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1. Introduction and Preliminaries

Through out this paper , (X, T stands for topological space. Let (X,T) be a topological
space and A a subset of X. A point x in X is called condensation point of A if for each U in T with
x in U, the set U n A is un countable [3]. In 1982 the «w —closed set was first introduced by H. Z.
Hdeib in [3], and he defined it as: 4 is @ —closed if it contains all its condensation points and the
« —open set is the complement of the «w —closed set. Equivalently. A sub set I of a space (X, T},
is @ —open if and only if for each x € W | there exists U €T such that x € Uand U\W is
countable. The collection of all «v —open sets of (X, T'Jdenoted T, form topology on X and it is finer
than T. Several characterizations of «v —closed sets were provided in [1, 3, 4, 6].

In 2009 in [5] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced and investigated new

notions called « —w —open, pre —w —open, b —w —open and 5 — w —open sets which are

weaker than w —open set. Let us introduce these notions in the following definition:

Definition 1.1. [5] A subset A of a space X is called

1. e — w —openifAd S int [cf [:iﬂrm [»51]}]



2. pre —w —open if 4 < int_ (cl(4)).
3.b—w —openif 4 < int [:ci (4.]} Uel [:iﬂl‘w (4)}
4.8 — w —openif A =l [im‘m (et (4.]}}

For a subset A of X, the w — interior of the set A defined as the union of all <~ — open sets

contained in 4, and denoted by int_ (A} . The closure of 4 will be denoted by ¢I{4).

Remark 1.2. [5] Any « —open ( resp. @ —c —Open, pre —w —open, b —w —open and
£ — w —open ) sets need not be open ( resp. & —open, pre—open, & —open and 5 —open ) as can
be seen in the following example:

In [5] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced relationships among the weak

open sets above by the lemma below:

Lemma 1.3. [5] In any topological space:

1. Any open set is « —open.

2. Any w —open set is & — w —open.

3. Any & — w —open set is pre — w —open.
4. Any pre — w —open set is & —w —open.
5. Any b — w —open set is £ — w —open.

The converse is not true [5].

Remark 1.4. [5] The intersection of two pre — w —open, (resp. b —« —open and f — « —open)
sets need not be pre — w —open, (resp. b —w —open and 5 — w —open) sets. As can be seen in

the following example:

Example 1.5. [5] Let ¥ = R with the usual topology T. Let A = @ and B = (R\Q) U {1}, then
A and B are pre—w —open, but 4 N B = {1}, is not £ — @ —open since  cl(int,

(l({1}))) = el(int,, ({1})) = <l({0}) = 0.

Lemma 1.6. [5] The intersection of an @« — « —open ( resp. pre — w —open, & — w —open and
£ —w —open ) subset of any topological space and an open subset is « — « —open (resp.

pre — w —open, b —w —open and 5 — w —open ) set.



Theorem 1.7. The union of an « — w —closed ( resp. pre — w — closed, b —w — closed and
5 —w — closed) subset of any topological space and a closed subset is & —w — closed (resp.

pre — w — closed, b — w — closed and 5 — «w — closed) set.

Proof:

Let 4 be an & — w —closed subset of a topological space X and E is a closed subset of X. Then A°
is @ — w —open subset of X and B is an open subset of X. Then by Lemma 1.6 we have A° n B¢
is an is @ —«w —open subset of X and (4° N B°)° is an @ —« —closed subset of X Therefore

(A° N B°)* =AU Bis a —w —closed subset of X @

Theorem 1.8. [5] |If {4, : « € A} is a collection of « —cw —open (resp. pre — w —open,
b —w —open and f — @ —open ) subsets of the topological space (X.T). then U_., A, is

o — w —open (resp. pre — w —open, b —w —open and £ — « —open) set.

Theorem 1.9. If {A,: a« € A} is a collection of o« —w —closed (resp. pre— w —closed,
b —w —closed and £ — «w —closed ) subsets of the topological space (X.T), then N -, A, is
a — w —closed (resp. pre — w —closed, b — w —closed and 5 — @ —closed) set.

Proof:

Let {4,: a € A} be a collection of « —« —closed subsets of X, then A4_.° ( the
complement set of 4, ) is @ — w —open set for each @ € A. Then by Theorem 1.8 we have U .,
A.° is @ —w —open set. Therefore (U ., A.°)° =N_, 4,, IS @ —w —closed subsets of X. A

similar proof for the other cases @

Definition 1.10. [5] A space (X.T)is called a door space if every subset of X is either open or

closed.

