Turing Point of proper Ideal

Luay. A. Al-Swidi University of Babylon, College of Education For Pure Sciences, Mathematics Department Tel: +964 780 8181 227, E-mail: drluayha1@yahoo.com

Dheargham. A. Abed Al-Sada University of Babylon, College of Education For Pure Sciences, Mathematics Department Tel: +964 781 4412 926, E-mail: dekam1215@yahoo.com

Abstract:

In this paper we introduce and study the concepts of a new class of points, namely turing points of proper ideal and some of their properties are analyzed.

Keywords: Turing point, proper ideal, net and compact.

<u>1. Introduction:</u>

Ideal in topological spaces have been considered since 1930. This topic won its importance by the paper of Vaidyanathaswamy [7] and Kuratwoski [6]. Applications to various fields were further investigated by Janković and Hamlett [3]; Dontchev et al. [2]; Mukherjee et al. [4]; Arenas et al. [5]; Navaneethakrishnan et al. [1]; Nasef and Mahmoud [8], etc. In this paper We used only the proper ideal to work , ideal bace, turing point, finer than, and maximal ideal to prove continuous, compactness, T_2 space and ideal net. Let (X, T) be a topological space, by N_x we will denote the open neighborhood system at a point $x \in X$.

A set Δ is said to be directed if and only if there is a relation \geq on Δ satisfying, (i) $\alpha \geq \alpha$ for each $\alpha \in \Delta$, (ii) if $\alpha_1 \geq \alpha_2$ and $\alpha_2 \geq \alpha_3$ then $\alpha_1 \geq \alpha_3$, (iii) if $\alpha_1, \alpha_2 \in \Delta$, then there is $\alpha_3 \in \Delta$ such that $\alpha_3 \geq \alpha_1$ and $\alpha_3 \geq \alpha_2$ [9]. A net in a set X is a function x on a directed set into X [9]. By $\{x_\alpha\}_{\alpha\in\Delta}$ we will denote the net x. Let $A \subseteq X$, a net x on X is said to be eventually in A iff there exists $\alpha_0 \in \Delta$ such that $\alpha \geq \alpha_0$ implies that $x_\alpha \in A$. A net $\{x_\alpha\}_{\alpha\in\Delta}$ convergent to $x_0 \in X$ iff its eventually for each $N \in N_{x_0}$ and denoted by $\{x_\alpha\}_{\alpha\in\Delta} \rightarrow x_0$. A topological space X is compact if and only if every class $\{F_i\}$ of closed subsets of X which satisfies the finite intersection has, itself, a non-empty intersection [9].

Definition 2.1[7]:

Let X be a set. A family I of subsets of X is an ideal on X if

- 1. $A, B \in I$ implies $A \cup B \in I$.
- 2. $A \in I$ and $B \subseteq A$ implies $B \in I$.

Definition 2.2[4]:

Let X be a set. A family I of subsets of X is a proper ideal on X if I is an ideal on X and $X \notin I$.

Theorem 2.3:

Let $\{I_{\lambda}: \lambda \in \Delta\}$ be any femily ideals on *X*. Then $I = \cap \{I_{\lambda}: \lambda \in \Delta\}$ is also ideal on *X*.

Remark 2.4:

- 1. The union of two ideals on a set X not necessary is ideals, for example. Let $X = \{x, y\}$, then $I_0 = \{\emptyset, \{x\}\}$ and $I_1 = \{\emptyset, \{y\}\}$ are ideals on X but $I_0 \cup I_1 = \{\emptyset, \{x\}, \{y\}\}$ is not ideal on X.
- 2. The intersection of all ideals on *X* is the ideal $\{\emptyset\}$.

Example 2.5:

Let X be infinite set . Then $I = \{A: A \text{ is finite subset of } X\}$ is an ideal on X is called finite ideal.

Theorem 2.6:

Let $f: X \to Y$ be a function. Then If I is an ideal on X, then the family $f(I) = \{f(A): A \in I\}$ is an ideal on Y.

