{\star}-T_{1}$ space if and only if for each $x \neq y \in X_{s}\{x\}$ is ω-closed and $\{y\}$ is $\alpha-\omega-$ closed set in X.
5. X is $\alpha-\omega^{\star *}-T_{1}$ space if and only if for each $x \in X,\{x\}$ is $\alpha-\omega$-closed set in X.
6. X is pre $-\omega-T_{1}$ space if and only if for each $x \neq y \in X,\{x\}$ is closed and $\{y\}$ is pre- ω-closed set in X.
7. X is pre $-\omega^{\star}-T_{1}$ space if and only if for each $x \neq y \in X,\{x\}$ is ω-closed and $\{y\}$ is pre- ω-closed set in X.
8. X is $\alpha-$ pre $-\omega-T_{1}$ space if and only if for each $x \neq y \in X,\{x\}$ is $\alpha-\omega$-closed and $\{y\}$ is pre- ω-closed set in X.
9. X is pre $-\omega^{\star *}-T_{1}$ space if and only if for each $x \in X_{s}\{x\}$ is pre $-\omega$-closed set in X.
10. X is $b-\omega-T_{1}$ space if and only if for each $x \neq y \in X,\{x\}$ closed and $\{y\}$ is $b-\omega$-closed set in X.
11. X is $b-\omega^{\star}-T_{1}$ space if and only if for each $x \neq y \in X,\{x\}$ is ω-closed and $\{y\}$ is $b-\omega-$ closed set in X.
12. X is $\alpha-b-\omega-T_{1}$ space if and only if for each $x \neq y \in X,\{x\}$ is $\alpha-\omega$-closed and $\{y\}$ is $b-\omega-$ closed set in X.
13. X is pre $-b-\omega-T_{1}$ space if and only if for each $x \neq y \in X,\{x\}$ is pre-closed and $\{y\}$ is $b-\omega-$ closed set in X.
14. X is $b-\omega^{* *}-T_{1}$ space if and only if for each $x \in X_{,}\{x\}$ is $b-\omega$-closed set in X.
15. X is $\beta-\omega-T_{1}$ space if and only if for each $x \neq y \in X,\{x\}$ is closed and $\{y\}$ is $\beta-\omega-$ closed set in X.
16. X is $\beta-\omega^{\star}-T_{1} \quad$ space if and only if for each $x \neq y \in X,\{x\}$ is ω-closed and $\{y\}$ is $\beta-\omega-$ closed set in X.
17. X is $\alpha-\beta-\omega-T_{1}$ space if and only if for each $x \neq y \in X,\{x\}$ is $\alpha-\omega$-closed and $\{y\}$ is $\beta-\omega-$ closed set in X.
18. X is pre $-\beta-\omega-T_{1}$ space if and only if for each $x \neq y \in X,\{x\}$ is pre $-\omega$-closed and $\{y\}$ is $\beta-\omega-$ closed set in X.
19. X is $\beta-\omega^{* *}-T_{1}$ space if and only if for each $x \in X_{,}\{x\}$ is $\beta-\omega$-closed set in X.
20. X is $b-\beta-\omega-T_{1}$ space if and only if for each $x \neq y \in X,\{x\}$ is $b-\omega$-closed and $\{y\}$ is $\beta-\omega-$ closed set in X.

Proof of (4):

Let $x \in X$. If $y \in X$, such that $y \neq x$, then there exist an ω-open set U_{y} containing y but not x, and $\alpha-\omega$-open set U_{x} containing x but not y. Hence $y \in U_{y} \subset\{x\}^{c}$. Therefore $\{x\}^{c}=U_{y \in[x]^{c}} \quad U_{y}$, which is ω-open set and $\{x\}$ is ω-closed set in X. Also $\{y\}$ is $\alpha-\omega-$ closed set in X. In fact $x \in U_{x} \subset\{y\}^{c}$, which implies $\{y\}^{\circ}=U_{x \in[y\}^{c}} U_{x}$. Then because U_{x} is $\alpha-$ ω-open set, for each $x \in\{y\}^{\circ}$, so $\{y\}^{\circ}$ is $\alpha-\omega$-open set, and $\{y\}$ is $\alpha-\omega$-closed set Now for the converse, let $x \neq y \in X, U_{x}=X \backslash\{y\}$ is $\alpha-\omega$-open set containing x but not y, and $U_{y}=X \backslash\{x\}$ is ω-open set, containing y but not x. Thus X is $\alpha-\omega^{\star}-T_{1}$ space.

A similar proof for $1,2,3,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19$, and 20

Theorem 3.3. For any topological space.