Lemma 1.11. [5] If ( X, T is a door space, then every pre — w —open set is v —open.

Theorem 1.12. Let 4 be a [ —w —open set in the topological space ( X.T), then A is
b —w —open , whenever X is door space.

Proof:



Let A be a £ —w —open subset of X. If A is open then by Lemma 1.4 it is & — «w —open.
Then if A is closed we get A4 €cl(int, (4)) S int,(cl(A)) U cl(int, (4)). Thus A is b

—w —open set in X @

Definition 1.13. [5] A subset 4 of a space X is called

1. An @ — t —set, if int(A) = int, (cl(A4))].

2. Anw — B —setif A =UnV, where U is an open setand 1" is an w — t —set.
3. An @ — t, —set, if int(4) = int_, (cl(int (4))).

4. Anw — B_ —setif A =UnV, where Uisanopensetand I" isan «w —t_, —set.

5. An w —setif A = U nV, where U is an open set and int (V) = int (7).

Definition 1.14. Let { X, T') be topological space. It said to be satisfy
1. The e» —condition if every w —open set is w —set.

2. The @ — B, —condition if every & —w —open setis «w — 5, —set.
3. The @ — B —condition if every pre — «w —open is w — 5 —set.

Now let us introduce the following lemma from [5].

Lemma 1.15. [5] For any subset A of a space ¥, We have
1. Alis open if and only if 4 is v —open and ¢ —set.
2. Ais open If and only if A is @ —w —open and w — B, —set.

3. Aisopenifandonlyif 4 is pre — «w —open and w — 5 —set.

Lemma 1.16. [5] Let { X,T ) be a topological space, and let A = X. If A is b —w —open set such

that int_(4) = @, then 4 is pre — w —open.

Definition 1.17. Let X be a topological space. We say that a subset A of X is w —compact [2] (
resp. e — w —compact , pre —w —compact, b — @ —compact and B — «w —compact ) if for each
cover of w —open ( resp. a — w —open , pre —w —open, b —w —open and  — w —open ) sets from

X contains a finite subcover for A.

Definition 1.18. A function f:(X.g) — (¥, 1) is called e-continuous ( resp. & — w-continuous ,

pre —w —continuous, b —ew —continuous and  — w —continuous ), if for each x € X' | and each



e —open (resp. & — « —open, pre —w —open, b —w —open and £ — « —open ) set V containing
Flx) , there exists an w —open ( resp. & — w —open, pre —w —open, b —w —open and § — w-

open,) set I containing x, such that f (L'} = 1.

2. weak T spaces

In this article, let us introduce the weak T, spaces with some relations, propositions and

theorems.

Definition 2.1. Let X be a topological space. If for each x = v £ X, either there exists a set I/, such
that x € U, v & U,or there exists a set U such that x € U, v € U . Then X called

1. @w — T space, whenever U is w —open set in X,

2. c« — w — T 5 space, whenever U is & — « —open set in X.

3. pre—w — Ty space, whenever U is pre —w —open set in X.

4. b — w — T4 space, whenever U is b — w —open set in X.

5. B — w — T, space, whenever U is f — « —open set in X.

Using Lemma 1.3 we can write the following proposition:

Proposition 2.2. Let (X, T) be a topological space.
1If (X,T) isT,, thenitis w —T.

2. 1f (X, T) isw — Ty, thenitis a —w —T,.

3.If (X,T) isa —w —T,, thenitis pre—w — T,
4.1f (X, T) ispre—w —T, ,thenitisb —w — T,

5.1f (X,T) isb—w —T,,thenitis f —w —T,.
Remark 2.3. The converse of the above theorem is not true as we see in the following example:

Example 2.4. Let ¥ = {123}  with the topology T = {@, X, {1}}. It is clear that (X,T) is

w — T, space but not T, space.

Theorem 2.5. Let { X.T) be a door space. Then we have:
1. Every pre —w — T, space is w — Tj.

