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1. Introduction and Preliminaries

Through out this paper , (X, T) stands for topological space. Let (X, T) be a topological
space and A a subset of X. A point x in X is called condensation point of A if for each
Uin T with x in U, the set U n A is un countable [3]. In 1982 the w —closed set was
first introduced by H. Z. Hdeib in [3], and he defined it as: 4 is @ —closed if it
contains all its condensation points and the «w —open set is the complement of the
w —closed set. Equivalently. A subset W of a space (X,T), is @@ —open if and only if
for each x € W , there exists U € T such that x € Uand U\W is countable. The
collection of all «w —open sets of (X, T)denoted T,, form topology on X and it is finer
than T. Several characterizations of «w —closed sets were provided in [1, 3, 4, 6]. For a
subset A of X, the closure of A and the w — interior of A will be denoted by ci(4) and
int,, (A) respectively. The w — interior of the set A defined as the union of all w —

open sets contained in A.



In 2009 in [5] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced and investigated
new notions called @ — w —open, pre —w —open, b —w —open and S — w —open
sets which are weaker than @ —open set. Let us introduce these notions in the

following definition:

Definition 1.1. [5] A subset 4 of a space X is called
1. a —w—openifd S int, (cf(f-nfm (A))).

2. pre —w —open if 4 € int,, (cl(4)).

3.b —w —open if A € int, (cl(4)) U cl(int, (4)).

4.8 — w —open if A S cl (i'nfm (cE(A))).

In [5] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced relationships among the

weak open sets above by the lemma below:

Lemma 1.2. [5] In any topological space:

1. Any open set is w —open.

2. Any w —open set is @ — w —open.

3. Any a — w —open set is pre — @ —open.
4. Any pre — w —open set is b —w —open.
5. Any b — w —open set is § — w —open.

The converse is not true [5].

Remark 1.3. [5] The intersection of two pre — w —open, ( resp. b — w —open and
f —w —open) sets need not be pre—w —open, ( resp. b —w —open and

3 — «w —open) sets.



Lemma 1.4. [5] The intersection of an « — w —open ( resp. pre — w —open,
b — @ —open and § — w —open ) subset of any topological space and an open subset is

a — «w —open (resp. pre — w —open, b — w —open and § — w —open ) set.

Remark 1.5. The union of an « — w —closed ( resp. pre —w — closed, b — w —
closed and 5 — w — closed) subset of any topological space and a closed subset is

a — w — closed (resp. pre — w — closed, b — w — closed and # — w — closed) set.

Theorem 1.6. [5] If {A4_,: « € A} is a collection of « — w —open (resp.
pre — w —open, b —w —open and 7 — w —open ) subsets of the topological space
(X,T), then U_., A, IS @ —w —open (resp. pre —w —open, b —w —open and

3 — «w —open) set.

Corollary 1.7. If {A_,: a € A} is a collection of & —w —closed (resp.
pre — w —closed, b —w —closed and 8 — w —closed ) subsets of the topological
space (X,T), then N, A, 1S @ — w —closed (resp. pre — w —closed, b — «w —closed

and f — w —closed) set.

Definition 1.8. [5] A space (X, T) is called a door space if every subset of X is either

open or closed.
Example 1.9. The space (X, T) for X = {a, b}, and T = {X, 0, {a}}, is a door space.
Lemma 1.10. [5] If ( X, T) is a door space, then every pre — w —open set is w —open.

Theorem 1.11. Let A be a  — w —open set in the topological space ( X,T), then A is

b — w —open , whenever X is door space.



Proof:
Let 4 be a f —w —open subset of X. If 4 is open then by Lemma 1. 4 it is
h—w—open. Then if A4 is closed we get A € cl(int, (4))

< int,(cl(4)) U cl(int,(4)). Thus Ais b —w —opensetinX @

Definition 1.12. [5] A subset A of a space X is called

1. An @ — t —set, if int(4) = int_, (cl(4)).

2.Anw — B —setif A= U nV,where U isan open set and VV is an w — t —Set.
3. An w —t, —set, if int(4) = int_, (el(int,(A))).

