Characterizations of Continuity and Compactness

with Respect to Weak Forms of ω -Open Sets

Luay A. Al-Swidi and M. H. Hadi

University of Babylon, College of Education Ibn-Hayaan, Mathematics Department.

Abstract. In this paper We use the weak ω –open sets defined by T. Noiri, A. Al-Omari, M. S. M. Noorani in [5], to define new weak types of continuity and compactness and prove some theorems about them.

Key words. Weak open set, weak continuity, weak compactness, ω –open set.

1. Introduction and Preliminaries

Through out this paper, (X, T) stands for topological space. Let (X, T) be a topological space and A a subset of X. A point x in X is called *condensation point* of A if for each U in T with x in U, the set $U \cap A$ is un countable [3]. In 1982 the ω -closed set was first introduced by H. Z. Hdeib in [3], and he defined it as: A is ω -*closed* if it contains all its condensation points and the ω -*open* set is the complement of the ω -closed set. Equivalently. A subset W of a space (X, T), is ω -open if and only if for each $x \in W$, there exists $U \in T$ such that $x \in U$ and $U \setminus W$ is countable. The collection of all ω -open sets of (X, T) denoted T_{ω} form topology on X and it is finer than T. Several characterizations of ω -closed sets were provided in [1, 3, 4, 6]. For a subset A of X, the closure of A and the ω - interior of A will be denoted by cl(A) and $int_{\omega}(A)$ respectively. The ω - *interior* of the set A defined as the union of all ω - open sets contained in A.

In 2009 in [5] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced and investigated new notions called $\alpha - \omega$ -open, *pre* $-\omega$ -open, *b* $-\omega$ -open and $\beta - \omega$ -open sets which are weaker than ω -open set. Let us introduce these notions in the following definition:

Definition 1.1. [5] A subset *A* of a space X is called

1.
$$\alpha - \omega$$
 -open if $A \subseteq int_{\omega}(cl(int_{\omega}(A)))$.
2. pre $-\omega$ -open if $A \subseteq int_{\omega}(cl(A))$.
3. $b - \omega$ -open if $A \subseteq int_{\omega}(cl(A)) \cup cl(int_{\omega}(A))$.
4. $\beta - \omega$ -open if $A \subseteq cl(int_{\omega}(cl(A)))$.

In [5] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced relationships among the weak open sets above by the lemma below:

Lemma 1.2. [5] In any topological space:

- **1**. Any open set is ω –open.
- 2. Any ω –open set is $\alpha \omega$ –open.
- 3. Any $\alpha \omega$ -open set is *pre* ω -open.
- 4. Any $pre \omega$ -open set is $b \omega$ -open.
- 5. Any $b \omega$ -open set is $\beta \omega$ -open.
- The converse is not true [5].

Remark 1.3. [5] The intersection of two $pre - \omega$ -open, (resp. $b - \omega$ -open and $\beta - \omega$ -open) sets need not be $pre - \omega$ -open, (resp. $b - \omega$ -open and $\beta - \omega$ -open) sets.

Lemma 1.4. [5] The intersection of an $\alpha - \omega$ -open (resp. $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) subset of any topological space and an open subset is $\alpha - \omega$ -open (resp. $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) set.

Remark 1.5. The union of an $\alpha - \omega$ -closed (resp. $pre - \omega$ - closed, $b - \omega$ - closed and $\beta - \omega$ - closed) subset of any topological space and a closed subset is $\alpha - \omega$ - closed (resp. $pre - \omega$ - closed, $b - \omega$ - closed and $\beta - \omega$ - closed) set.

Theorem 1.6. [5] If $\{A_{\alpha} : \alpha \in \Delta\}$ is a collection of $\alpha - \omega$ -open (resp. $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) subsets of the topological space (X,T), then $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is $\alpha - \omega$ -open (resp. $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open set.