2. Every f —w — T, spaceis b —w —T,.



Proof:
Directly from Definition 2.1, Lemma 1.11 and Theorem 1.12 @

Theorem 2.6. Let { X, T, be a topological space.
1. If (X, T)is w — T, topological space satisfies the «w —condition, then it is T, topological space.
2. If (X, T) is @ —w — Tytopological space satisfies the ww — 5, —condition, then it is T, topological

space.
3. If (X,T) is pre— w — T, topological space satisfies the « — E —condition, then it is T,

topological space.
Proof:
Directly from Definition 2.1, Definition 1.14 and Lemma 1.15 @

Proposition 2.7. If (X, T} is b —w — T, topological space with the property that any & — «w —open
subset has empty c« —interior. Then it is pre — w — T,.

Proof:
Directly from Definition 2.1 and Lemma 1.16 @
One can summarize the theorems above by Figure 1.

b_w_To
B—w—Tp

- * Door space
® w — condition
& w — B, —condition
B @ — B —condition
m empty w — interior
Figure 1



3. weak T, space

Weak types of «w — T, spaces is the subject of this article. Also we introduce some related

results.

Definition 3.1. Let X be a topological space. For each x = v £ X, there exists a set U, such that
x € U, v € U, and there exists a set I such that v € IV, x € IV, then X is called

.w — T, space if U isopenand " is w —open sets in X

.aa—w — T, spaceif Uisopenand V' is & — «w —open sets in X.

.w" — T, space [3] if 'and IV are <« —open sets in X,

.a—w” — T, spaceif Uis w-openand IV is @ — w —open sets in X.

1

2

3

4

5.a¢— @™ — T, spaceif U and V" are ¢ — cw —open sets in X.

6. pre —w — T space if U isopen and VV is pre — w —open sets in X.

7.pre —w” — T, space if U is w-openand V" is pre —w —open sets in X.

8.« —pre —w— T, spaceif Uisa — « — openand I is pre —w —open sets in X,
9.pre —w™ — T, space if U and VV are pre —w —open sets in X.

10. b— @ — T, space if U isopenand V" is b — w —open sets in X.

11. b —w™ — T, space if U is ww —open and V' is b — w —open sets in X.

12.¢ —b —w — T, space if Uisa —w —open and V' is b — w —open sets in X.
13.pre —b —w — T, space if U is pre —w —openand V" is b — w —open sets in X.
14. b — w™ — T space if Uand V" are b — «w —open sets in X.

15. 8 —w — T, space if Uisopenand I is f — «w —open sets in X.

16. f —w™ — T, space if U is @ —open and IV is f — w —open sets in X.

17. e« — B—w — T, space if U is @ — e« —openand V is f — « —open sets in X,
18.pre—f —w — T, space if U is pre —w —open and V is 5 — w —open sets in X.
19. f —w™ — T, space if U'and V" are f — «w —open sets in X.

20.b—f—ew — T, space if Uis b — e —open and V' is f — « —open sets in X



Theorem 3.2. Let X be a topological space,

1. X is w — T, space if and only if for each x = v € X, {x} is closed and {v} is « —closed set in X.
2. X is @ —w — T, space if and only if for each x = v € X, {x} is closed and {v} is &« — « —closed
setin X.

3. X isw” — Ty space if and only if for each x € X, {x} is «w —closed set in X.

4, X is a —w” — T, space if and only if for each x = v € X, {x} is w —closed and {v} is
o — w —closed set in X,

-

5. X isa —w™ — T, space if and only if for each x £ X, {x} is @ — « —closed set in X.

6. X is pre —w —Tyspace if and only if for each x = v X, {x} is closed and {v} is
pre — w —closed set in X,

7. X is pre —w” — Tyspace if and only if for each x = v £ X, {x} is w —closed and {v} is
pre — w —closed set in X.

8. X is @ —pre —w — T,space if and only if for each x = v € X, {x}is @ — e« —closed and {v} is
pre — w —closed set in X.

-

9. X ispre —w™™ — Tyspace if and only if for each x € X, {x} is pre —w —closed set in X.

10. X is b —w — Tyspace if and only if for each x = v £ X, {x} closed and {v} is # — @ —closed
setin .

11. X isb— @™ —Tyspace if and only if for each x = v € X, {x} is «w —closed and {v} is
b— w —closed set in X

12. X isa — b — w — Tyspace if and only if for each x = v € X, {x} is @ —«w —closed and {v} is
b— w —closed set in X

13. X is pre —b —w — Tyspace if and only if for each x = v £ X, {x} is pre —closed and {v} is
b— w —closed set in X,

14. X is b — w™ — T, space if and only if for each x € X, {x} is b — « —closed set in X

15. ¥ is f—ew—T,; space if and only if for each x = v € X, {x}is closed and {v} is
B — w —closed set in X.