Definition 2.7:

An ideal base on X is a family I_0 of subsets of X satisfies (i) $X \notin I_0$ (ii) if $A \in I_0$ and $B \in I_0$, then there exists $C \in I_0$ such that $A \cup B \subseteq C$. Observe that if $X \neq A \cup B \in I_0$ for each A and B in I_0 , then I_0 is an ideal base on X.

Example 2.8:

Let $X = \{a, b, c\}$, then $I_0 = \{\{b\}, \{c\}, \{b, c\}\}$ is an ideal base on *X*.

Example 2.9:

Let I be an ideal on X and $A \subseteq X$ such that $A \cup B \neq X$ for each $B \in I$. Then, $I_0 = \{A \cup B : B \in I\}$ is an ideal base on X.

Proposition 2.10:

Let I_0 be an ideal base on X, then $I = \{A \subseteq X : A \subseteq B \text{ for some } B \in I_0\}$ is an ideal on X generated by I_0 .

Proposition 2.11:

Let $X \neq \emptyset$ and $Y \subseteq X$. If I_0 is an ideal base on Y, then its ideal base on X.

Proof.

Directly by using definition 2.7.

Remark 2.12:

The converse is not true for example if $X = \{x, y, z\}$ and $Y = \{z\}$ then $I_0 = \{\{x\}, \{z\}, \{x, z\}\}$ is an ideal base on X but is not ideal base on Y.

Theorem 2.13:

Let $f: X \to Y$ be a function. If I_0 is an ideal base on X, then the family $f(I_0) = \{f(A): A \in I_0\}$ is an ideal base on Y.

Definition 2.14:

Let I be an ideal on X and $x \in X$. We say that x is turing point of I if for each $N \in N_x$ implies $N^c \in I$.

Example 2.15:

Let X be a set and $x \in X$. Then $I = \{A \subseteq X : x \in A^c\}$, is an ideal on X and x is a turing point of I.

Theorem 2.16:

Let $f: X \to Y$. Then f is continuous at $x \in X$ if and only if whenever x is a turing point of an ideal I then f(x) is a turing point of an ideal f(I).

Proof.

Suppose f is continuous at x and x is turing point of an ideal I. Let $V \in N_{f(x)}$ in Y. Since f is continuous then for some $U \in N_x$ in X, $f(U) \subset V$. So $V^c \subset f(U^c)$. Since x is a turing point of an ideal I, then $U^c \in I$. Then $f(U^c) \in f(I)$. But $V^c \subset f(U^c)$, then $V^c \in f(I)$. So that f(x) is a turing point of an ideal f (I).

Conversely, suppose whenever x is a turing point of an ideal I then f(x) is a turing point of an ideal f(I). Define $I = \{N^c \subseteq X : N \in N_x\}$. Then each $M \in N_{f(x)}$, $M^c \in f(I)$, so for some $N \in N_x$, $M^c \subset f(N^c)$. So $f(N) \subset M$. Thus f is continuous at x.

Definition 2.17:

Let I and J be two ideals on the same set X. Then I is said to be finer than J if and only if $J \subseteq I$.

Example 2.18:

Let $X = \{1,2,3\}$. Then $I_1 = \{\emptyset, \{1\}\}$ and $I_2 = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$ are an ideals on X and I_2 finer than I_1 .

Example 2.19:

If *X* is any set. Then any ideal on *X* is finer than $\{\emptyset\}$.

Theorem 2.20:

Let X be any set and let I be an ideal on X such that $\cup \{B: B \in I\} = X$. Show that I is finer than the finite ideal on X.