4. Anw— B, —setif A=UnV,where Uisanopensetand V isan w — t_ —set.

5. An w —setif A = U nV, where U is an open set and int (V) = int,, (V).

Definition 1.13. Let ( X, T) be topological space. It said to be satisfy
1. The @ —condition if every w» —open set is w —Set.

2. The @ — B, —condition if every & — w —open setis w — B, —Set.
3. The @ — B —condition if every pre — w —open is w — B —Set.

Now let us introduce the following lemma from [5].

Lemma 1.14. [5] For any subset 4 of a space X, We have
1. Aisopen if and only if 4 is ww —open and w —set.
2. Alisopen If and only if 4 is & — w —open and w — B, —Set.

3. Aisopenifandonlyif 4 is pre — w —open and w — B —Set.

2. Decomposition of Continuity
Let us now use the weak «w —open sets to define a decomposition of continuity.

Also we introduce some theorems about this notion.



Definition 2.1. A function f:(X,o) — (¥, 1) is called w-continuous ( resp. @ — w-
continuous , pre —w —continuous, b — —continuous and g — w —continuous ),
if for each x € X , and each w —open ( resp. @ — w —open, pre —w —Open, b
—w —open and f — w —open ) set V containing f(x) , there exists an w —open (
resp. @« — w —open, pre —w —oOpen, b —w —open and 8 — w-open,) set UJ containing
X, such that f(U) c V.

Using the definition above we can get the following theorem:

Proposition 2.2. A function f:(X,0)— (Y,7) is w —continuous ( resp.
a —w —continuous , pre —w —continuous, b  —w —continuous  and
f — w —continuous ) if and only if for each w —open ( resp. @ — w —open, pre
—w —open, b —w —open and f —w —open ) set V in Y, f~1(V) is w —open ( resp.
o — @ —Open, pre —w —open, b —w —open and f — w —open ) setin X.
Proof:

Let f be an w —continuous map from X to ¥, and let x € X,and V be an
w —open subset of ¥ containing f(x). We must show that f~2(V) is w —open subset
of X containing x, so we shall prove int,,(f (1)) = f~2(V), let x € f~1(V), then
by the w —continuity of f we can find an w —open set U in X and containing x, such
that f(U) c V, then U < f~1(V), which is true for any x € f=*(V). This implies
F~1(V) is w —open subset of X. For the opposite side, let us assume that the inverse
image of any w —open set is also an «w —open to prove f is w —continuous map. Let
x € X and let V be an w —open subset of ¥ containing f(x) , by the hypothesis
F~1(V) is w —open subset of X, so forany x € F=2(V), f(f~*(V)) <V, and f is

w —continuous. By the same way we can prove the other cases @



Theorem 2.3. Let (X,o) and (Y, t) be two topological spaces such that X satisfies the
w — B_ —condition, and f: (X,g) — (¥, 1) be a map. If f is @ — w —continuous then
it is w —continuous.

Proof:

Let f:(X,0) — (X,1) be an & — w —continuous, to prove it is w —continuous, let
x € Xand V be an w —open ( so it is & — w —open ) set containing f(x). Since f is
a — « —continuousso there exists an @ — w —open subset IJ of X containing x such
that f(U) €V . Then since X satisfies the w — B, —condition we have U is an

w —open of X containing x such that f(U) = V. This implies f is w —continuous

@

Theorem 2.4. Let (X,o) and (Y¥,7) be two topological spaces such that X is door
space, and f: (X,d) — (Y, 1) be a map.

1. If f is pre — w —continuous then it is w —continuous.

2.1f fis f — w —continuous then it is b — w —continuous.

Proof:
By the same way as the proof of Theorem 2.3, using Lemma 1.2, Lemma 1.10 and

Theorem 1.11, we can prove this theorem @

Theorem 2.5. Let :(X,o) and(Y,7) be two topological spaces that satisfy
the w —condition then the map f:(X,g) — (¥, 1) is continuous if and only if it is
« —continuous.

Proof:

Let f: (X,0) — (X,7) be a continuous map at, x € X and V' be an «w —open
set in ¥ and containing f(x). Since X satisfy w —condition, so V is also open in V.