16. ¥ is f—w” =T, space if and only if for each x = v € X, {x} is « —closed and {v} is
£ — w —closed setin X.

17. X is @ — f—w — T, space if and only if for each x = v € X, {x} is @ —w —closed and {v} is

B — w —closed set in X.



18. X is pre — f —ew — T, space if and only if for each x = v € X, {x} is pre —w —closed and
fv}is f —w —closed set in X.

19. X is f —w™ — T, space if and only if for each x € X, {x} is § — « —closed set in X.

20. Xis b —f—w — T, space if and only if for each x = v € X, {x}is b —w —closed and {v} is
B — w —closed set in X.

Proof of (4):

Let x € X. If v € X, such that v = x, then there exist an «w —open set U, containing v but
not x, and « — « —open set U, containing x but not ¥ . Hence v & U, < {x}°. Therefore
{x}* =U ¢ U, which is w —open set and {x} is «w —closed set in X. Also {v} isa —w -
closed set in X . In fact x € U, < {¥}°, which implies {v}* =u_..;c U,. Then because U, is & —

« —open set, for each x € {¥}°, so {v}° is @ — w —open set, and {v} is &« — w —closed set
Now for the converse, let x = v € X, U, = X\{v} is @ — & —open set containing x but not v, and
U, = X\{x} is « —open set, containing v but not x. Thus X is & — w™ — T, space.

A similar proof for 1, 2, 3,5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 @

Theorem 3.3. For any topological space.

1. Any T, is w — T, space.

2.Any w —T, is «— w— T, space.
3.Any w —T, is w” — T, space.

4. Any w” — Ty is e —w”™ — T, space.
5.Any ¢ —w” — Ty is pre —w”™ — T, space.
6. Any c¢ —w — T, is & —w”™ — T, space.
7. Any @ — w — Tyis pre —w — T, Space.
8. Any pre —w — T, is [ — w — T, space.
9

-

ANy a—w” =Ty is @ —w™ — T, space.

10. Any ¢ —w™ — T, IS & — pre —w — T, space.

-

11. Any & —pre —w — Ty IS pre —w™ — T, Space.
12. Any pre —w™ — T, is pre — b — w — T, space.

-

13. Anypre— b — w —T, isb —w™ — T, space.

14. Anyb —w™ — T, is b — f —w — T, space.



15.Any b — ff —w — T, is f —w™ — T, space.
16. Any pre —w”™ — Ty IS a — pre —w — Ty space.
17. Any pre — w” — T, isb —w” — T, space.
18. Any & —pre —w — Ty iS & — b —w — Ty Space.
19. Any b —w™ =T, isa —b —w — T, Space.
20. Any pre-w —T,;is b —w — T, space.
21. Any § —w — T, is f —w™ — T, space.
22. Any f —w™ =T, isa — f§ —w — T, space.
23. Any &t — f —w — T, is pre—f —w — T, space.
24. Any pre -w — T, is pre -w”™ — Ty Space.
25. Any b —w —T,is [f —w — T, space.
26. Any b —w" —T,is § —w” —T, space.
27. Any et — b —w — T, isa — ff —w — T, space.
28. Any ¢ — b —w — T, ispre — b —w — T, space.
29. Any pre —b —w — T, ispre— § —w — T, space.
30. Any pre —§ —w —T, isb — § —w — T, space.
31.Any b —w—T,is b —w”™ — T, space.
Proof:

Easy. By using Lemma 1.3 @

Remark 3.4. The converse of the theorem above is not satisfied in general. As we see in the

following examples.

Example 3.5. Let ¥ = {1,2,3} with the topology T = {@, x,{1}, {3}.{1,3}}. (X, T) is @ — T, space,
but not T;.
To have equivalence between the weak T;s spaces, we shall introduce the following

theorems:

Theorem 3.6. Let { X, T) be a door space. Then we have:
1. Every pre —w — T, space is w — T},

2. Every pre —w™ — T, spaceis w”™ — T;.

10



.Every &« — pre —w — T spaceis a —w™ — Ty,
.Every pre — b —w — T, spaceisb —w” — T,.

.Every pre —f —w —T, spaceis f —w” —T,.

-

. Every pre —w™ — T, space is w* — T}.