Proof:

Let *J* be the finite ideal on *X*. To show that $J \subseteq I$. Suppose if possible $J \not\subseteq I$. Then there exists $A \in J$ such that $A \notin I$. Then *A* is finite subset of *X*. Let $A = \{x_1, x_2, ..., x_n\}$. Now $\cup \{B: B \in I\} = X$. Then $x_i \in B_i$ for some $B_i \in I(i = 1, ..., n)$. Since *I* is an ideal, $D = \cup \{B_i: i = 1, 2, ..., n\} \in I$. Thuse *D* is contain any element of $\{x_1, x_2, ..., x_n\}$. Hence $A \subseteq D$. Since *I* is an ideal, $A \subseteq D$ implies $A \in I$. But this is a contradiction with $A \notin I$. Hence *I* must be finer than the finite ideal.

Definition 2.21:

Let *I* be an ideal on *X*. Then *I* is said to be maximal ideal on *X* if and only if *I* is not contained in any other ideal on *X*. i.e *I* is a maximal ideal on *X* if and only if for every ideal *J* on *X* such that $I \subseteq J$, then I = J.

Theorem 2.22:

Let *X* be a set. Every ideal on *X* is contained in a maximal ideal on *X*.

Proof.

Let *I* be any ideal on *X* and let *W* be the class of all ideals on *X* containing *I*. Then *W* is non-empty since $I \in W$. Also *W* is partially orderd by the inclusion relation \subseteq . Now let *K* be a linearly ordered subset of *W*. Then by definition of linear ordering for any two members I_1, I_2 of *K*, we have either $I_1 \subseteq I_2$ or $I_2 \subseteq I_1$. Let $S = \bigcup \{I_{\gamma} \in K\}$. To show that *S* is an ideal on *X*.

- 1. Since each I_{γ} is an ideal, we have $X \notin I_{\gamma}$ for each an ideal $I_{\gamma} \in S$ and so $X \notin S$.
- 2. Let $A \in S$ and $B \subseteq A$. Then $A \in I_{\gamma}$ for some $I_{\gamma} \in S$ and since I_{γ} is an ideal, $B \in I_{\gamma}$. It follows that $B \in S$.
- 3. Let $A \in S$ and $B \in S$. $A \in I_{\gamma}$ and $B \in I_{\delta}$ for some $I_{\gamma}, I_{\delta} \in S$. Since S is linearly ordered, we have either $I_{\gamma} \subseteq I_{\delta}$ or $I_{\delta} \subseteq I_{\gamma}$. Hence both A and B belong either to I_{γ} or to I_{δ} and so $A \cup B$ belongs either to I_{γ} or to I_{δ} . It follows that $A \cup B \in S$.

Further S is finer than every member of K and so S is upper bound of K. Thus we have shown that W is a non-empty partially ordered set in which every linearly ordered subset has an upper bound. Hence by Zorn's lemma W contains a maximal element J. This maximal element J is by definition, maximal ideal on X containing I.

Example 2.23:

Let $X = \{1,2,3\}$. Then $I_1 = \{\emptyset\}, I_2 = \{\emptyset, \{1\}\}, I_3 = \{\emptyset, \{2\}\}, I_4 = \{\emptyset, \{3\}\}, I_4 = \{\emptyset, \{1\}\}, I_4 = \{\emptyset,$

 $I_5 = \{\emptyset, \{1\}, \{2\}, \{1,2\}\},\$

 $I_6 = \{\emptyset, \{1\}, \{3\}, \{1,3\}\}$ and

 $I_7 = \{\emptyset, \{2\}, \{3\}, \{2,3\}\}$ are ideals on *X*. Clear that $I_1 \subset I_2 \subset I_5$, $I_1 \subset I_3 \subset I_7$ and $I_1 \subset I_4 \subset I_6$. So that I_5, I_6 and I_7 are maximal ideals on *X*.

Proposition 2.24:

Let *I* be an ideal on *X*. *I* is a maximal ideal on *X* if and only if for each $A \subseteq X$, then either $A \in I$ or $A^c \in I$.

Proof.

If $A^c \notin I$, then $A \cup B \neq X$ for each $B \in I$, because if there exists $B \in I$ such that $A \cup B = X$, then $A^c \subseteq B$, then $A^c \in I$ construction. Let J be an ideal generated by ideal base $\{A \cup B : B \in I\}$. Since $A \subseteq A \cup B$ for each $B \in I$, then $A \in J$...(1). To show that $I \subseteq J$. Let $K \in I$, then $K \in J$, because $K \subseteq A \cup K$. But I is a maximal ideal, then I = J. By (1) $A \in I$.