1. Any T_{1} is $\omega-T_{1}$ space.
2. Any $\omega-T_{1}$ is $\alpha-\omega-T_{1}$ space.
3. Any $\omega-T_{1}$ is $\omega^{\star}-T_{1}$ space.
4. Any $\omega^{\star}-T_{1}$ is $\alpha-\omega^{\star}-T_{1}$ space.
5. Any $\alpha-\omega^{\star}-T_{1}$ is pre $-\omega^{\star}-T_{1}$ space.
6. Any $\alpha-\omega-T_{1}$ is $\alpha-\omega^{\star}-T_{1}$ space.
7. Any $\alpha-\omega-T_{1}$ is pre $-\omega-T_{1}$ space.
8. Any pre $-\omega-T_{1}$ is $\beta-\omega-T_{1}$ space.
9. Any $\alpha-\omega^{\star}-T_{1}$ is $\alpha-\omega^{\star *}-T_{1}$ space.
10. Any $\alpha-\omega^{\star \hbar}-T_{1}$ is $\alpha-$ pre $-\omega-T_{1}$ space.
11. Any α-pre $-\omega-T_{1}$ is pre $-\omega^{* *}-T_{1}$ space.
12. Any pre $-\omega^{\star \star}-T_{1}$ is pre $-b-\omega-T_{1}$ space.
13. Any pre $-b-\omega-T_{1}$ is $b-\omega^{\star+}-T_{1}$ space.
14. Any $b-\omega^{\star *}-T_{1}$ is $b-\beta-\omega-T_{1}$ space.
15. Any $b-\beta-\omega-T_{1}$ is $\beta-\omega^{* *}-T_{1}$ space.
16. Any pre $-\omega^{\star}-T_{1}$ is $\alpha-$ pre $-\omega-T_{1}$ space.
17. Any pre $-\omega^{\star}-T_{1}$ is $b-\omega^{\star}-T_{1}$ space.
18. Any $\alpha-$ pre $-\omega-T_{1}$ is $\alpha-b-\omega-T_{1}$ space.
19. Any $b-\omega^{\star}-T_{1}$ is $\alpha-b-\omega-T_{1}$ space.
20. Any pre $-\omega-T_{1}$ is $b-\omega-T_{1}$ space.
21. Any $\beta-\omega-T_{1}$ is $\beta-\omega^{\star}-T_{1}$ space.
22. Any $\beta-\omega^{\star}-T_{1}$ is $\alpha-\beta-\omega-T_{1}$ space.
23. Any $\alpha-\beta-\omega-T_{1}$ is pre $-\beta-\omega-T_{1}$ space.
24. Any pre $-\omega-T_{1}$ is pre $-\omega^{\star}-T_{1}$ space.
25. Any $b-\omega-T_{1}$ is $\beta-\omega-T_{1}$ space.
26. Any $b-\omega^{\star}-T_{1}$ is $\beta-\omega^{\star}-T_{1}$ space.
27. Any $\alpha-b-\omega-T_{1}$ is $\alpha-\beta-\omega-T_{1}$ space.
28. Any $\alpha-b-\omega-T_{1}$ is pre $-b-\omega-T_{1}$ space.
29. Any pre $-b-\omega-T_{1}$ is pre $-\beta-\omega-T_{1}$ space.
30. Any pre $-\beta-\omega-T_{1}$ is $b-\beta-\omega-T_{1}$ space.
31. Any $b-\omega-T_{1}$ is $b-\omega^{\star}-T_{1}$ space.

Proof:

Easy. By using Lemma 1.3

Remark 3.4. The converse of the theorem above is not satisfied in general. As we see in the following examples.

Example 3.5. Let $X=\{1,2,3\}$ with the topology $T=\{\varnothing, X,\{1\},\{3\},\{1,3\}\} .(X, T)$ is $\omega-T_{1}$ space, but not T_{1}.

To have equivalence between the weak $T_{1} \mathrm{~S}$ spaces, we shall introduce the following theorems:

Theorem 3.6. Let (X, T) be a door space. Then we have:

1. Every pre $-\omega-T_{1}$ space is $\omega-T_{1}$.
2. Every pre $-\omega^{\star}-T_{1}$ space is $\omega^{\star}-T_{1}$.
3. Every $\alpha-$ pre $-\omega-T_{1}$ space is $\alpha-\omega^{\star}-T_{1}$,
4. Every pre $-b-\omega-T_{1}$ space is $\mathrm{b}-\omega^{\star}-T_{1}$.
5. Every pre $-\beta-\omega-T_{1}$ space is $\beta-\omega^{\star}-T_{1}$.
6. Every pre $-\omega^{\star \star}-T_{1}$ space is $\omega^{\star}-T_{1}$.
7. Every $b-\beta-\omega-T_{1}$ space is $b-\omega^{\star *}-T_{1}$.
8. Every $\beta-\omega^{* *}-T_{1}$ space is $b-\omega^{* *}-T_{1}$.
9. Every pre $-\beta-\omega-T_{1}$ space is pre $-b-\omega-T_{1}$.
10. Every $\alpha-\beta-\omega-T_{1}$ space is $\alpha-b-\omega-T_{1}$.
11. Every $\beta-\omega^{\star}-T_{1}$ space is $b-\omega^{\star}-T_{1}$.
12. Every $\beta-\omega-T_{1}$ space is $b-\omega-T_{1}$.

Proof:

Directly from Lemma 1.11 and Theorem 1.12
Using Definition 1.14 and Lemma 1.15 we can prove the following important theorem
Theorem 3.7. For any topological space (X, T).
A. Let (X, T), satisfies the ω-condition.

1. If (X, T) is $\omega-T_{1}$, then it is T_{1}.
2. If (X, T) is $\omega^{\star}-T_{1}$, then it is T_{1}.
3. If (X, T) is $\alpha-\omega^{\star}-T_{1}$, then it is $\alpha-\omega-T_{1}$.
4. If (X, T) is pre $-\omega^{\star}-T_{1}$, then it is pre $-\omega-T_{1}$.
5. If (X, T) is $b-\omega^{\star}-T_{1}$, then it is $b-\omega-T_{1}$.
6. If (X, T) is $\beta-\omega^{\star}-T_{1}$, then it is $\beta-\omega-T_{1}$.
B. Let (X, T), satisfies the $\omega-B_{\alpha}$-condition.
7. If (X, T) is is $\alpha-\omega-T_{1}$, then it is T_{1}.
8. If (X, T) is $\alpha-\omega^{\star}-T_{1}$, then it is $\omega-T_{1}$.
9. If (X, T) is $\alpha-\omega^{* *}-T_{1}$, then it is T_{1}.
10. If (X, T) is $\alpha-$ pre $-\omega-T_{1}$, then it is pre $-\omega-T_{1}$.
11. If ($X, T)$ is $a-b-\omega-T_{1}$, then it is $b-\omega-T_{1}$.
12. If (X, T) is $\alpha-\beta-\omega-T_{1}$, then it is $\beta-\omega-T_{1}$.
C. Let (X, T), satisfies the $\omega-B-$ condition.
13. If (X, T) is pre $-\omega-T_{1}$, then it is T_{1}.
14. If $\left(X_{,} T\right)$ is are $-\omega^{\star}-T_{1}$, then it is $\omega-T_{1}$.
15. If (X, T) is are $-\omega^{\star \star}-T_{1}$, then it is T_{1}.
16. If (X, T) is are $-b-\omega-T_{1}$, then it is $b-\omega-T_{1}$.
17. If (X, T) is are $-\beta-\omega-T_{1}$, then it is $\beta-\omega-T_{1}$.
18. If (X, T) is $\alpha-p r e-\omega-T_{1}$, then it is $\alpha-\omega-T_{1}$.

Proposition 3.8. Let (X, T) be a topological space with the property that any $b-\omega$-open subset has empty ω-interior.

1. If (X, T) is $b-\omega-T_{1}$, then it is are $-\omega-T_{1}$.
2. If (X, T) is $b-\omega^{\star}-T_{1}$, then it is are $-\omega^{\star}-T_{1}$.
3. If (X, T) is $\alpha-b-\omega-T_{1}$, then it is $\alpha-p r e-\omega-T_{1}$.
4. If (X, T) is pre $-b-\omega-T_{1}$, then it is are $-\omega^{\star \hbar}-T_{1}$.
5. If (X, T) is $b-\omega^{\star \hbar}-T_{1}$, then it is are $-\omega^{\star \hbar}-T_{1}$.
6. If (X, T) is $b-\beta-\omega-T_{1}$, then it is are $-\beta-\omega-T_{1}$.

Proof:

Directly from Lemma 1.16
One can summarize the relationships among weak $T_{1} \mathrm{~S}$ spaces by Figure 2.

Definition 3.9. A topological space (X, T) is ω-symmetric if for x and y in the space X, $x \in c l_{\omega}(\{y\})$ implies $y \in c l_{\omega}(\{x\})$.

Proposition 3.10. Let X be a door, ω-symetric topological space. Then for each $x \in X$, the set $\{x\}$ is ω-closed.