.Everyb —ff§ —w — T, spaceis b —w™ —Tj.

-

.Every f —w™ — T, spaceis b—w™ —T,.

© 0o N o o b~ W

. Every pre —ff —w — T, spaceis pre —b—w —T.
10. Every a¢ — f—w — T, spaceis a —b —w —T;.
11. Every f —w™ — T, spaceis b —w™ —T,.

12. Every ff —ew — T, spaceis b —w —T.

Proof:

Directly from Lemma 1.11 and Theorem 1.12 @

Using Definition 1.14 and Lemma 1.15 we can prove the following important theorem

Theorem 3.7. For any topological space { X.T ).

A. Let ( X, T ), satisfies the w —condition.
LIf(XT)isw—Ty, thenitis T,.

2.1f (X, T)isw™ — Ty, thenitis T;.

(X T)isa—w" —Ty, thenitisa — cw — T,

4. 1f (X, T)ispre—w” =Ty, thenitis pre — w — T;.
5.If (X, T)ish—w” =Ty, thenitish —w —T;.

6.1fF (X, T)isff —w” — Ty, thenitis f —w — Ty,

B. Let ( X, T ), satisfies the w — B_ —condition.
1LIf(XT)isis @ —ew —Ty, thenitis T;.

2.1f (X, T)isa —w™ — Ty, thenitis w — Ty,

(X T)isa —w™ —T,, thenitis T,.

4. I1f (X, T)isa —pre —w — Ty, thenitis pre —w—T;,
5 f(X,T)isa—b—w—T,thenitisb —w—T,.
6. 1fF (X, T)isa—f —w—Ty, thenitisf —w—T,.
C. Let ( X, T ), satisfies the ww — B —condition.
LU(XT)ispre —w—Ty, thenitis Tj.

11



2.1f (X, T )ispre —w™ — Ty, thenitis w —T;.
(X, T)ispre —w™ — Ty, thenitis Tj.

4. 1f (X, T)ispre-b —w —Ty, thenitis b —w — T},
5.1f (X,T)ispre-f —w — Ty, thenitis f—w —Ty.

6. f (X, T)isa—pre-w—T,, thenitis a —w —T,.

Proposition 3.8. Let (X, T be a topological space with the property that any & — w —open subset
has empty « —interior.

LIf{X,T)isb —w —T,, thenitis pre —w —T;.

2. 1f (X, T)isb —w™ — Ty, thenitis pre —w™ — T;.

(X, T)isa —b—w — Ty, thenitisa — pre—w — T;.

4.1f (X, T)ispre — b—w — Ty, thenitis pre —w™ — T,

5 If (X, T)ish —w™ —T,, thenitis pre —w™ —T.

6. f (X, T)ishb -5 —w—Ty, thenitispre —f —w —T,.

Proof:

Directly from Lemma 1.16 @

One can summarize the relationships among weak T, s spaces by Figure 2.




Definition 3.9. A topological space { X.T) is w —symmetric if for x and v in the space X,

x € ¢l ({v}) implies v € ¢l ({x}).

13



Proposition 3.10. Let X be a door, «v —symetric topological space . Then for each x £ X, the set
{x}is w —closed.

Proof:

Let x = v € X, since X is a door space so {v} is open or closed set in X. When {v} is open,
so it is w —open, let ¥, = {y}. Whenever {v} is w —closed , x & {v} = ¢l_({¥]}). Since X is
w —symetric we get ¥ €cl ({x}). Put v, = X¥\cl ({x}), then x gV, and v £V, and V, is
« —open set in X. Hence we get for each v € X'\ {x} there is an w —open set v, such that x v, and

v € V,. Therefore X Vx} = U, cxa Vi is @ —open, and {x} is w —closed @

Proposition 3.11. Let (X, T) be an w —T; (resp. w" =Ty ,a—w—T, , a—w" =Ty,
b—w-Ty, b—w" =Ty, pre—w—Ty, pre —w =Ty, f —w—T,;, f—w” —T,) topological
space, then it is o —symetric space.