Conversely. Let *J* be an ideal and $I \subseteq J$. To prove that $J \subseteq I$. Suposse there exists $B \in J$ such that $B \notin I$, then by hypothesis $B^c \in I$. But $I \subseteq J$. So $B^c \in J$. Then $B \cup B^c = X \in J$. But the contradictio with *J* is ideal. Then $J \subseteq I$. Then I = J. So that *I* is maximal ideal.

Theorem 2.25:

Let *I* be an ideal on *X*. An ideal *I* on *X* is maximal ideal if and only if *I* contains all those subsets *A* of *X* which $A \cup B \neq X$ for each $B \in I$.

Proof.

Let *I* be a maximal ideal and let $A \subseteq X$ such that $A \cup B \neq X$ for each $B \in I$. Define

 $J = \{D : D \subseteq A \cup B \text{ for each } B \in I\}$

Observe that $I \subseteq J$ and J is ideal. Since I is maximal ideal, then I = J. Since $A \subseteq A \cup B$ for each $B \in I$ so that $A \in J$ so also $A \in I$.

Conversely. Let *I* be an ideal satisfying the condition. Let *J* be an ideal on *X* such that $I \subseteq J$. Let $A \in J$, then $A \cup B \neq X$ for each $B \in J$. Since $I \subseteq J$, then $A \cup B \neq X$ for each $B \in I$. then $A \in I$. So $J \subseteq I$, then I = J. Therefore *I* is maximal ideal.

Theorem 2.26:

Let *I* be an ideal on *X*. *I* is maximal ideal if and only if for any two subsets *A* and *B* of *X* such that $A \cap B \in I$, we have either $A \in I$ or $B \in I$.

Proof.

Let $A \cap B \in I$. If possible, that $A \notin I$ and $B \notin I$. Then $A \neq X$ and $B \neq X$ (if possible A = X, then $A \cap B = X \cap B = B \in I$ contradiction with $B \notin I$ and the similer if B = X. Define $J = \{C : C \cap A \in I\}$. Then *J* is an ideal and $B \in J$. To prove that $I \subseteq J$. Let $D \in I$. Since $A \cap D \subseteq D$, then $D \cap A \in I$. So $D \in J$. Therefore $I \subseteq J$. Since $B \in J$ and $B \notin I$, then $I \neq J$. But this contradicts the hypothesis *I* is a maximal ideal. Hence either $A \in I$ or $B \in I$.

Conversely. Let the condition hold and let *A* be any subset of *X*. Since *I* is an ideal then $\emptyset \in I$. But $\emptyset = A \cap A^c$. Hence by hypothesis either $A \in I$ or $A^c \in I$. Hence by proposition 2.24, *I* is maximal ideal on *X*.

Corollary 2.27:

If *I* is maximal ideal on *X* and $A_1 \cap A_2 \cap ... \cap A_n \in I$, then at least one $A_i \in I(i = 1, 2, ..., n)$.

Corollary 2.28:

If *I* is maximal ideal on *X* and $A_1, A_2, ..., A_n$ are subsets of *X* such that $\cup \{A_i^c : i = 1, 2, ..., n\}$ covers *X*, then some $A_i \in I(i = 1, 2, ..., n)$.

Proof.

Since $\cup \{A_i^c : i = 1, 2, ..., n\} = X$, then $\cap \{A_i : i = 1, 2, ..., n\} = \emptyset$. Then

 $\cap \{A_i : i = 1, 2, ..., n\} \in I$. So by corollary 2.27, some $A_i \in I(i = 1, 2, ..., n)$.