And by the continuity of f there is an open set U (also it is s —open) with f(U) c V.



For the converse let f be an w —continuous map and ¥V be an open set in ¥ and
containing f(x), so it is also w —open and by the « —continuity of f, there is an
w—open set U in X containing xwith f(U)cV, and since X satisfies

the w —condition U is an open set therefore f is continuous @

Remark 2.6. Theorem 2.5. is not true in general. It mean if f:(X,7) — (V,q) is
@ —continuous, then it is not necessarily continuous. As we see in the following

example.

Example 2.7. LetX ={a,b,c}, 1 ={0,X,{c}}, Y ={d, e f}, o = {0,V,{d}}, and let
f:(X,t) — (Y,o)be a map defined by fla)=Ff(b)=d, f(c)=e. f is
« —continuous but not continuous.

Note that since X and Y are countable, so any subset of them is w —open. If x = a, we
have f(x)=d. V, ={d},V, ={d,e}, V; =1{d,f},and V, = Y are w —open sets in ¥
containing f(x), so there exist U, = {a, b}, U, = {a,c}, U; = {a}, and U, = X such
that fF(U cV,, FU,)cV,, F(U;)cV; and fF(U,) <V, . Similarly for x = b, and
x = ¢, Therefore f is w —continuous map.

Next f is not continuous. Let x = b, f(x)=d, if V = {d}, then when UJ = X, we

have f(U) = {d,e} & {d} = V. Hence f is not continuous map .

Theorem 2.8. Let (X,0) and (¥,7) be two topological spaces that satisfy
the w — B, —condition then the map f: (X,a) — (¥, 1) is continuous if and only if it

IS @ — w —continuous.

Theorem 2.9. Let (X,o0) and (Y,7) be two topological spaces that satisfy
the w — B —condition then the map f: (X,o) — (¥, 1) is continuous if and only if it

IS pre — w —continuous.



Theorem 2.10. Let (X,o) and (¥,r) be two door topological spaces and
f:(X,0) — (Y, 7) be amap. Then

1. fis pre — w —continuous if and only if it is «» —continuous.

2. fis B — w —continuous if and only if it is b — w —continuous.

Proof of (1):

Let f be a pre — w —continuous, and let V be an «w —open set in ¥ and containing
f(x), therefore it is pre — w —open and since f is pre — w —continuous, there is a
pre — w —open set U in X containing x and f(U) = V. Since X is a door space U is
also an w —open set. For the converse let f be an «w —continuous map and V be a
pre — w —open set in ¥. Then since ¥ is door space we get V' is ww —open , and by the
w —continuity of f there exists an w —open set U in X containing x ( also
pre — w —open ) with f(U) = V. And so f isa w —continuous.

Similarly we can prove (2) @

3. Weak w —Compactness

In this article we shall introduce weak «wy —compactness. It is defined that every cover

by such weak open sets contains a finite subcover. So let us state new

definitions for the weak new types of «w —compact sets, and prove several rather

simple theorems about it.

Definition 3.1. Let X be a topological space. We say that a subset 4 of X is
w —compact [2] (resp. & — @ —compact , pre —w —compact, b — w —compact and
f — @ —compact ) if for each cover of w —open ( resp. « —w —open , pre
—w —open, b —w —open and  — w —open ) sets from X contains a finite sub cover

for A.



Theorem 3. 2. In any topological space , every 5 — w —compact set is compact

Proof :

Let X be a topological space , and let 4 be a # — «w —compact sub set of X, to prove 4
Is compact, let C be an open cover for A. Since we can consider C as a cover of
f# —w —open sets by lemma 1.2 and 4 is f — w —compact subset of X. Then €

contains a finite sub cover, Thus X is compact set.

Example 3.4. Consider the usual topology T for . The subset 4 = @ N [—v2,4/2] is

@ —compact but not b — w —compact. Since {(—*ﬁ —%, 2] } . IS b —w —open

cover for 4, but it not have a finite sub cover for A.

Theorem 3.5. Let (X, T) be a topological space

1.1f (X, T) is door space, then any w —compact set is pre — w —compact.