Corollary 1.7. If $\{A_{\alpha} : \alpha \in \Delta\}$ is a collection of $\alpha - \omega$ -closed (resp. $pre - \omega$ -closed, $b - \omega$ -closed and $\beta - \omega$ -closed) subsets of the topological space (X, T), then $\bigcap_{\alpha \in \Delta} A_{\alpha}$ is $\alpha - \omega$ -closed (resp. $pre - \omega$ -closed, $b - \omega$ -closed and $\beta - \omega$ -closed) set.

Definition 1.8. [5] A space (X, T) is called a *door space* if every subset of X is either open or closed.

Example 1.9. The space (X, T) for $X = \{a, b\}$, and $T = \{X, \emptyset, \{a\}\}$, is a door space.

Lemma 1.10. [5] If (X, T) is a door space, then every $pre - \omega$ -open set is ω -open.

Theorem 1.11. Let *A* be a $\beta - \omega$ –open set in the topological space (*X*, *T*), then *A* is $b - \omega$ –open, whenever *X* is door space.

Proof:

Let A be a $\beta - \omega$ -open subset of X. If A is open then by Lemma 1. 4 it is $b - \omega$ -open. Then if A is closed we get $A \subseteq cl(int_{\omega}(A))$ $\subseteq int_{\omega}(cl(A)) \cup cl(int_{\omega}(A))$. Thus A is $b - \omega$ -open set in X \bigcirc

Definition 1.12. [5] A subset *A* of a space *X* is called

1. An $\boldsymbol{\omega} - \boldsymbol{t}$ -set, if $int(A) = int_{\omega}(cl(A))$.

2. An $\omega - B$ -set if $A = U \cap V$, where U is an open set and V is an $\omega - t$ -set.

3. An $\omega - t_{\alpha}$ -set, if $int(A) = int_{\omega}(cl(int_{\omega}(A)))$.

- 4. An ωB_{α} -set if $A = U \cap V$, where U is an open set and V is an ωt_{α} -set.
- 5. An ω -set if $A = U \cap V$, where U is an open set and $int(V) = int_{\omega}(V)$.

Definition 1.13. Let (X, T) be topological space. It said to be satisfy

1. The ω –*condition* if every ω –open set is ω –set.

2. The $\omega - B_{\alpha}$ -condition if every $\alpha - \omega$ -open set is $\omega - B_{\alpha}$ -set.

3. The $\omega - B$ -condition if every $pre - \omega$ -open is $\omega - B$ -set.

Now let us introduce the following lemma from [5].

Lemma 1.14. [5] For any subset *A* of a space *X*, We have

1. A is open if and only if A is ω –open and ω –set.

- **2.** A is open If and only if A is $\alpha \omega$ -open and ωB_{α} -set.
- **3.** A is open if and only if A is $pre \omega$ -open and ωB -set.

2. Decomposition of Continuity

Let us now use the weak ω –open sets to define a decomposition of continuity. Also we introduce some theorems about this notion. **Definition 2.1.** A function $f:(X, \sigma) \to (Y, \tau)$ is called ω -continuous (resp. $\alpha - \omega$ continuous, $pre - \omega$ -continuous, $b - \omega$ -continuous and $\beta - \omega$ -continuous), if for each $x \in X$, and each ω -open (resp. $\alpha - \omega$ -open, $pre - \omega$ -open, b $-\omega$ -open and $\beta - \omega$ -open) set *V* containing f(x), there exists an ω -open (resp. $\alpha - \omega$ -open, $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open,) set *U* containing *x*, such that $f(U) \subset V$.

Using the definition above we can get the following theorem:

Proposition 2.2. A function $f:(X,\sigma) \to (Y,\tau)$ is ω -continuous (resp. $\alpha - \omega$ -continuous , $pre -\omega$ -continuous, $b -\omega$ -continuous and $\beta - \omega$ -continuous) if and only if for each ω -open (resp. $\alpha - \omega$ -open, pre $-\omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) set V in Y, $f^{-1}(V)$ is ω -open (resp. $\alpha - \omega$ -open, $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) set in X.