Proposition 2.29:

Let G be a collection of subsets of X such that for all $n \in \mathbb{N}$ and $A_1, A_2, ..., A_n \in G$ we have $\bigcup_{i=1}^n A_i \neq X$. Then $I = \{A \subseteq X :$ there exists $A_1, A_2, ..., A_n \in G, A \subseteq \bigcup_{i=1}^n A_i\}$. I is an ideal containing G. Inded I is the ideal generated by G.

Proof.

First to show that $G \subseteq I$. Let $A \in G$. Then for all $n \in \mathbb{N}$ such that $A_1, A_2, \dots, A_n \in G$, then $A \subseteq \bigcup_{i=1}^n A_i \cup A$. So $A \in I$. So $G \subseteq I$. Clear *I* is an ideal on *X*. So that *I* is an ideal on *X* and *G* is called a subbase of *I*.

Theorem 2.30:

Let G be a collection of subsets of X with the finite intersection property. Then

 $G^c = \{A^c : A \in G\}$ forms a subbase for an ideal.

Proof.

Let $n \in \mathbb{N}$ and $A_1^c, A_2^c, ..., A_n^c \in G^c$. If $\bigcup_{i=1}^n A_i^c = X$, then $\bigcap_{i=1}^n A_i = \emptyset$ such that $A_i \in G$ for all i = 1, 2, ..., n. But the contradiction with G has intersection property. So $\bigcup_{i=1}^n A_i^c \neq X$. Therefore by proposition 2.29, G^c forms a subbase for an ideal.

Theorem 2.31:

Let X be a topological space. X is compact if and only if every ideal I can be found that an ideal J finer than I and x is turing point of ideal J for some $x \in X$.

Proof.

Suppose X is compact. Let I be an ideal. Then $K = \{cl(A): A^c \in I\}$ is a closed sets with the finite intersection property (other wise if $cl(A_1) \cap cl(A_2) \cap ... \cap cl(A_n) = \emptyset$, then $A_1 \cap A_2 ... \cap A_n = \emptyset$, then $A_1^c \cup A_2^c ... \cup A_n^c = X \in I$, but this contradiction with $X \notin I$). Let $x \in \cap K$. Then for each $A^c \in I$ and each $V \in N_x$, we have $A \cap V \neq \emptyset$, as $x \in cl(A)$. So $A^c \cup V^c \neq X$, as $x \in cl(A)$. Thus $I \cup \{N^c : N \in N_x\}$ forms sub base for an ideal $J, I \subseteq J$ and x is turing point of an ideal J.

Conversely. Let *G* be a collection of closed sets with finite intersection property. Then G^c forms subbase for an ideal *I*. Can be found that an ideal *J* finer than *I* and *x* is turing point of *J* for some $x \in X$. Thus for each $U \in N_x$ and each $V^c \in G^c$ we must have $U^c \cup V^c \neq X$. So that $U \cap V \neq \emptyset$. Since *V* is closed, we must have $x \in V$. So $x \in \cap G$. Thus $\cap G \neq \emptyset$. So *X* is compact.

Corollary 2.32:

Let X be a topological space. X is compact if and only if every maximal ideal Ion X there exists $x \in X$ is turing point of I.

Theorem 2.33:

Let (X, T) be a topological space. X is T_2 if and only if every ideal I on X and $x, y \in X$ are turing point of I, then x = y.

Proof.

Let $x, y \in X$ such that $x \neq y$ and let I be an ideal such that x, y are turing point of I. Then every $N \in N_x$ and every $M \in N_y$, $N^c \in I$ and $M^c \in I$. Then $N^c \cup M^c \in I$. But I is proper ideal then $N^c \cup M^c \neq X$. Then $N \cap M \neq \emptyset$. Thus X is not T_2 .