Proof:

Assume v € ¢l ({x}), so x = v, then since X is e — T; there is an open set U containing x

but not v, so x € ¢!, ({¥}). This completes the proof @

Theorem 3.12. The topological door space is « — symmetric if and only if it is @™ — T

Proof:

Let ( X,T )be a door o — symmetric space. Then using Proposition 3.V + for each x € X |
{x} is @ —closed set in X. Then by (3) of Theorem 3.2, we get that { X, T } is @™ — T,. On the other
hand, assume { X, T ) is @™ — Ty, then directly by Proposition 3.11 { X, T ) is o — symmetric space

@

4. Weak w — T, spaces

In this article we will define weak types of w — T, spaces and introduce some results about
it.
Definition 4.1. Let X be a topological space. And for each x = v £ X, there exist two disjoint sets U/
and V¥ with x € U and v £ V', then X is called:
1. e — T, spaceif U isopenand V" is v —open sets in .
2.a¢—w — T, space if U isopenand I is & — w —open Sets in X.

3. @™ — T, space if U and I are « —open sets in X.

14



e —w” — T, space if U is w —open and V' is & — «w —open sets in X.
a—w"™ —T,space if Uand V" are &« — v —open sets in X.

.pre —w— T, space if U isopenand V' is pre — w —open sets in X.
pre —w” — T, space if U is w —open and V' is pre —cw —open sets in X,

a —pre —w— T, space if U is « —open and V7 is pre — w —open sets in X.

© © N o g &

.pre —w™ — T, space if U and 1" are pre —w —open sets in X.

10. b —w — T, space if Uisopen and VV is & — w —open sets in X.

11. b —w™ — T, space if U is w —open and V is b — w —open sets in X.

12.ac — b —w — T, space if U is @ —w —openand V" is b — w —open sets in X.

13. pre—b —w — T, space if U is pre —w —open and V is b — w —open sets in X,
14. b — @™ — T, space if U and 1" are b — w —open sets in X.

15. f— w — T, space if U is open and V" is 5 — w —open sets in X

16. f— w™ —T, space if U is ww —openand V' is § — «w —open sets in X,

17. e« — f—w — T, space if U is @ —w —openand V' is 5 — « —open sets in X,

18. pre—f8 — w — T, space if U is pre — w —openand VV is 5 — w —open sets in X.
19. f — @™ — T, space if Uand IV are 5 — « —open sets in X

20.b—f—w — T, spaceif Uisb —w —openand V" is § — «w —open sets in X.

Remark 4.2. We can restate Theorem 3.3 for the weak TS spaces.

Theorem 4.3. For any door topological space we have:
1. Every pre - w — T, space is w — T;.
2. Every pre —w” — T, space is w" — T,.

3.Every ¢ — pre -w— T, spaceis a —w”™ — T,.

o

.Every pre — b -w — T, spaceisb —w”™ — T.

ol

.Every pre - — w — T, spaceis f§ —w” —T,.

-

(2]

. Every pre —w™ — T, space is w” — T;.
7.Everyb - —w—T,spaceisb —w™ —T,.
8.Every § —w™ — T, spaceis b—w™ —T,.

9.Everypre - —w — T, spaceis pre -b—w—T,.
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10. Every - § — w — T, spaceis ¢« —b —w —T,.
11. Every f —w™ — T, spaceis b —w”™ — T,,
12. Every f —w — T, spaceis b —w —T,.
Proof:
Directly from Lemma 1.11 and Theorem 1.12 C)

Theorem 4.4. For any topological space { X.T ).

A. Let [ X, T ), satisfies the «w —condition.
LIfF(XT)isw—T,, thenitis T,.

If (X, T)isw” —T,, thenitis T,.

If (X, T)isa —w”—T,, thenitisa — w —T,.

If (X, T )ispre—w” —T,, thenitispre — w —T,.
If (X, T)ish—w" —T,, thenitish —w —T,.
If(X.T)isf —w" — T, thenitis f —w —T,.

. Let ( X,T ), satisfies the w — E_, —condition.
If(X.T)isa —w—T,, thenitis T,.

If (X T)isa —w" —T,, thenitis w — T,

If (X, T)isa —w™ —T,, thenitis T,.

If (X, T)isa —pre —w—T,, thenitis pre —w—T,.

If(X.T)isa—b—w—T,,thenitish —w—T,.

oL A o ve B < N T o

If (X T)isa—f —w—T,,thenitisf —w —T,.
C. Let ( X, T ), satisfies the w — B —condition.

If (X, T)ispre —w—T,, thenitis T..

If (X, T)ispre —w™ —T,, thenitis w —T,.

If (X.T)ispre —w™ —T,, thenitis T..