2. 1f (X, T) is door space, then any b — «w —compact set is 5 — w —compact.

3. If (X, T) satisfies the w —condition, then any compact set is « —compact.

4. If (X, T) satisfies the w — B, —condition, then any compact set is & — w —compact.
5 If (X,T) satisfies the @ — B —condition, then any compact set is
pre — w —compact.

Proof:

1. Let X be a topological door space, and let A be an «» —compact sub set of X , and C
be a cover of pre — w —open subsets of X . Since X is a door space so we can consider
C as a cover of w —open sets. And by the « —compactness of X, C contains a finite
sub cover of pre — w —open sets. Hence A is pre — w —compact.

Similarly we can prove (2).



3. Let X be a topological space satisfies the « —condition, and A be a compact subset
of X, to prove A is w —compact, let C be a cover of w —open sets for A. Since X
satisfies the w —condition, we can consider C as a cover of open sets and by the
compactness of 4 , € contains a finite subcover of open( also «w —open) sets for A.
This implies X is o —compact.

Similarly we can prove (4) and (5) @

Theorem 3.6. An «w —closed ( resp. « — w —closed , pre —w —closed, b —w —closed
and 8 —w —closed) sub set of w —compact ( resp. « — w —compact , pre
—w —compact, b —w —compact and £ — w —compact ) subspace is w —compact (
resp. & — w —compact , pre —w —compact, b — w —compact and § —w —compact ).
Proof:

Let ¥ be an w-compact subspace of the topological space X, and let F be an @ —
closed subset of Y. Let € = {G;,A € A} be a cover of w —open sets for F. Then
CU(Y\F) = D is a cover of w —open sets for Y. Since Y is w —compact there is a
finite sub cover D of D for ¥, and hence without ¥\ F, a cover for F ( because F and
Y\F are disjoint). So we have shown that a finite sub collection of C cover F. Thus

F is w» — compact. Similarly we can prove the other cases @

Theorem 3.7. Let f:X — ¥ be an w-continuous ( resp. « — «w — continuous, pre
—w — continuous, b —w — continuous, and f —w — continuous) map from the
w —compact ( resp. @ — w —compact , pre —w —compact, b — w —compact, and 8
—w —compact ) space X onto a topological space ¥. Then ¥ is w —compact ( resp.
a — w —compact , pre —w —compact , b —w —compact and f —w —compact )

space..
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Proof:

Let f: X — Y be an @ —continuous map from the w» —compact space X on to ¥. Let
{¥;, A € A} be a cover of w —open sets for ¥, then since f is w —continuous map so
{f*(Y;),A € A}is acover of w —open sets for X. Since X is w —compact so it has a
finite subcover {f‘1 (V). i=12, ... n] Then by the surjection of fwe get
{}’;—‘:, 1=1,2,.. n} Is an w —open cover for Y. Hence Y is ww —compact. With a simple

modification to that prove one can prove the other cases

References
[1]. A. Al-Omari and M. S. M. Noorani " Regular generalized w-closed sets", |

nternat. J. Math. Math. Sci., vo. 2007. Article ID 16292, 11 pages, doi:
10.1155/2007/16292 (2007).

[2]. A. Al-Omari and M. S. M. Noorani," Contra- w-continuous and almost contra- w-

continuous”, I nternat. J. Math. Math. Sci., vo. 2007. Article 1D40469,13 pages. doi:
10.1155/2007/16292 ( 2007).

[3]. H. Z. Hdeib, " w-closed mappings”, Rev. Colomb. Mat. 16 (3-4): 65-78 (1982).
[4]. H. Z. Hdeib, " w-continuous functions™, Dirasat 16, (2): 136-142 (1989).

[5]. T. Noiri, A. Al-Omari, M. S. M. Noorani", Weak forms of w-open sets and
decomposition of continuity", E.J.P.A.M.2(1): 73-84 (2009).

[6]. T. Noiri, A. Al-Omari and M. S. M. Noorani," Slightly w-continuous functions",
Fasciculi Mathematica 41: 97-106 (2009).

11