Conversely. Let X be not T_2 then there exists two points $x, y \in X$, with $x \neq y$, such that for any open sets $U, V \subseteq X$, with $U \in N_x$ and $V \in N_y$ we have $U \cap V \neq \emptyset$. So that $U^c \cup V^c \neq X$ for each $U \in N_x$ and for each $V \in N_y$. Thus the collection

$$I_0 = \{ U^c \cup V^c : U \in N_x, V \in N_y \}$$

is an ideal base on X (since for any $U_1^c \cup V_1^c$, $U_2^c \cup V_2^c \in I_0$, we have $(U_1^c \cup V_1^c) \cup (U_2^c \cup V_2^c) = (U_1^c \cup U_2^c) \cup (V_1^c \cup V_2^c) = (U_1 \cap U_2)^c \cup (V_1 \cap V_2)^c \in I_0$). Clearly every $U \in N_x$, $U^c = U^c \cup X^c$, is in I_0 , and similarly, every $V \in N_y$, $V^c = V^c \cup X^c$, is in I_0 . So that x, y are turing point of I where I is an ideal generated by I_0 .

Proposition 2.34:

Let $\{x_{\alpha}\}_{\alpha \in \Delta}$ be a net on *X* and let

 $I = \{A \subseteq X : \{x_{\alpha}\}_{\alpha \in \Delta} \text{ is eventually in } A^{c}\}$. *I* is an ideal on *X*.

Remark 2.35:

An ideal in proposition above its an ideal generating by the net $\{x_{\alpha}\}_{\alpha \in \Delta}$ and denoted by Ideal(x).

Proposition 2.36:

Let *I* be an ideal generating by the net $\{x_{\alpha}\}_{\alpha \in \Delta}$ in a topological space (X, T) and $x \in X$. Then x is turing point of *I* if and only if $x_{\alpha} \to x$.

Proof.

Let x be a turing point of I. Then $N^c \in I$, for each $N \in N_x$. So $\{x_\alpha\}_{\alpha \in \Delta}$ eventually in N. Thus $x_\alpha \to x$.

Conversely. Let $x_{\alpha} \to x$. Then $\{x_{\alpha}\}_{\alpha \in \Delta}$ is eventually in *N* for each $N \in N_x$. So $N^c \in I$ for each $N \in N_x$. Thus *x* is turing point of *I*.

Definition 2.37:

Let I_0 be an ideal bace on X and $x \in X$. We say that x is turing point of I_0 if and only if x is turing point of I where I is an ideal generated by I_0 .

Proposition 2.38:

Let I_0 be an ideal bace on X and $x \in X$. Then x is turing point of I_0 if and only if for each $N \in N_x$ then $N^c \subseteq A$ for some $A \in I_0$.

Proof.

Let x is turing point of I_0 . Then x is turing point of I where I is an ideal generated by I_0 . Thus for 218

each $N \in N_x$, $N^c \in I$. So $N^c \subseteq A$ for some $A \in I_0$.

Conversely. Let *I* be an ideal generated by I_0 and let for each $N \in N_x$, $N^c \subseteq A$ for some $A \in I_0$. Since $I_0 \subseteq I$ and $A \in I_0$, then $A \in I$. But $N^c \subseteq A$, so $N^c \in I$ for each $N \in N_x$, then x is turing point of *I*. Therefore x is turing point of I_0 .

Definition 2.39:

Let I_0 be an ideal bace on X and let $\Delta = \{(x, A): x \in A \text{ and } A^c \in I_0\}$. Then (Δ, \geq) is a directed set where $(x_1, A_1) \geq (x_2, A_2)$ if and only if $A_1 \subseteq A_2$ {because $(x_1, A_1) \geq (x_2, A_2)$ if and only if $A_1 \subseteq A_2$, then $A_2^c \subseteq A_1^c$ where $A_1^c, A_2^c \in I_0$, then there exists $A_3^c \in I_0$ such that $A_1^c \cup A_2^c \subseteq A_3^c$, then $A_3 \subseteq A_1 \cap A_2$, then $A_3 \subseteq A_1$ and $A_3 \subseteq A_2$. So that $A_3 \geq A_1$ and $A_3 \geq A_2$ }. Define a net $x : \Delta \to X$ such that $x(\alpha) = x_\alpha = x$ where $\alpha = (x, A) \in \Delta$. So that $\{x_\alpha\}_{\alpha \in \Delta}$ is a net generating by I_0 , and denoted by Net(I_0).