Proof:

Let f be an ω -continuous map from X to Y, and let $x \in X$, and V be an ω -open subset of Y containing f(x). We must show that $f^{-1}(V)$ is ω -open subset of X containing x, so we shall prove $int_{\omega}(f^{-1}(V)) = f^{-1}(V)$, let $x \in f^{-1}(V)$, then by the ω -continuity of f we can find an ω -open set U in X and containing x, such that $f(U) \subset V$, then $U \subset f^{-1}(V)$, which is true for any $x \in f^{-1}(V)$. This implies $f^{-1}(V)$ is ω -open subset of X. For the opposite side, let us assume that the inverse image of any ω -open set is also an ω -open to prove f is ω -continuous map. Let $x \in X$ and let V be an ω -open subset of Y containing f(x), by the hypothesis $f^{-1}(V)$ is ω -open subset of X, so for any $x \in f^{-1}(V)$, $f(f^{-1}(V)) \subset V$, and f is ω -continuous. By the same way we can prove the other cases

Theorem 2.3. Let (X, σ) and (Y, τ) be two topological spaces such that X satisfies the $\omega - B_{\alpha}$ -condition, and $f: (X, \sigma) \rightarrow (Y, \tau)$ be a map. If f is $\alpha - \omega$ -continuous then it is ω -continuous.

Proof:

Let $f:(X,\sigma) \to (X,\tau)$ be an $\alpha - \omega$ -continuous, to prove it is ω -continuous, let $x \in X$ and V be an ω -open (so it is $\alpha - \omega$ -open) set containing f(x). Since f is $\alpha - \omega$ -continuousso there exists an $\alpha - \omega$ -open subset U of X containing x such that $f(U) \subset V$. Then since X satisfies the $\omega - B_{\alpha}$ -condition we have U is an ω -open of X containing x such that $f(U) \subset V$. This implies f is ω -continuous

$oldsymbol{O}$

Theorem 2.4. Let (X, σ) and (Y, τ) be two topological spaces such that X is door space, and $f: (X, \sigma) \to (Y, \tau)$ be a map.

1. If f is $pre - \omega$ -continuous then it is ω -continuous.

2. If f is $\beta - \omega$ -continuous then it is $b - \omega$ -continuous.

Proof:

By the same way as the proof of Theorem 2.3, using Lemma 1.2, Lemma 1.10 and Theorem 1.11, we can prove this theorem

Theorem 2.5. Let $:(X, \sigma)$ and (Y, τ) be two topological spaces that satisfy the ω -condition then the map $f:(X, \sigma) \to (Y, \tau)$ is continuous if and only if it is ω -continuous.

Proof:

Let $f:(X, \sigma) \to (X, \tau)$ be a continuous map at , $x \in X$ and V be an ω -open set in Y and containing f(x). Since X satisfy ω -condition, so V is also open in Y. And by the continuity of f there is an open set U (also it is ω -open) with $f(U) \subset V$. For the converse let f be an ω -continuous map and V be an open set in Y and containing f(x), so it is also ω -open and by the ω -continuity of f, there is an ω -open set U in X containing x with $f(U) \subset V$, and since X satisfies the ω -condition U is an open set therefore f is continuous

Remark 2.6. Theorem 2.5. is not true in general. It mean if $f:(X,\tau) \to (Y,\sigma)$ is ω -continuous, then it is not necessarily continuous. As we see in the following example.

Example 2.7. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{c\}\}, Y = \{d, e, f\}, \sigma = \{\emptyset, Y, \{d\}\}, \text{ and let } f: (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by f(a) = f(b) = d, f(c) = e, f is ω -continuous but not continuous.

Note that since X and Y are countable, so any subset of them is ω -open. If x = a, we have f(x) = d. $V_1 = \{d\}, V_2 = \{d, e\}, V_3 = \{d, f\}$, and $V_4 = Y$ are ω -open sets in Y containing f(x), so there exist $U_1 = \{a, b\}, U_2 = \{a, c\}, U_3 = \{a\}$, and $U_4 = X$ such that $f(U_1) \subset V_1$, $f(U_2) \subset V_2$, $f(U_3) \subset V_3$ and $f(U_4) \subset V_4$. Similarly for x = b, and x = c, Therefore f is ω -continuous map.

