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Abstract: 

          In this paper we introduce and study the concepts of a new class of points, namely turing points 
of proper ideal and some of their properties are analyzed. 
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1. Introduction: 

          Ideal in topological spaces have been considered since 1930. This topic won its importance by 
the paper of Vaidyanathaswamy [7] and Kuratwoski [6]. Applications to various fields were further 
investigated by Janković and Hamlett [3]; Dontchev et al. [2]; Mukherjee et al. [4]; Arenas et al. [5]; 
Navaneethakrishnan et al. [1]; Nasef and Mahmoud [8], etc. In this paper We used only the proper ideal 
to work , ideal bace, turing point, finer than, and maximal ideal to prove continuous, compactness,  
space and ideal net. Let  ,  be a topological space, by  we will denote the open neighborhood 
system at a point . 

         A set ∆ is said to be directed if and only if there is a relation  on ∆ satisfying, (i)  for each 
∆, (ii) if  and  then , (iii) if , ∆, then there is ∆ such that 

 and  [9]. A net in a set  is a function  on a directed set into  [9]. By ∆ we 
will denote the net . Let , a net  on  is said to be eventually in  iff there exists ∆ such 
that  implies that . A net ∆ convergent to  iff its eventually for each 

 and denoted by ∆ . A topological space  is compact if and only if every class  
of closed subsets of  which satisfies the finite intersection has, itself, a non-empty intersection [9].  

Definition 2.1[7]: 

     Let  be a set. A family  of subsets of  is an ideal on  if  

1. ,  implies . 
2.  and  implies . 

Definition 2.2[4]: 

     Let  be a set. A family  of subsets of  is a proper ideal on  if  is an ideal on  and . 

Theorem 2.3: 

     Let : ∆  be any femily ideals on . Then : ∆  is also ideal on . 

Remark 2.4: 

1. The union of two ideals on a set   not necessary is ideals, for example. Let , , then 
,  and ,  are ideals on  but , ,  is not ideal on . 

2. The intersection of all ideals on  is the ideal .     
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Example 2.5:  

     Let  be infinite set . Then :  is finite subset of  is an ideal on  is called finite ideal. 

Theorem 2.6:  

     Let :  be a function. Then If  is an ideal on , then the family  :  is an 
ideal on . 

Definition 2.7: 

         An ideal base on  is a family  of subsets of  satisfies (i)  (ii) if  and , then 
there exists  such that . Observe that if  for each  and  in , then  
is an ideal base on . 

Example 2.8: 

    Let  , , , then , , ,  is an ideal base on . 

Example 2.9:  

     Let  be an ideal on  and  such that  for each . Then,                                    
 is an ideal base on . 

Proposition 2.10:  

    Let  be an ideal base on , then  for some  is an ideal on  generated 
by . 

Proposition 2.11: 

     Let  and . If  is an ideal base on , then its ideal base on . 

Proof. 

     Directly by using definition 2.7. 

Remark 2.12: 

     The converse is not true for example if , ,  and  then , , ,  is an 
ideal base on  but is not ideal base on .  

Theorem 2.13:  

     Let :  be a function. If  is an ideal base on , then the family  :  is an 
ideal base on . 

Definition 2.14: 

       Let  be an ideal on  and . We say that  is turing point of  if for each   implies 
. 

Example 2.15:  

     Let  be a set and . Then : , is an ideal on  and  is a turing point of . 

Theorem 2.16: 

     Let : . Then  is continuous at  if and only if whenever  is a turing point of an ideal  
then  is a turing point of an ideal . 
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Proof. 

     Suppose  is continuous at  and  is turing point of an ideal . Let  in . Since  is 
continuous then for some  in , . So . Since  is a turing point of an ideal 
, then . Then . But  , then . So that   is a turing point of 

an ideal . 

Conversely, suppose whenever  is a turing point of an ideal  then  is a turing point of an ideal 
. Define : . Then each  , , so for some , 

. So . Thus  is continuous at .    

Definition 2.17: 

     Let  and  be two ideals on the same set . Then  is said to be finer than  if and only if . 

Example 2.18: 

     Let 1,2,3 . Then  , 1  and , 1 , 2 , 1,2  are an ideals on  and  finer than 
. 

Example 2.19: 

     If  is any set. Then any ideal on  is finer than . 

Theorem 2.20:  

     Let  be any set and let  be an ideal on  such that : . Show that  is finer than the 
finite ideal on . 

Proof: 

     Let  be the finite ideal on . To show that . Suppose if possible . Then there exists  
such that . Then  is finite subset of . Let , , … , . Now : . Then 

 for some 1, … , . Since  is an ideal, : 1,2, … , . Thuse  is 
contain any element of , , … , . Hence . Since  is an ideal,  implies . But this 
is a contradiction with . Hence  must be finer than the finite ideal. 