Proof:

Let $x \neq y \in X$, since X is a door space so $\{y\}$ is open or closed set in X. When $\{y\}$ is open, so it is ω-open, let $V_{y}=\{y\}$. Whenever $\{y\}$ is ω-closed, $x \notin\{y\}=c l_{\omega}(\{y\})$. Since X is ω-symetric we get $y \notin c l_{\omega}(\{x\})$. Put $V_{y}=X \backslash c l_{\omega}(\{x\})$, then $x \notin V_{y}$ and $y \in V_{y}$, and V_{y} is ω-open set in X. Hence we get for each $y \in X \backslash\{x\}$ there is an ω-open set V_{y} such that $x \notin V_{y}$ and $y \in V_{Y}$. Therefore $X \backslash\{x\}=\mathrm{U}_{y \in \mathbb{X}\{x\}} V_{y}$ is ω-open, and $\{x\}$ is ω-closed

Proposition 3.11. Let (X, T) be an $\omega-T_{1}$ (resp. $\omega^{\star}-T_{1}, \alpha-\omega-T_{1}, \alpha-\omega^{\star}-T_{1}$, $b-\omega-T_{1}, b-\omega^{\star}-T_{1}$, pre $-\omega-T_{1}$, pre $-\omega^{\star}-T_{1}, \beta-\omega-T_{1}, \beta-\omega^{\star}-T_{1}$) topological space, then it is ω-symetric space.

Proof:

Assume $y \notin c l_{\omega}(\{x\})$, so $x \neq y$, then since X is $\omega-T_{1}$ there is an open set U containing x but not y, so $x \notin c l_{\omega}(\{y\})$. This completes the proof

Theorem 3.12. The topological door space is ω-symmetric if and only if it is $\omega^{\star}-T_{1}$. Proof:

Let (X, T) be a door ω-symmetric space. Then using Proposition 3.) - for each $x \in X$, $\{x\}$ is ω-closed set in X. Then by (3) of Theorem 3.2, we get that (X, T) is $\omega^{\star}-T_{1}$. On the other hand, assume (X, T) is $\omega^{\star}-T_{1}$, then directly by Proposition $3.11(X, T)$ is ω - symmetric space

4. Weak $\omega-T_{2}$ spaces

In this article we will define weak types of $\omega-T_{2}$ spaces and introduce some results about it.

Definition 4.1. Let X be a topological space. And for each $x \neq y \in X_{s}$ there exist two disjoint sets U and V with $x \in U$ and $y \in V_{s}$ then X is called:

1. $\omega-T_{2}$ space if U is open and V is ω-open sets in X.
2. $\alpha-\omega-\boldsymbol{T}_{2}$ space if U is open and V is $\alpha-\omega$-open sets in X.
3. $\boldsymbol{\omega}^{\star}-\boldsymbol{T}_{2}$ space if U and V are ω-open sets in X.
4. $\alpha-\omega^{\star}-\boldsymbol{T}_{2}$ space if U is ω-open and V is $\alpha-\omega$-open sets in X.
5. $\boldsymbol{\alpha}-\boldsymbol{\omega}^{* \star}-\boldsymbol{T}_{2}$ space if U and V are $\alpha-\omega$-open sets in X.
6. pre $-\omega-T_{2}$ space if U is open and V is pre $-\omega$-open sets in X.
7. pre $-\omega^{\star}-\boldsymbol{T}_{2}$ space if U is ω-open and V is pre- ω-open sets in X.
8. $\alpha-$ pre $-\omega-T_{2}$ space if U is α-open and V is pre $-\omega$-open sets in X.
9. pre $-\omega^{\star *}-T_{2}$ space if U and V are pre $-\omega-$ open sets in X.
10. $b-\omega-\boldsymbol{T}_{2}$ space if U is open and V is $b-\omega$-open sets in X.
11. $\boldsymbol{b}-\boldsymbol{\omega}^{\star}-\boldsymbol{T}_{2}$ space if U is ω-open and V is $b-\omega$-open sets in X.
12. $\boldsymbol{\alpha}-\boldsymbol{b}-\boldsymbol{\omega}-\boldsymbol{T}_{2}$ space if U is $\alpha-\omega$-open and V is $b-\omega$-open sets in X.
13. pre $-\boldsymbol{b}-\boldsymbol{\omega}-\boldsymbol{T}_{2}$ space if U is pre $-\omega$-open and V is $b-\omega$-open sets in X.
14. $\boldsymbol{b}-\boldsymbol{\omega}^{* *}-\boldsymbol{T}_{2}$ space if U and V are $b-\omega$-open sets in X.
15. $\beta-\omega-T_{2}$ space if U is open and V is $\beta-\omega$-open sets in X.
16. $\beta-\omega^{\star}-\boldsymbol{T}_{2}$ space if U is ω-open and V is $\beta-\omega-$ open sets in X.
17. $\alpha-\beta-\omega-T_{2}$ space if U is $\alpha-\omega$-open and V is $\beta-\omega$-open sets in X.
18. pre $-\boldsymbol{\beta}-\boldsymbol{\omega}-\boldsymbol{T}_{2}$ space if U is pre $-\omega-$ open and V is $\beta-\omega-$ open sets in X.
19. $\beta-\omega^{\star *}-T_{2}$ space if U and V are $\beta-\omega-$ open sets in X.
20. $\boldsymbol{b}-\boldsymbol{\beta}-\boldsymbol{\omega}-\boldsymbol{T}_{2}$ space if U is $b-\omega$-open and V is $\beta-\omega-$ open sets in X.

