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Abstract:

In this paper we introduce and study the concepts of a new class of points, namely turing points
of proper ideal and some of their properties are analyzed.
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1. Introduction:

Ideal in topological spaces have been considered since 1930. This topic won its importance by
the paper of Vaidyanathaswamy [7] and Kuratwoski [6]. Applications to various fields were further
investigated by Jankovi¢ and Hamlett [3]; Dontchev et al. [2]; Mukherjee et al. [4]; Arenas et al. [5];
Navaneethakrishnan et al. [1]; Nasef and Mahmoud [8], etc. In this paper We used only the proper ideal
to work , ideal bace, turing point, finer than, and maximal ideal to prove continuous, compactness, T,
space and ideal net. Let (X ,T) be a topological space, by N, we will denote the open neighborhood
system at a point x € X.

A set A is said to be directed if and only if there is a relation > on A satisfying, (i) & > a for each
a €A, (i) if a; > a, and a, = a; then a; = a3, (i) if a1, a, € A, then there is a; € A such that
a; = aq and a3 = a, [9]. A net in a set X is a function x on a directed set into X [9]. By {x;}qea We
will denote the net x. Let A € X, a net x on X is said to be eventually in A iff there exists ay, € A such
that a > a, implies that x, € A. A net {x,},ea convergent to x, € X iff its eventually for each
N € Ny, and denoted by {x,}qen — Xo. A topological space X is compact if and only if every class {F;}
of closed subsets of X which satisfies the finite intersection has, itself, a non-empty intersection [9].

Definition 2.1[7]:
Let X be a set. A family I of subsets of X is an ideal on X if

1. A BelimpliecsAdUBEI
2. A€land B € A implies B € I.

Definition 2.2[4]:

Let X be a set. A family I of subsets of X is a proper ideal on X if [ is an ideal on X and X €& 1.
Theorem 2.3:

Let {I;: 1 € A} be any femily ideals on X. Then I =N {I;: A € A} is also ideal on X.
Remark 2.4:

1. The union of two ideals on a set X not necessary is ideals, for example. Let X = {x, y}, then
Iy, = {0,{x}}and I, = {@, {y}} are ideals on X but I, U I; = {@, {x}, {y}} is not ideal on X.
2. The intersection of all ideals on X is the ideal {@}.
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Example 2.5:
Let X be infinite set . Then I = {A: A is finite subset of X} is an ideal on X is called finite ideal.
Theorem 2.6:

Let f:X — Y be a function. Then If I is an ideal on X, then the family f(I) = {f(4): A € I} is an
ideal on Y.

Definition 2.7:

An ideal base on X is a family I, of subsets of X satisfies (i) X & I, (ii) if A € I, and B € I, then
there exists C € I, such that AU B € C. Observe that if X # A U B € [, for each A and B in I, then I
is an ideal base on X.

Example 2.8:
Let X = {a, b, c}, then I, = {{b},{c},{b, c}} is an ideal base on X.
Example 2.9:

Let I be an ideal on X and AS X such that AUB+# X for each B €I. Then,
I, ={AUB : B € I}is an ideal base on X.

Proposition 2.10:

Let I, be an ideal base on X, then | = {A € X : A C B for some B € Iy} is an ideal on X generated
by Io.

Proposition 2.11:

LetX = @andY € X. If ], is an ideal base on Y, then its ideal base on X.
Proof.

Directly by using definition 2.7.
Remark 2.12:

The converse is not true for example if X = {x,y,z} and Y = {z} then I, = {{x},{z}, {x, z}} is an
ideal base on X but is not ideal base on Y.

Theorem 2.13:

Let f: X — Y be a function. If [, is an ideal base on X, then the family f(I;) = {f(A): A € I} is an
ideal base on Y.

Definition 2.14:

Let I be an ideal on X and x € X. We say that x is turing point of I if for each N € N, implies
N€ el

Example 2.15:
Let X beasetand x € X. Then ] = {4 € X:x € A€}, is an ideal on X and x is a turing point of /.
Theorem 2.16:

Let f: X = Y. Then f is continuous at x € X if and only if whenever x is a turing point of an ideal /
then f(x) is a turing point of an ideal f(I).
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Proof.