A w poE

If (X, T )ispre-b —w —T,, thenitis & —w —T,.
5 f (X, T)ispre-f —w —T,, thenitis f—w —T,.
6. f (X, T)isa —pre-w —T,, thenitis a —w —T,.

Proof:
Using Definition 4.1 Definition 1.14 and Lemma 1.15 @
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Proposition 4.5. Let (X, T) be a topological space with the property that any & — w —open subset
has empty « —interior.

LIf(XT)isb—w—T,, ,thenitispre —w —T,.

2. 1f (X, T)isb —w™ —T,, ,thenitis pre —w™ — T,.

.M (X, T)isae —b—w —T,, ,thenitisa —pre—w —T,.

4 1f (X, T)ispre—b—w—T,, ,thenitis pre —w™ — T,.

5. If (X,T)ish —w™ —T,, ,thenitis pre —w™ — T,.

6. 1fF (X, T)ish —f —w —Ts, , then itis pre —f — w — Ts.

Proof:

Directly from Lemma 1.16 @

One can summarize the relationships among weak T,s spaces by a figure coincide with
Figure 2.

Theorem 4.6. Let (X.t) and (¥, o) be two topological spaces, and f: (X,t) — (¥.a) be injective
map.
1. If f is w —continuous, and ¥ is w™ — T,, then X is also w™ — Ts.
2. If fis o — w —continuous, and ¥ is a— w™ —T,, then X isalso a— w™ —T,.
3. If fis pre — w —continuous, and ¥ is pre —w™ — T,, then X isalso pre —w™ — T,.
4.1f fis b — w —continuous, and ¥ b —w™ —T,, then X isalso b —w™ — T,.
5.1f fis f — w —continuous, and ¥ is f —w™ — T,, then X isalso f — @™ — T,.
Proof of (2):
Let us prove one case and the others are similar. Let ¥ be « — w”

-

— T, space, to prove X is
a—w" =T, let x,v €X with x = v, Since f is injective, so f(x) = f(v). And since ¥ is
a«—w™ —T,, there exist c —w —open sets " and U such that f{x) € U and f(v) € VV with
UnvV =0. Let 6 =f"1U) and H = f~1(17). Since f is « —w —continuous, so G and H are
a—w—open sets in X, with x€6, and vEH. Also 6nH= f1(U)nf V)

_ f_1 (U A V:I — f—‘l(@) =0. Hence X is a— w — T, space @

Theorem 4.7. Let (X, ) and (¥, o) be two topological spaces, and f: (¥,7) — (¥, o) be injective
map.

1. If X satisfies « —condition, f is «w —continuous, and ¥ is w — T,, then X isalso w — Ts.
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2. If X satisfies « — E_ —condition, f is & — «w —continuous, and ¥ is &« — w — T,, then X is also
a —w— T,
3. If X satisfies w — B_ —condition, f is &« — w —continuous, and ¥ is & — w” — T,, then X is also
a—w" — T,
4. If X satisfies , w — E —condition, f is pre — «w —continuous, and Y is pre — w — T,, then X is
also pre — w —T,.
5. If X is a door space or satisfies « — B —condition, f is pre — w —continuous, and ¥ is
pre — w” — T,, then X isalso pre — w”™ — T,.
6. If X is a door space or satisfies « — & —condition, f is pre — w —continuous, and ¥ is
a —pre —w — T, then Xisalso & —pre —w —T,.
7. If X is a door space, f is 5 —w —continuous, and ¥ is b —fF —w —T,, then X is also
b—f—w—T,.
Proof of (7):

Let¥ beb —fF —w —T,, and let x, v € X with x = ¥, Since f is injective, so f(x) = f(v).
And since ¥ is b — 8 — w — T,there exist b —w —open set U and § — w —open set I such that
f(x)EU and f(v) EV with UnV =0, Let 6 = f1(U) and H = f~ (V). £ — @ —continuity
implies G and H are 7 —w —open sets in X. When X is a door space we can consider one of the
two S —w-—open sets a a b—w-—open with x£6G, and veEH. Also
GNH= A UNnf Y (Wy=FfYUnv) =f1@) =0. Hence X is b —f —w — T, space

@

Proposition 4.8. Let { X, T ) be a topological space.

l.IfXisanw —T,space, x € ¥ and Y is w —compact subset of X. Then there exist disjoint sets U/
is open and V" is w» —open in X such that U containing x and I containing Y.