Remark 4.2. We can restate Theorem 3.3 for the weak $T_{2} \mathrm{~s}$ spaces.

Theorem 4.3. For any door topological space we have:

1. Every pre $-\omega-T_{2}$ space is $\omega-T_{2}$.
2. Every pre $-\omega^{\star}-T_{2}$ space is $\omega^{\star}-T_{2}$.
3. Every $\alpha-$ pre $-\omega-T_{2}$ space is $\alpha-\omega^{\star}-T_{2}$.
4. Every pre $-b-\omega-T_{2}$ space is $\mathrm{b}-\omega^{\star}-T_{2}$.
5. Every pre $-\beta-\omega-T_{2}$ space is $\beta-\omega^{\star}-T_{2}$.
6. Every pre $-\omega^{\star \star}-T_{2}$ space is $\omega^{\star}-T_{2}$.
7. Every $b-\beta-\omega-T_{2}$ space is $b-\omega^{\star \hbar}-T_{2}$.
8. Every $\beta-\omega^{* *}-T_{2}$ space is $b-\omega^{* *}-T_{2}$.
9. Every pre $-\beta-\omega-T_{2}$ space is pre $-b-\omega-T_{2}$.
10. Every $\alpha-\beta-\omega-T_{2}$ space is $\alpha-b-\omega-T_{2}$.
11. Every $\beta-\omega^{\star}-T_{2}$ space is $b-\omega^{\star}-T_{2}$.
12. Every $\beta-\omega-T_{2}$ space is $b-\omega-T_{2}$.

Proof:

Directly from Lemma 1.11 and Theorem 1.12

Theorem 4.4. For any topological space (X, T).
A. Let (X, T), satisfies the ω-condition.

1. If (X, T) is $\omega-T_{2}$, then it is T_{2}.
2. If $\left(X_{,} T\right)$ is $\omega^{\star}-T_{2}$, then it is T_{2}.
3. If (X, T) is $\alpha-\omega^{\star}-T_{2}$, then it is $\alpha-\omega-T_{2}$.
4. If (X, T) is pre $-\omega^{\star}-T_{2}$, then it is pre $-\omega-T_{2}$.
5. If (X, T) is $b-\omega^{\star}-T_{2}$, then it is $b-\omega-T_{2}$.
6. If (X, T) is $\beta-\omega^{*}-T_{2}$, then it is $\beta-\omega-T_{2}$.
B. Let $\left(X_{y} T\right)$, satisfies the $\omega-B_{\alpha}$-condition.
7. If (X, T) is $\alpha-\omega-T_{2}$, then it is T_{2}.
8. If (X, T) is $\alpha-\omega^{\star}-T_{2}$, then it is $\omega-T_{2}$.
9. If (X, T) is $\alpha-\omega^{* *}-T_{2}$, then it is T_{2}.
10. If (X, T) is $\alpha-$ pre $-\omega-T_{2}$, then it is pre $-\omega-T_{2}$.
11. If $\left(X_{,} T\right)$ is $a-b-\omega-T_{2}$, then it is $b-\omega-T_{2}$.
12. If (X, T) is $\alpha-\beta-\omega-T_{2}$, then it is $\beta-\omega-T_{2}$.
C. Let $\left(X_{,} T\right)$, satisfies the $\omega-B-$ condition.
13. If (X, T) is pre $-\omega-T_{2}$, then it is T_{2}.
14. If $\left(X_{,} T\right)$ is pre $-\omega^{\star}-T_{2}$, then it is $\omega-T_{2}$.
15. If (X, T) is pre $-\omega^{\star *}-T_{2}$, then it is T_{2}.
16. If (X, T) is pre $-b-\omega-T_{2}$, then it is $b-\omega-T_{2}$.
17. If (X, T) is pre $-\beta-\omega-T_{2}$, then it is $\beta-\omega-T_{2}$.
18. If (X, T) is $\alpha-$ pre $-\omega-T_{2}$, then it is $\alpha-\omega-T_{2}$.