Definition 2.21: 

     Let  be an ideal on . Then  is said to be maximal ideal on  if and only if  is not contained in 
any other ideal on . i.e  is a maximal ideal on  if and only if for every ideal  on  such that , 
then . 

Theorem 2.22: 

     Let  be a set. Every ideal on  is contained in a maximal ideal on . 

Proof. 

     Let  be any ideal on  and let  be the class of all ideals on  containing . Then  is non-empty 
since . Also  is partially orderd by the inclusion relation . Now let  be a linearly ordered 
subset of . Then by definition of linear ordering for any two members ,  of , we have either 

 or . Let  . To show that  is an ideal on . 

1. Since each  is an ideal, we have  for each an ideal  and so . 
2. Let  and . Then  for some  and since  is an ideal, . It follows 

that . 
3. Let  and .  and  for some , . Since  is linearly ordered, we 

have either  or . Hence both  and  belong either to  or to  and so  
belongs either to  or to . It follows that . 
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Further  is finer than every member of   and so  is upper bound of . Thus we have shown that 
 is a non-empty partially ordered set in which every linearly ordered subset has an upper bound. 

Hence by Zorn's lemma  contains a maximal element . This maximal element  is by definition, 
maximal ideal on  containing . 

Example 2.23: 

     Let 1,2,3 . Then , , 1 , , 2 , , 3 ,  

, 1 , 2 , 1,2 ,  

, 1 , 3 , 1,3  and 

 , 2 , 3 , 2,3  are ideals on . Clear that ,  and . So that 
,  and  are maximal ideals on . 

Proposition 2.24: 

     Let  be an ideal on .  is a maximal ideal on  if and only if for each , then either  or 
. 

Proof. 

     If , then  for each , because if there exists  such that , then 
, then  construction. Let  be an ideal generated by ideal base . Since 

 for each , then … 1 . To show that . Let , then , because 
. But  is a maximal ideal, then . By 1  . 

Conversely. Let  be an ideal and . To prove that . Suposse there exists  such that 
, then by hypothesis . But . So . Then . But the contradictio with  is 

ideal. Then . Then . So that  is maximal ideal.  

Theorem 2.25: 

     Let  be an ideal on . An ideal  on  is maximal ideal if and only if  contains all those subsets  
of  which  for each . 

Proof. 

     Let  be a maximal ideal and let  such that  for each .Define 

 for each  

Observe that and   is ideal. Since  is maximal ideal, then . Since  for each  
so that  so also . 

Conversely. Let  be an ideal satisfying the condition. Let  be an ideal on  such that . Let , 
then  for each . Since , then  for each . then . So , then 

. Therefore  is maximal ideal. 

Theorem 2.26: 

     Let  be an ideal on .  is maximal ideal if and only if for any two subsets  and  of  such that 
, we have either  or . 

Proof. 

     Let . If possible, that  and . Then  and  ( if possible , then 
 contradiction with  and the similer if  . Define 

. Then  is an ideal and  . To prove that . Let . Since , then . So 
. Therefore . Since  and , then . But this contradicts the hypothesis  is a 

maximal ideal. Hence either  or . 
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Conversely. Let the condition hold and let  be any subset of . Since  is an ideal then . But 
. Hence by hypothesis either  or . Hence by proposition 2.24,  is maximal ideal 

on . 

Corollary 2.27: 

     If  is maximal ideal on  and … , then at least one 1,2, … , . 

Corollary 2.28:  

     If  is maximal ideal on  and , , … ,  are subsets of  such that 1,2, … ,  covers 
, then some 1,2, … , . 

Proof. 

     Since 1,2, … , , then 1,2, … , . Then 

1,2, … , . So by corollary 2.27, some 1,2, … , . 

Proposition 2.29: 

     Let  be a collection of subsets of  such that for all  and , , … ,  we have 
. Then  there exists , , … , ,  .  is an ideal containing 

. Inded  is the ideal generated by . 

Proof. 

     First to show that . Let . Then for all  such that , , … , , then 
. So . So . Clear  is an ideal on . So that  is an ideal on  and  is called a 

subbase of . 

Theorem 2.30: 

     Let  be a collection of subsets of  with the finite intersection property. Then  

  forms a subbase for an ideal.   

Proof. 

     Let  and , , … , . If  , then  such that  for all 
1,2, … , . But the contradiction with  has intersection property. So  . Therefore by 

proposition 2.29,  forms a subbase for an ideal.  

Theorem 2.31: 

     Let  be a topological space.   is compact if and only if every ideal  can be found that an ideal  
finer than  and  is turing point of ideal  for some . 

Proof. 

     Suppose  is compact. Let  be an ideal. Then :  is a closed sets with the finite 
intersection property (other wise if … , then … , then 

… , but this contradiction with ). Let . Then for each  and 
each , we have , as . So , as . Thus 

 forms sub base for an ideal ,  and  is turing point of an ideal . 