Proposition 2.40:

Let I_0 be an ideal bace on a nonemrty set X and $x \in X$. If $\{x_\alpha\}_{\alpha \in \Delta}$ is Net (I_0) , then x is turing point of I_0 if and only if $x_\alpha \to x$.

Proof.

Let x be a turing point of I_0 and $N \in N_x$. By proposition 2.38, we have $A_0 \subseteq N$ for some $A_0^c \in I_0$. Since $A_0^c \in I_0$, then $A_0 \neq \emptyset$ (because $X \notin I_0$). So there exists $x_0 \in A_0$, take $\alpha_0 = (x_0, A_0)$. Then $x_{\alpha_0} \in N$. So that $x_{\alpha} \in N$ for each $\alpha \ge \alpha_0$. Therefore $x_{\alpha} \to x$.

Conversely. Let $x_{\alpha} \to x$ and $N \in N_x$ then there exists $\alpha_0 \in \Delta$ such that $x_{\alpha} \in N$ for each $\alpha \ge \alpha_0$. Thus there exists $A_0^c \in I_0$ and $x_0 \in A_0$ such that $\alpha_0 = (x_0, A_0)$. To show that $A_0 \subseteq N$. Let $x \in A_0$, then $\alpha = (x, A_0) \ge (x_0, A_0) = \alpha_0$. So that $x_{\alpha} \in N$, then $x \in N$, then $A_0 \subseteq N$. By proposition 2.38, we have x is turing point of I_0 .

Proposition 2.41:

Let $X \neq \emptyset$ and I_0 be an ideal base on X. Let $\{x_{\alpha}\}_{\alpha \in \Delta}$ be a Net (I_0) . If J is an Ideal(x), then I = J where I is an ideal generating by I_0 .

Proof.

Let $A \in I$, then there exists $A_0 \in I_0$ such that $A \subseteq A_0$, then $A_0^c \subseteq A^c$. Let

 $J = \{B \subseteq X : \{x_{\alpha}\}_{\alpha \in \Delta} \text{ is eventually in } B^c\}.$

Since $A_0^c \neq \emptyset$ (because $X \notin I_0$), then there exists $x_0 \in A_0^c$, so if $\alpha = (x, A_1^c) \ge (x_0, A_0^c) = \alpha_0$ then $x_\alpha = x \in A_1^c \subseteq A_0^c \subseteq A^c$. So that $\{x_\alpha\}_{\alpha \in \Delta}$ is eventually in A^c . So $A \in J$. Therefore $I \subseteq J$.

Conversely. Let $A^c \in J$, then $\{x_{\alpha}\}_{\alpha \in \Delta}$ is eventually in A, then there exists $\alpha_0 = (x_0, A_0)$ such that $x_{\alpha} \in A$ for each $\alpha \ge \alpha_0$. Since $\alpha = (x, A_0) \ge (x_0, A_0) = \alpha_0$ for each $x \in A_0$ then $x_{\alpha} = x \in A$. So $A_0 \subseteq A$. So that there exists $A_0^c \in I_0$ such that $A_0 \subseteq A$, then $A^c \subseteq A_0^c$. So $A^c \in I$. Therefore $J \subseteq I$.

Definition 2.42:

Let *I* be an ideal on *X* and let $\Delta = \{(x, A): x \in A \text{ and } A^c \in I\}$. Then (Δ, \geq) is a directed set where $(x_1, A_1) \geq (x_2, A_2)$ if and only if $A_1 \subseteq A_2$ {because $(x_1, A_1) \geq (x_2, A_2)$ if and only if $A_1 \subseteq A_2$, then $A_2^c \subseteq A_1^c$ where $A_1^c, A_2^c \in I$, then $A_1^c \cup A_2^c \in I$, then $A_1^c \subseteq A_1^c \cup A_2^c$ and $A_2^c \subseteq A_1^c \cup A_2^c$, then $A_1 \cap A_2 \subseteq A_1$ and $A_1 \cap A_2 \subseteq A_2$. So that $A_1 \cap A_2 \geq A_1$ and $A_1 \cap A_2 \geq A_2$ }. Define a net $x : \Delta \to X$ such that $x(\alpha) = x_\alpha = x$ where $\alpha = (x, A) \in \Delta$. So that $\{x_\alpha\}_{\alpha \in \Delta}$ is a net generating by *I*, and denoted by Net(*I*).