Suppose f is continuous at x and x is turing point of an ideal I. Let V € Nf(,y in Y. Since f is
continuous then for some U € N,, in X, f(U) c V. So V¢ c f(U€). Since x is a turing point of an ideal
I, then U° € . Then f(U¢) € f(I). But V¢ c f(U°), then V¢ € f(I). So that f(x) is a turing point of
an ideal f(I).

Conversely, suppose whenever x is a turing point of an ideal I then f(x) is a turing point of an ideal
f(D). Define I = {N° € X:N € N,}. Then each M € N, , M® € f(I), so for some N € N, M®

f(N).So f(N) € M. Thus f is continuous at x.
Definition 2.17:

Let I and J be two ideals on the same set X. Then I is said to be finer than J if and only if ] € I.
Example 2.18:

Let X = {1,2,3}. Then I, = {(2), {1}} and I, = {Q),{l}, {2}, {1,2}} are an ideals on X and I, finer than
Ila

Example 2.19:
If X is any set. Then any ideal on X is finer than {@}.
Theorem 2.20:

Let X be any set and let I be an ideal on X such that U {B: B € I} = X. Show that [ is finer than the
finite ideal on X.

Proof:

Let J be the finite ideal on X. To show that ] € I. Suppose if possible ] & I. Then there exists 4 € |
such that A ¢ I. Then A is finite subset of X. Let A = {x1, x5, ...,x,}. Now U{B:B € I} = X. Then
x; € B; for some B; € I(i =1,...,n). Since [ is an ideal, D =U {B;:i = 1,2,...,n} € I. Thuse D is
contain any element of {x;, x,, ..., x,}. Hence A € D. Since [ is an ideal, A € D implies A € I. But this
is a contradiction with A & I. Hence I must be finer than the finite ideal.

Definition 2.21:

Let ] be an ideal on X. Then [ is said to be maximal ideal on X if and only if I is not contained in
any other ideal on X. i.e I is a maximal ideal on X if and only if for every ideal J on X such that [ € J,
thenl =].

Theorem 2.22:
Let X be a set. Every ideal on X is contained in a maximal ideal on X.
Proof.

Let I be any ideal on X and let W be the class of all ideals on X containing /. Then W is non-empty
since I € W. Also W is partially orderd by the inclusion relation . Now let K be a linearly ordered
subset of W. Then by definition of linear ordering for any two members I, I, of K, we have either
Iy €ELorl, 1. LetS =U{l, : I, € K}. To show that S is an ideal on X.

1. Since each I, is an ideal, we have X € I, for each an ideal I, € S and so X € S.

2. LetA€SandB € A. Then A € L, for some I, € S and since I, is an ideal, B € I,. It follows
that B € S.

3. LetA€SandB€S. A€, and B € I5 for some I,,,I5 € S. Since § is linearly ordered, we
have either I, € I5 or Is < I,. Hence both A and B belong either to I, or to I5 and so AU B
belongs either to I, or to Is. It follows that AU B € S.
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Further S is finer than every member of K and so S is upper bound of K. Thus we have shown that
W is a non-empty partially ordered set in which every linearly ordered subset has an upper bound.
Hence by Zorn's lemma W contains a maximal element J. This maximal element ] is by definition,
maximal ideal on X containing /.

Example 2.23:

Let X = {1,23}. Then I, = {0}, I, = {0, {1}}, I = {0, {2}}, L, = {®,{3}},
Is = {9,{1},{2}, {1.2}},
Is = {9,{1},{3},{1,3}} and

I, ={0,{2},{3},{2,3}} are ideals on X. Clear that I, c I, c I5, I, c I3 c I, and I; c I, C I;. So that
Is, I and I, are maximal ideals on X.

Proposition 2.24:

Let I be an ideal on X. I is a maximal ideal on X if and only if for each A € X, then either A € [ or
A el

Proof.

If A€ &1, then AU B # X for each B € I, because if there exists B € I such that AU B = X, then
A€ C B, then A€ € [ construction. Let / be an ideal generated by ideal base {A U B : B € I}. Since
ACS AUB for each B €1, then A€J..(1). To show that I € J. Let K € I, then K € J, because
K € AU K. But ! is a maximal ideal, then I = J. By (1) A € I.

Conversely. Let ] be an ideal and I € J. To prove that ] € I. Suposse there exists B € ] such that B &
1, then by hypothesis B€ € I. But I € J. So B€ € J. Then B U B¢ = X € . But the contradictio with J is
ideal. Then /] € I. Then I = J. So that I is maximal ideal.