Proof:

Using Definition 4.1 Definition 1.14 and Lemma 1.15

Proposition 4.5. Let (X, T) be a topological space with the property that any $b-\omega$-open subset has empty ω-interior.

1. If (X, T) is $b-\omega-T_{2}$, then it is pre $-\omega-T_{2}$.
2. If (X, T) is $b-\omega^{\star}-T_{2}$, , then it is pre $-\omega^{\star}-T_{2}$.
3. If (X, T) is $\alpha-b-\omega-T_{2}$, , then it is $\alpha-$ pre $-\omega-T_{2}$.
4. If (X, T) is pre $-b-\omega-T_{2}$, then it is pre $-\omega^{* \star}-T_{2}$.
5. If (X, T) is $b-\omega^{* *}-T_{2}$, then it is pre $-\omega^{* *}-T_{2}$.
6. If (X, T) is $b-\beta-\omega-T_{2}$, then it is pre $-\beta-\omega-T_{2}$.

Proof:

Directly from Lemma 1.16

One can summarize the relationships among weak T_{2} s spaces by a figure coincide with Figure 2.

Theorem 4.6. Let (X, τ) and (Y, σ) be two topological spaces, and $f:(X, \tau) \rightarrow(Y, \sigma)$ be injective map.

1. If f is ω-continuous, and Y is $\omega^{\star}-\mathrm{T}_{2}$, then X is also $\omega^{\star}-\mathrm{T}_{2}$.
2. If f is $\alpha-\omega$-continuous, and Y is $\alpha-\omega^{* *}-\mathrm{T}_{2}$, then X is also $\alpha-\omega^{\star *}-\mathrm{T}_{2}$.
3. If f is pre $-\omega$-continuous, and Y is pre $-\omega^{\star \star}-\mathrm{T}_{2}$, then X is also pre $-\omega^{\star \star}-\mathrm{T}_{2}$.
4. If f is $b-\omega$-continuous, and $Y b-\omega^{* *}-\mathrm{T}_{2}$, then X is also $b-\omega^{* *}-\mathrm{T}_{2}$.
5. If f is $\beta-\omega$-continuous, and Y is $\beta-\omega^{\star *}-\mathrm{T}_{2}$, then X is also $\beta-\omega^{* \psi}-\mathrm{T}_{2}$.

Proof of (2):

Let us prove one case and the others are similar. Let Y be $\alpha-\omega^{\star \star}-T_{2}$ space, to prove X is $\alpha-\omega^{* *}-T_{2}$, let $x, y \in X$ with $x \neq y$, Since f is injective, so $f(x) \neq f(y)$. And since Y is $\alpha-\omega^{\star *}-T_{2}$, there exist $\alpha-\omega$-open sets V and U such that $f(x) \in U$ and $f(y) \in V$ with $U \cap V=\emptyset$. Let $G=f^{-1}(U)$ and $H=f^{-1}(V)$. Since f is $\alpha-\omega$-continuous, so G and H are $\alpha-\omega-$ open sets in $X_{x} \quad$ with $x \in G$, and $y \in H$. Also $G \cap H=f^{-1}(U) \cap f^{-1}(V)$ $=f^{-1}(U \cap V)=f^{-1}(\varnothing)=\emptyset$. Hence X is $\alpha-\omega-\mathrm{T}_{2}$ space

Theorem 4.7. Let (X, τ) and (Y, σ) be two topological spaces, and $f:(X, \tau) \rightarrow(Y, \sigma)$ be injective map.