Proposition 2.43:

Let $X \neq \emptyset$ and let *I* be any ideal on *X*, $x: \Delta \rightarrow X$ be any net. Then

$$I = Ideal(Net(I)).$$

Proof.

Let $A \in I$, and let

 $Ideal(Net(I)) = J = \{B \subseteq X : \{x_{\alpha}\}_{\alpha \in \Delta} \text{ is eventually in } B^{c}\}.$

Since $A^c \neq \emptyset$ (because $X \notin I$), then there exists $x_0 \in A^c$, so if $\alpha = (x, A_1^c) \ge (x_0, A^c) = \alpha_0$ then $x_\alpha = x \in A_1^c \subseteq A^c$. So that $\{x_\alpha\}_{\alpha \in \Delta}$ is eventually in A^c . So $A \in J$. Therefore $I \subseteq J$.

Conversely. Let $A^c \in J$, then $\{x_{\alpha}\}_{\alpha \in \Delta}$ is eventually in A, then there exists $\alpha_0 = (x_0, A_0)$ such that $x_{\alpha} \in A$ for each $\alpha \ge \alpha_0$. Since $\alpha = (x, A_0) \ge (x_0, A_0) = \alpha_0$ for each $x \in A_0$ then $x_{\alpha} = x \in A$. So $A_0 \subseteq A$. So that $A^c \subseteq A_0^c$. Since $A_0^c \in I$, then $A^c \in I$.

Theorem 2.44:

Let $X \neq \emptyset$ and let *I* be an ideal on *X* such that Net(I) is a net generated by ideal *I*. $x \in X$ is turing point of *I* if and only if Net(I) converge to *x*.

Proof.

Let x be a turing point of I. Then $N^c \in I$ for each $N \in N_x$. Since Net(I) is a net generating by I, then $x_\alpha \in N$ for each $\alpha \ge \alpha_0$. So that Net(I) converge to x.

Conversely. Let Net(I) converge to x. Then Net(I) is eventually in N for each $N \in N_x$. But I = Ideal(Net(I)) (theorem 2.43), then $N^c \in I$ for each $N \in N_x$. Therefore x is turing point of I.

References:

[1] Navaneethakrishnan, M., Paulraj Joseph, J., g-closed sets in ideal topological spaces. Acta Math. Hungar. DOI: 10.107/s10474-007-7050-1.

[2] Dontchev, J., Ganster, M., Rose, D., Ideal resolvability. Topology and its Appl. 93 (1999), 1-16.

[3] Ekici, E., Noiri, T., hyperconnected ideal topological spaces. (submitted).

[4] Mukherjee, M. N., Bishwambhar, R., Sen, R., On extension of topological spaces in terms of ideals. Topology and its Appl. 154 (2007), 3167-3172.

[5] Arenas, F. G., Dontchev, J., Puertas, M. L.,Idealization of some weak separation axioms. Acta Math. Hungar. 89 (1-2) (2000), 47-53.

[6] Kuratwoski, K. Topology, Vol. I. NewYork: Academic Press, 1966.

[7] Vaidyanathaswamy, R., The localisation theory in set topology. Proc. Indian Acad. Sci. 20 (1945), 51-61.

[8] Nasef, A. A., Mahmoud, R. A., Some applications via fuzzy ideals. Chaos, Solitons and Fractals 13 (2002), 825-831.

[9] Willard. I.S. "General Toplogy" Addision Wesley publishing Co. (1970).