Conversely. Let  be a collection of closed sets with finite intersection property. Then  forms 
subbase for an ideal . Can be found that an ideal  finer than  and  is turing point of  for some 

. Thus for each  and each  we must have . So that . Since 
 is closed, we must have . So . Thus . So  is compact. 
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Corollary 2.32: 

     Let  be a topological space.   is compact if and only if every maximal ideal on  there exists 
 is turing point of . 

Theorem 2.33: 

     Let ,  be a topological space.  is  if and only if every ideal  on  and ,  are turing 
point of , then . 

Proof. 

     Let ,  such that  and let  be an ideal such that ,  are turing point of . Then every 
 and every ,  and . Then . But  is proper ideal then 
. Then . Thus  is not . 

Conversely. Let  be not  then there exists two points , , with , such that for any open 
sets , , with  and  we have . So that  for each  and 
for each . Thus the collection 

,  

is an ideal base on  (since for any , , we have 
). Clearly every , , is in 

, and similarly, every , , is in . So that ,  are turing point of  where  is an 
ideal generated by . 

Proposition 2.34:  

     Let ∆ be a net on  and let 

 ∆ is eventually in .  is an ideal on . 

Remark 2.35:  

     An ideal in proposition above its an ideal generating by the net ∆ and denoted by Ideal . 

Proposition 2.36: 

      Let  be an ideal generating by the net ∆ in a topological space ,  and . Then  is 
turing point of  if and only if . 

Proof. 

      Let  be a turing point of . Then , for each . So ∆ eventually in . Thus 
. 

Conversely. Let . Then ∆ is eventually in  for each  . So  for each 
. Thus  is turing point of . 

Definition 2.37: 

      Let  be an ideal bace on  and . We say that  is turing point of  if and only if  is turing 
point of  where  is an ideal generated by . 

Proposition 2.38: 

    Let  be an ideal bace on  and . Then  is turing point of  if and only if for each  
then  for some . 

Proof. 

    Let  is turing point of . Then  is turing point of  where  is an ideal generated by . Thus for  
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each , . So  for some . 

Conversely. Let  be an ideal generated by  and let for each ,  for some . Since 
 and , then . But , so  for each , then  is turing point of . 

Therefore  is turing point of . 

Definition 2.39: 

    Let  be an ideal bace on  and let ∆ , :  and . Then ∆ ,  is a directed set 
where  ,  ,  if and only if  {because   ,  ,  if and only if 

, then  where , , then there exists  such that , then 
, then  and . So that  and . Define a net ∆  such 

that  where  , ∆. So that ∆ is a net generating by , and denoted by 
Net . 

Proposition 2.40: 

     Let  be an ideal bace on a nonemrty set  and . If ∆ is Net , then  is turing point 
of  if and only if . 

Proof. 

    Let  be a turing point of  and . By proposition 2.38, we have  for some . 
Since , then  (because ). So there exists , take  , . Then 

. So that  for each . Therefore . 

Conversely. Let  and  then there exists ∆ such that  for each . Thus 
there exists  and  such that  , . To show that . Let , then 

 ,  , . So that , then , then . By proposition 2.38, we have 
 is turing point of . 

Proposition 2.41: 

     Let  and  be an ideal base on . Let ∆ be a Net . If  is an Ideal( , then  
where  is an ideal generating by . 

Proof.  

     Let , then there exists  such that , then  . Let 

∆ is eventually in . 

 Since  (because ), then there exists , so if  ,  ,  then 
. So that ∆ is eventually in . So . Therefore .  

Conversely. Let , then ∆ is eventually in , then there exists  ,  such that 
 for each . Since  ,  ,  for each  then . So 
. So that there exists  such that , then . So . Therefore . 

Definition 2.42: 

     Let  be an ideal on  and let ∆ , :  and . Then ∆ ,  is a directed set where 
 ,  ,  if and only if  because   ,  ,  if and only if , then 

 where , , then , then  and , then 
 and . So that  and . Define a net ∆  such that 

 where  , ∆. So that ∆ is a net generating by , and denoted by Net . 

Proposition 2.43: 

     Let  and let  be any ideal on , : ∆  be any net. Then 

. 
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Proof. 

   Let , and let 

∆ is eventually in . 

 Since  (because ), then there exists , so if  ,  ,  then 
. So that ∆ is eventually in . So . Therefore .  

Conversely. Let , then ∆ is eventually in , then there exists  ,  such that 
 for each . Since  ,  ,  for each  then . So 
. So that . Since , then . 

Theorem 2.44: 

    Let  and let  be an ideal on  such that   is a net generated by ideal .  is turing 
point of  if and only if  converge to . 

Proof. 

     Let  be a turing point of . Then  for each . Since    is a net generating by , 
then  for each . So that  converge to .  

Conversely. Let  converge to . Then  is eventually in  for each . But 
 (theorem 2.43), then  for each . Therefore  is turing point of . 
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