1. If X satisfies ω-condition, f is ω-continuous, and Y is $\omega-\mathrm{T}_{2}$, then X is also $\omega-\mathrm{T}_{2}$.
2. If X satisfies $\omega-B_{\alpha}$-condition, f is $\alpha-\omega$-continuous, and Y is $\alpha-\omega-\mathrm{T}_{2}$, then X is also $\alpha-\omega-\mathrm{T}_{2}$.
3. If X satisfies $\omega-B_{\alpha}$-condition, f is $\alpha-\omega$-continuous, and Y is $\alpha-\omega^{\star}-\mathrm{T}_{2}$, then X is also $\alpha-\omega^{*}-\mathrm{T}_{2}$.
4. If X satisfies, $\omega-B$-condition, f is pre- ω-continuous, and Y is pre- $-\mathrm{T}_{2}$, then X is also pre $-\omega-\mathrm{T}_{2}$.
5. If X is a door space or satisfies $\omega-B$-condition, f is pre- ω-continuous, and Y is pre $-\omega^{\star}-\mathrm{T}_{2}$, then X is also pre $-\omega^{\star}-\mathrm{T}_{2}$.
6. If X is a door space or satisfies $\omega-B$-condition, f is pre- ω-continuous, and Y is $\alpha-$ pre $-\omega-\mathrm{T}_{2}$, then X is also $\alpha-$ pre $-\omega-\mathrm{T}_{2}$.
7. If X is a door space, f is $\beta-\omega$-continuous, and Y is $b-\beta-\omega-\mathrm{T}_{2}$, then X is also $b-\beta-\omega-\mathrm{T}_{2}$.

Proof of (7):

Let Y be $b-\beta-\omega-\mathrm{T}_{2}$, and let $x_{,} y \in X$ with $x \neq y$, Since f is injective, so $f(x) \neq f(y)$. And since Y is $b-\beta-\omega-\mathrm{T}_{2}$ there exist $b-\omega-$ open set U and $\beta-\omega-$ open set V such that $f(x) \in U$ and $f(y) \in V$ with $U \cap V=\emptyset$. Let $G=f^{-1}(U)$ and $H=f^{-1}(V) . \beta-\omega$-continuity implies G and H are $\beta-\omega$-open sets in X. When X is a door space we can consider one of the two $\beta-\omega$-open sets as a $b-\omega$-open with $x \in G$, and $y \in H$. Also $G \cap H=f^{-1}(U) \cap f^{-1}(V)=f^{-1}(U \cap V)=f^{-1}(\varnothing)=\emptyset$. Hence X is $b-\beta-\omega-\mathrm{T}_{2}$ space O

Proposition 4.8. Let ($X_{,}, T$) be a topological space.

1. If X is an $\omega-T_{2}$ space, $x \notin Y$ and Y is ω-compact subset of X. Then there exist disjoint sets U is open and V is ω-open in X such that U containing x and V containing Y.
2. If X is an $\omega^{\star}-T_{2}$ space, $x \notin Y$ and Y is ω-compact subset of X. Then there exist disjoint sets U and V are ω-open in X such that U containing x and V containing Y.
3. If X is an $\alpha-\omega-T_{2}$ space, $x \notin Y$ and Y is $\alpha-\omega$-compact subset of X. Then there exist disjoint sets U is open and V is $\alpha-\omega$-open in X such that U containing x and V containing Y.
4. If X is an $\alpha-\omega^{*}-T_{2}$, space, $x \notin Y$ and Y is $\alpha-\omega$-compact subset of X. Then there exist disjoint sets U is ω-open and V is $\alpha-\omega$-open in X such that U containing x and V containing Y.
5. If X is a pre $-\omega-T_{2}$ space, $x \notin Y$ and Y is pre $-\omega$-compact subset of X. Then there exist disjoint sets U is open and V is pre $-\omega$-open in X such that U containing x and V containing Y.
6. If X is a pre $-\omega^{\star}-T_{2}$ space, $x \notin Y$ and Y is pre $-\omega-$ compact subset of X. Then there exist disjoint sets U is ω-open and V is pre- ω-open in X such that U containing x and V containing Y.
7. If X is a $b-\omega-T_{2}$ space, $x \notin Y$ and Y is $b-\omega$-compact subset of X. Then there exist disjoint sets U is open and V is $b-\omega$-open in X such that U containing x and V containing Y.
8. If X is a $b-\omega^{\star}-T_{2}$ space, $x \notin Y$ and Y is $b-\omega$-compact subset of X. Then there exist disjoint sets U is ω-open and V is $b-\omega$-open in X such that U containing X and V containing Y.
9. If X is a $\beta-\omega-T_{2}$ space, $x \notin Y$ and Y is $\beta-\omega$-compact subset of X. Then there exist disjoint sets U is open and V is $\beta-\omega$-open in X such that U containing x and V containing Y.
10. If X is a $\beta-\omega^{\star}-T_{2}$ space, $x \notin Y$ and Y is $\beta-\omega$-compact subset of X. Then there exist disjoint sets U is ω-open and V is $\beta-\omega-$ open in X such that U containing x and V containing Y. Proof of (3):