Next f is not continuous. Let x = b, f(x) = d, if $V = \{d\}$, then when U = X, we have $f(U) = \{d, e\} \not\subset \{d\} = V$. Hence f is not continuous map.

Theorem 2.8. Let (X, σ) and (Y, τ) be two topological spaces that satisfy the $\omega - B_{\alpha}$ -condition then the map $f: (X, \sigma) \to (Y, \tau)$ is continuous if and only if it is $\alpha - \omega$ -continuous.

Theorem 2.9. Let (X, σ) and (Y, τ) be two topological spaces that satisfy the $\omega - B$ -condition then the map $f: (X, \sigma) \to (Y, \tau)$ is continuous if and only if it is *pre* - ω -continuous. Theorem 2.10. Let (X,σ) and (Y,τ) be two door topological spaces and $f:(X,\sigma) \to (Y,\tau)$ be a map. Then

1. f is $pre - \omega$ -continuous if and only if it is ω -continuous.

2. *f* is $\beta - \omega$ –continuous if and only if it is *b* – ω –continuous.

Proof of (1):

Let f be a pre – ω –continuous, and let V be an ω –open set in Y and containing f(x), therefore it is $pre - \omega$ -open and since f is $pre - \omega$ -continuous, there is a $pre - \omega$ -open set U in X containing x and $f(U) \subset V$. Since X is a door space U is also an ω –open set. For the converse let f be an ω –continuous map and V be a $pre - \omega$ -open set in Y. Then since Y is door space we get V is ω -open, and by the ω -continuity of f there exists an ω -open set U in X containing x (also $pre - \omega$ -open) with $f(U) \subseteq V$. And so f is a ω -continuous. ()

Similarly we can prove (2)

3. Weak ω – Compactness

In this article we shall introduce weak ω –compactness. It is defined that every cover sets contains a finite So let us state new by such weak open subcover. definitions for the weak new types of ω –compact sets, and prove several rather simple theorems about it.

Definition 3.1. Let X be a topological space. We say that a subset A of X is ω -compact [2] (resp. $\alpha - \omega$ -compact, pre $-\omega$ -compact, b $-\omega$ -compact and $\beta - \omega$ -compact) if for each cover of ω -open (resp. $\alpha - \omega$ -open , pre $-\omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) sets from X contains a finite sub cover for A.

Theorem 3.2. In any topological space, every $\beta - \omega$ –compact set is compact

Proof:

Let X be a topological space, and let A be a $\beta - \omega$ -compact subset of X, to prove A is compact, let C be an open cover for A. Since we can consider C as a cover of $\beta - \omega$ -open sets by lemma 1.2 and A is $\beta - \omega$ -compact subset of X. Then C contains a finite sub cover, Thus X is compact set.

Example 3.4. Consider the usual topology T for \mathbb{R} . The subset $A = \mathbb{Q} \cap [-\sqrt{2}, \sqrt{2}]$ is ω -compact but not $b - \omega$ -compact. Since $\{\left(-\sqrt{2} - \frac{1}{n}, 2\right]\}_{n \in \mathbb{N}}$ is $b - \omega$ -open cover for A, but it not have a finite sub cover for A.

Theorem 3.5. Let (X, T) be a topological space

1. If (X, T) is door space, then any ω –compact set is $pre - \omega$ –compact.

2. If (X, T) is door space, then any $b - \omega$ -compact set is $\beta - \omega$ -compact.

3. If (X, T) satisfies the ω –condition, then any compact set is ω –compact.

4. If (X, T) satisfies the $\omega - B_{\alpha}$ -condition, then any compact set is $\alpha - \omega$ -compact.

5. If (X,T) satisfies the $\omega - B$ -condition, then any compact set is $pre - \omega$ -compact.

Proof:

1. Let X be a topological door space, and let A be an ω -compact sub set of X, and C be a cover of $pre - \omega$ -open subsets of X. Since X is a door space so we can consider C as a cover of ω -open sets. And by the ω -compactness of X, C contains a finite sub cover of $pre - \omega$ -open sets. Hence A is $pre - \omega$ -compact. Similarly we can prove (2).