Theorem 2.25:

Let I be an ideal on X. An ideal / on X is maximal ideal if and only if I contains all those subsets A
of X which AU B # X foreach B € I.

Proof.
Let I be a maximal ideal and let A € X such that A U B # X for each B € [.Define
J={D:D < AUB foreach B € I}

Observe that I € Jand J is ideal. Since I is maximal ideal, then I = J. Since A € AU B for each B € |
sothat A € Jsoalso A € 1.

Conversely. Let I be an ideal satisfying the condition. Let J be an ideal on X such that ] € J. Let A € J,
then AUB # X foreach B € J. Since ] € J,then AUB # X foreach B € I.then A € I. So ] € I, then
I = J. Therefore I is maximal ideal.

Theorem 2.26:

Let I be an ideal on X. I is maximal ideal if and only if for any two subsets A and B of X such that
ANBel,wehaveeither A€lorB €.

Proof.

Let AN B €. If possible, that A € [ and B € I. Then A # X and B # X ( if possible A = X, then
ANB=XnNB =B €] contradiction with B & I and the similer if B =X . Define ] ={C:CNAE
I}. Then ] is an ideal and B € J. To prove that ] € J. Let D € I. Since AND € D,then DN A € I. So
D € ]. Therefore I € J. Since B € ] and B € I, then I # J. But this contradicts the hypothesis [ is a
maximal ideal. Hence either A € I or B € .
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Conversely. Let the condition hold and let A be any subset of X. Since [ is an ideal then @ € I. But
@ = A n A€. Hence by hypothesis either A € I or A° € I. Hence by proposition 2.24, I is maximal ideal
on X.

Corollary 2.27:
If I is maximal ideal on X and A; N A, N ...N A, € I, then at leastone 4; € I(i = 1,2, ..., n).
Corollary 2.28:

If [ is maximal ideal on X and A4, A,, ..., A, are subsets of X such that U {Af : i = 1,2, ...,n} covers
X, then some 4; € (i = 1,2,...,n).

Proof.

Since U{4{ : i =1,2,...,n} =X, thennN{4; : i = 1,2,...,n} = @. Then
N{4;:i=12,..,n} €. Soby corollary 2.27, some 4; € I(i = 1,2, ...,n).
Proposition 2.29:

Let G be a collection of subsets of X such that for all n € N and A,,4,,...,4, € G we have
U, A; # X. Then [ = {A C X : there exists A4, 4,, ...,4, € G,A S UL, 4;}. I is an ideal containing
G. Inded [ is the ideal generated by G.

Proof.

First to show that G € I. Let A € G. Then for all n € N such that A4;,4,,...,4, € G, then A €
UL, A;UA. So A€].So G S I. Clear [ is an ideal on X. So that [ is an ideal on X and G is called a
subbase of I.

Theorem 2.30:

Let G be a collection of subsets of X with the finite intersection property. Then
G¢ = {A°: A € G} forms a subbase for an ideal.
Proof.

Let n € N and Af,45,...,A5 € G°. If UL, A = X, then N}.; A; = @ such that 4; € G for all
i =1,2,...,n. But the contradiction with G has intersection property. So UJ-; Af # X. Therefore by
proposition 2.29, G¢ forms a subbase for an ideal.

Theorem 2.31:

Let X be a topological space. X is compact if and only if every ideal I can be found that an ideal J
finer than [ and x is turing point of ideal J for some x € X.

Proof.

Suppose X is compact. Let I be an ideal. Then K = {cl(A): A° € I} is a closed sets with the finite
intersection property (other wise if cl(4;) N cl(4;) N ...ncl(4,) = @, then A; N A, ...N A, = @, then
AS U A5 ..U A5 = X € [, but this contradiction with X € I). Let x €N K. Then for each A° € I and
each V€ N,, we have ANV # @, as x € cl(A). So AUV # X, as x € cl(A). Thus [U{N: N €
N, } forms sub base for an ideal J, I € J and x is turing point of an ideal J.