Let $x \notin Y$. Assume $y \in Y$, since X is an $\alpha-\omega-T_{2}$ space, so there exist two disjoint sets U_{y} open and $V_{y} a-\omega$-open in X with $x \in U_{y}$, and $y \in V_{y}$, so $Y \subset U_{y \in Y} V_{y}$. Since Y is an $\alpha-\omega$-compact so there exist $y_{1}, y_{2}, \ldots, y_{m}$, such that $Y \subset \cup_{i=1}^{n} V_{Y_{1}}$. Let $V=U_{i=1}^{n} V_{Y_{1}}, V$ is $\alpha-\omega$-open set containing Y, and $U=\cap_{i=1}^{m} U_{Y_{1}}$ is open set containing $x . U$ and V are disjoint because if there is $z \in U \cap V$, then $z \in V_{Y_{i}}$ for some i and $z \in U_{Y_{1}}$ for each i. This contradicts $U_{\text {ॠ }}$ and $V_{Y_{1}}$ are disjoint. Similarly we can prove the other cases

As a consequence of the proof of the theorem above one can get the following corollary.

Corollary 4.9. Let $\left(X_{,} T\right)$ be a topological space. If X is an $\omega-T_{2}$ space, $x \in X$ and Y is compact set not containing x. Then there exist disjoint sets U open containing Y and $V \omega$-open containing x.

Theorem 4.10. For any topological space.

1. Every ω-compact subset of $\omega-T_{2}$ space is closed.
2. Every $\alpha-\omega$-compact subset of $\alpha-\omega-T_{2}$ space is closed.
3. Every ω-compact subset of $\omega^{\star}-T_{2}$ space is ω-closed.
4. Every $\alpha-\omega$-compact subset of $\alpha-\omega^{\star}-T_{2}$ space is ω-closed.
5. Every pre $-\omega$-compact subset of pre $-\omega-T_{2}$ space is closed.
6. Every pre- ω-compact subset of pre $-\omega^{\star}-T_{2}$ space is ω-closed.
7. Every $b-\omega$-compact subset of $\mathrm{b}-\omega-T_{2}$ space is closed.
8. Every $b-\omega$-compact subset of $b-\omega^{\star}-T_{2}$ space is ω - closed.
9. Every $\beta-\omega$-compact subset of $\beta-\omega-T_{2}$ space is closed.
10. Every $\beta-\omega$-compact subset of $\beta-\omega^{\star}-T_{2}$ space is ω-closed.

Proof of (2):

Let Y be an $\alpha-\omega$-compact subset of the $\alpha-\omega-T_{2}$ space X. To prove Y is closed, we shall prove $X \backslash Y$ is open. Let $x_{0} \in X \backslash Y$, but X is $\alpha-\omega-T_{2}$, so for each $y \in Y$ there are disjoint sets U_{y} and V_{y} such that U_{y} is open set containing x_{0} and V_{y} is $\alpha-\omega$-open set containing y . The collection $\left\{V_{y}, y \in Y\right\}$ is a cover for Y consists of $\alpha-\omega$-open sets in X. Since Y is $\alpha-\omega$-compact so we can find a finite subcover V for $Y, V=U_{i=1}^{n} V_{Y_{1}}$. Let $U=\cap_{i=1}^{n} U_{\gamma_{1}}$. Note that U is open set and V is $\alpha-\omega$-open set in X, also they are disjoint. If $z \in V$ then there is i, such that $z \in V_{Y_{1}}$ and $z \notin U$, therefore U is an open set containing x_{0} disjoint from Y. Hence $X \backslash Y$ is open and Y is closed. Similarly we can prove the other statements

References

[1]. A. Al-Omari and M. S. M. Noorani " Regular generalized ω-closed sets", I nternat. J. Math. Math. Sci., vo. 2007. Article ID 16292, 11 pages, doi: 10.1155/2007/16292 (2007).
[2]. A. Al-Omari and M. S. M. Noorani," Contra- ω-continuous and almost contra- ω-continuous", I nternat. J. Math. Math. Sci., vo. 2007. Article ID40469,13 pages. doi: 10.1155/2007/16292 (2007).
[3]. H. Z. Hdeib, " ω-closed mappings", Rev. Colomb. Mat. 16 (3-4): 65-78 (1982).
[4]. H. Z. Hdeib, " ω-continuous functions", Dirasat 16, (2): 136-142 (1989).
[5]. T. Noiri, A. Al-Omari, M. S. M. Noorani", Weak forms of ω-open sets and decomposition of continuity", E.J.P.A.M.2(1): 73-84 (2009).
[6]. T. Noiri, A. Al-Omari and M. S. M. Noorani," Slightly ω-continuous functions", Fasciculi Mathematica 41: 97-106 (2009).