3. Let X be a topological space satisfies the ω -condition, and A be a compact subset of X, to prove A is ω -compact, let C be a cover of ω -open sets for A. Since X satisfies the ω -condition, we can consider C as a cover of open sets and by the compactness of A, C contains a finite subcover of open(also ω -open) sets for A. This implies X is ω -compact.

Similarly we can prove (4) and (5)

 \bigcirc

Theorem 3.6. An ω -closed (resp. $\alpha - \omega$ -closed, $pre - \omega$ -closed, $b - \omega$ -closed and $\beta - \omega$ -closed) subset of ω -compact (resp. $\alpha - \omega$ -compact, pre $-\omega$ -compact, b - ω -compact and $\beta - \omega$ -compact) subspace is ω -compact (resp. $\alpha - \omega$ -compact, pre - ω -compact, b - ω -compact and $\beta - \omega$ -compact). **Proof:**

Let *Y* be an ω -compact subspace of the topological space *X*, and let *F* be an ω – closed subset of *Y*. Let $C = \{G_{\lambda}, \lambda \in \Lambda\}$ be a cover of ω –open sets for *F*. Then $C \cup (Y \setminus F) = D$ is a cover of ω –open sets for *Y*. Since *Y* is ω –compact there is a finite sub cover \hat{D} of *D* for *Y*, and hence without $Y \setminus F$, a cover for *F* (because *F* and $Y \setminus F$ are disjoint). So we have shown that a finite sub collection of *C* cover *F*. Thus *F* is ω – compact. Similarly we can prove the other cases

Theorem 3.7. Let $f: X \to Y$ be an ω -continuous (resp. $\alpha - \omega$ - continuous, *pre* $-\omega$ - continuous, $b - \omega$ - continuous, and β $-\omega$ - continuous) map from the ω -compact (resp. $\alpha - \omega$ - compact, *pre* $-\omega$ - compact, $b - \omega$ - compact, and β $-\omega$ - compact) space X onto a topological space Y. Then Y is ω - compact (resp. $\alpha - \omega$ - compact , *pre* $-\omega$ - compact , $b - \omega$ - compact and β $-\omega$ - compact) space..

Proof:

Let $f: X \to Y$ be an ω -continuous map from the ω -compact space X on to Y. Let $\{Y_{\lambda}, \lambda \in \Lambda\}$ be a cover of ω -open sets for Y, then since f is ω -continuous map so $\{f^{-1}(Y_{\lambda}), \lambda \in \Lambda\}$ is a cover of ω -open sets for X. Since X is ω -compact so it has a finite subcover $\{f^{-1}(Y_{\lambda_i}), i = 1, 2, ..., n\}$. Then by the surjection of f we get $\{Y_{\lambda_i}, i = 1, 2, ..., n\}$ is an ω -open cover for Y. Hence Y is ω -compact. With a simple modification to that prove one can prove the other cases

References

[1]. A. Al-Omari and M. S. M. Noorani "*Regular generalized ω-closed sets*", I nternat. J. Math. Math. Sci., vo. 2007. Article ID 16292, 11 pages, doi: 10.1155/2007/16292 (2007).

[2]. A. Al-Omari and M. S. M. Noorani," *Contra-* ω -*continuous and almost contra-* ω *continuous*", I nternat. J. Math. Math. Sci., vo. 2007. Article ID40469,13 pages. doi: 10.1155/2007/16292 (2007).

[3]. H. Z. Hdeib, " *w*-closed mappings", Rev. Colomb. Mat. 16 (3-4): 65-78 (1982).

[4]. H. Z. Hdeib, "ω-continuous functions", Dirasat 16, (2): 136-142 (1989).

[5]. T. Noiri, A. Al-Omari, M. S. M. Noorani", Weak forms of ω-open sets and decomposition of continuity", E.J.P.A.M.2(1): 73-84 (2009).

[6]. T. Noiri, A. Al-Omari and M. S. M. Noorani," *Slightly ω-continuous functions*", Fasciculi Mathematica 41: 97-106 (2009).