Conversely. Let G be a collection of closed sets with finite intersection property. Then G¢ forms
subbase for an ideal I. Can be found that an ideal J finer than [ and x is turing point of / for some
x € X. Thus for each U € N, and each V¢ € G¢ we must have U° UV # X. So that U NV # @. Since
V is closed, we must have x € V. Sox €N G. Thus N G # @. So X is compact.
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Corollary 2.32:

Let X be a topological space. X is compact if and only if every maximal ideal Jon X there exists
x € X is turing point of I.

Theorem 2.33:

Let (X,T) be a topological space. X is T, if and only if every ideal I on X and x,y € X are turing
point of I, then x = y.

Proof.

Let x,y € X such that x # y and let I be an ideal such that x, y are turing point of /. Then every
N € N, and every M € N,, N° € I and M° € I. Then N° U M € I. But I is proper ideal then N° U
M€ # X. Then NN M # @. Thus X is not T5.

Conversely. Let X be not T, then there exists two points x,y € X, with x # y, such that for any open
sets U,V € X, withU € Ny andV € N, we have U NV # @. So that U° UV # X for each U € N,, and
for each V € N,,. Thus the collection

Iy ={U°UV°:UEN,VEN,}
is an ideal base on X (since for any Uf UV, U5 UVs €1,, we have (Uf UVS) U (USUVY) =
UfVUSHUVEUTVE) = (U NnU) UV nV,)E €l). Clearly every U € N, U¢ = U° U X®, is in

Iy, and similarly, every V € N,,, V¢ =V U X¢, is in I,. So that x, y are turing point of I where I is an
ideal generated by I,.

Proposition 2.34:
Let {x,}qca be anet on X and let
I ={AC X :{x,}qen is eventually in A€}. I is an ideal on X.
Remark 2.35:
An ideal in proposition above its an ideal generating by the net {x,},ca and denoted by Ideal(x).
Proposition 2.36:

Let I be an ideal generating by the net {x,},ca in a topological space (X,T) and x € X. Then x is
turing point of I if and only if x, — x.

Proof.

Let x be a turing point of I. Then N€ € I, for each N € N,. So {x,}qsea eventually in N. Thus
Xq = X.

Conversely. Let x, = x. Then {x,},ea is eventually in N for each N € N, . So N€ € I for each N €
N,.. Thus x is turing point of I.

Definition 2.37:

Let I, be an ideal bace on X and x € X. We say that x is turing point of I, if and only if x is turing
point of I where [ is an ideal generated by /.

Proposition 2.38:

Let I, be an ideal bace on X and x € X. Then x is turing point of [, if and only if for each N € N,
then N¢ € A for some A € [,.

Proof.

Let x is turing point of /. Then x is turing point of [ where [ is an ideal generated by /. Thus for
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each N € Ny, N° € 1. So N¢ c A for some A € I,.

Conversely. Let I be an ideal generated by I, and let for each N € N,,, N¢ € A for some A € I;. Since
Iy €1 and A €1y, then A €. But N° € A, so N¢ €] for each N € N,, then x is turing point of /.
Therefore x is turing point of I.

Definition 2.39:

Let I, be an ideal bace on X and let A= {(x,A):x € A and A° € I,}. Then (A, *) is a directed set
where (x;,4;) = (x5,4,) if and only if A; € A, {because (x;,4;) = (x,,4,) if and only if
Ay © A,, then A§ € A where Af, AS € I, then there exists A§ € I, such that A U A € AS, then
A3 € A1 NA,, then A3 € A, and A; € A,. So that A; > A, and A3 > A,}. Define anetx : A— X such
that x(a@) = x, = x where a = (x,A) € A. So that {x,}.ea is a net generating by [, and denoted by
Net(ly).

Proposition 2.40:

Let I, be an ideal bace on a nonemrty set X and x € X. If {x,},ea is Net(ly), then x is turing point
of I, if and only if x, — x.

Proof.

Let x be a turing point of I, and N € N,.. By proposition 2.38, we have A; € N for some A§ € .
Since A§ € Iy, then Ay # @ (because X € I,). So there exists x, € 4, take ay = (x¢,A4y). Then
Xq, € N. So that x, € N for each a > ;. Therefore x, - x.

Conversely. Let x, = x and N € N, then there exists a, € A such that x, € N for each a > a,. Thus
there exists A§ € I, and x, € A, such that @y = (xy,4,). To show that Ay € N. Let x € Ay, then
a=(x,4,) = (xy,4y) = ay. So that x, € N, then x € N, then A, € N. By proposition 2.38, we have
X is turing point of .