2. If ¥isan w™ — T, space, x & Yand ¥ is w —compact subset of X. Then there exist disjoint sets U/
and V" are w» —open in X such that I/ containing x and " containing Y.

. IfXisan a«—w—T, space, x & Yand ¥ is a — @ —compact subset of X. Then there exist
disjoint sets I is open and V" is & — « —open in X such that I/ containing x and I containing ¥'.

4. If X isan &« —w” —T,, space, x € Yand ¥ is & —w —compact subset of X. Then there exist

disjoint sets I is w —open and IV is & — w —open in X such that I/ containing x and 1" containing Y.
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5.If Xisapre —w—T,space, x €Y and ¥ is pre — w —compact subset of X. Then there exist
disjoint sets I is open and V" is pre — w —open in X such that I/ containing x and I” containing ¥'.
6. If X isapre —w™ —T,space, x & Yand ¥ is pre — w —compact subset of X. Then there exist
disjoint sets U is «w —open and ' is pre — «w —open in X such that U containing x and V" containing
Y,

7.1f X isa b—w — T,space, x € Yand ¥ is b — w —compact subset of X. Then there exist disjoint
sets L/ is open and V" is & — « —open in X such that I/ containing x and I containing ¥,

8.If Xisab —w" — T,space, x € Yand ¥ is b —w —compact subset of X. Then there exist disjoint
sets U is w —open and V" is b — w —open in X such that I containing x and 1 containing ¥".

9. IfX¥isa f— w— T,space, x € ¥Yand ¥ is f — w —compact subset of X. Then there exist disjoint
sets U isopen and V' is f — « —open in X such that I/ containing x and 1" containing Y.

10. If ¥ isa B — w” —T,space, x € Yand Y is f —w —compact subset of X. Then there exist
disjoint sets U is cv —open and V" is f — «w —open in X such that U/ containing x and " containing Y.

Proof of (3):
Let x £ ¥. Assume v £Y,since X isan a— w — T, space , so there exist two disjoint

sets U, open and 1, @ —w —open in X with x € U, and y €V, s0 ¥ cu, . V. Since ¥ is an
@ —w —compact so there exist vy, vy, ...¥,, such that ¥ cui-, V.. Let V=u, V., V is
a —w —open set containing ¥, and U =niz; U, is open set containing x. U and V" are disjoint

because if thereis ze Un1V ,thenz €V forsome{ and z € U,

for each i. This contradicts U,

and V. are disjoint. Similarly we can prove the other cases @

As a consequence of the proof of the theorem above one can get the following corollary.

Corollary 4.9. Let ( X,T ) be a topological space. If X isan w—T, space, x€X and ¥ is
compact set not containing x. Then there exist disjoint sets I/ open containing ¥ and V' w —open

containing :x.

Theorem 4.10. For any topological space.

1. Every w —compact subset of « — T, space is closed.
2. Every @ — w —compact subset of « — «w — T, space is closed.

3. Every « —compact subset of «w™ — T, space is « —closed.
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4. Every ¢ — «w —compact subset of « — «™ — T, space is w — closed.
5. Every pre — w —compact subset of pre —w — T, space is closed.

6. Every pre—w-compact subset of pre —w” — T, space is w — closed.
7. Every b — w —compact subset of b —w — T, space is closed.

8. Every b—w —compact subset of b — w™ — T, space is w — closed.

9. Every f — w —compact subset of [ — w — T, space is closed.

10. Every 5 — « —compact subset of £ — «w™ — T, space is « —closed.

Proof of (2):

Let ¥ be an @ — «w —compact subset of the « — w — T, space X. To prove ¥ is closed, we
shall prove XY is open. Let x, € X\Y, but X is @ — «w — T,, so for each v €Y there are disjoint
sets U, and ¥, such that U, is open set containing x, and V, is & — « —open set containing y. The
collection {'L'_:.,}F €Y} is a cover for ¥ consists of @ —w —open sets in X. Since ¥ is
a — w —compact so we can find a finite subcover " for ¥, V" =Ui, V... Let U =ni;; U, . Note
that U is open set and V" is & — w —open set in X, also they are disjoint. If z € 17 then there is I,
suchthat z € V. and = € U, therefore U is an open set containing x; disjoint from ¥. Hence X\Y" is

open and ¥ is closed . Similarly we can prove the other statements @
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