Proposition 2.41:

Let X # @ and [, be an ideal base on X. Let {x,},ca be a Net(ly). If J is an Ideal(x), then [ =]
where [ is an ideal generating by 1.

Proof.
Let A € I, then there exists A, € I, such that A € A, then A € A€ . Let
J ={B S X : {x4}qea 1s eventually in B€}.

Since A§ # @ (because X & I,), then there exists xo € A§, so if a = (x,4%) = (xy,A45) = ay then
Xq = x € Af € A§ S AC. So that {x,}4en is eventually in A°. So A € J. Therefore I < .

Conversely. Let A € J, then {x,}qea is eventually in A, then there exists ay = (xg,A4,) such that
X, € A for each a > a,. Since a@ = (x,4) = (x9,4) = a, for each x € A, then x, = x € A. So
Ay S A. So that there exists A € I, such that A, € A, then A° € A§. So A° € I. Therefore ] € I.

Definition 2.42:
Let I be an ideal on X and let A= {(x,A):x € A and A° € I}. Then (A, *) is a directed set where
(x1,41) = (x5 ,4;) ifand only if A; € A, {because (x;,4,) = (x,,A,) if and only if A; € A,, then
S € Af where A, AS € 1, then A U A§ € I, then A € A U AS and A5 € A U AS, then A; N A, C

Ay and A; N A, € A,. So that A, N A, > A; and A; N A, > A,}. Define a net x : A = X such that
x(a) = x, = x where @ = (x,A) € A. So that {x,}ea is a net generating by I, and denoted by Net(I).

Proposition 2.43:
Let X # @ and let I be any ideal on X, x: A= X be any net. Then

I = Ideal(Net(D)).
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Proof.
Let A €1, and let
Ideal(Net(I)) =] = {B S X : {xq}4en is eventually in B€}.

Since A€ # @ (because X € I), then there exists x, € A, so if a = (x,A%) = (xy,4°) = a, then
Xq = X € Af € AC. So that {x,},ea is eventually in A°. So A € J. Therefore I < .

Conversely. Let A € ], then {x,},ep is eventually in A, then there exists ay = (xy,4,) such that
X, € A for each a > a,. Since a = (x,4,) = (xy,4,) = ay for each x € A, then x, = x € A. So
Ay € A. So that A® € A§. Since A§ € I, then A€ € I.

Theorem 2.44:

Let X # @ and let I be an ideal on X such that Net(I) is a net generated by ideal I. x € X is turing
point of I if and only if Net(I) converge to x.

Proof.

Let x be a turing point of I. Then N¢ € [ for each N € N,.. Since Net(l) is a net generating by /I,
then x, € N for each a > a;. So that Net(I) converge to x.

Conversely. Let Net(I) converge to x. Then Net(I) is eventually in N for each N € N,. But [ =
Ideal(Net(I)) (theorem 2.43), then N¢ € [ for each N € N,. Therefore x is turing point of .

References:

[1] Navaneethakrishnan, M., Paulraj Joseph, J., g-closed sets in ideal topological spaces. Acta Math.
Hungar. DOI: 10.107/s10474-007-7050-1.

[2] Dontchev, J., Ganster, M., Rose, D., Ideal resolvability. Topology and its Appl. 93 (1999), 1-16.
[3] Ekici, E., Noiri, T., hyperconnected ideal topological spaces. (submitted).

[4] Mukherjee, M. N., Bishwambhar, R., Sen, R., On extension of topological spaces in terms of
ideals. Topology and its Appl. 154 (2007), 3167-3172.

[5] Arenas, F. G., Dontchev, J., Puertas, M. L.,Idealization of some weak separation axioms. Acta
Math. Hungar. 89 (1-2) (2000), 47-53.

[6] Kuratwoski, K. Topology, Vol. I. NewYork: Academic Press, 1966.
[7] Vaidyanathaswamy, R., The localisation theory in set topology. Proc. Indian Acad. Sci. 20 (1945),
51-61.

[8] Nasef, A. A., Mahmoud, R. A., Some applications via fuzzy ideals. Chaos, Solitons and Fractals 13
(2002), 825-831.

[9] Willard. I.S. "General Toplogy" Addision Wesley publishing Co. (1970).

220 ISSN 1661-464X



