Compactness and Proper Ideal

Luay. A. Al-Swidi University of Babylon, College of Education For Pure Sciences, Mathematics Department Tel: +964 780 8181 227, E-mail: drluayha1@yahoo.com Dheargham. A. Abed Al-Sada University of Babylon, College of Education For Pure Sciences, Mathematics Department Tel: +964 781 4412 926, E-mail: dekam1215@yahoo.com

Abstract:

In this paper we introduce relations between proper ideal and compactness.

<u>1. Introduction:</u>

Ideal in topological spaces have been considered since 1930. This topic won its importance by the paper of Vaidyanathaswamy [11] and Kuratwoski [7].

Applications to various fields were further investigated by Newcomb [10], Rancin [5], Hamlett and Jankovic [12], David A. Rose and T. R. Hamlett [3], Julian Dontchev and Maximilian Ganster [6], A.A. Nasef and T. Noiri [1], Abd El-Monsef et al. [8], Arafa A. Nasef [2], M. K. Gupta and T. Noiri [11], and M. K. Gupta and Rajneesh [10].

A family *I* of subsets of *X* is an ideal on *X* if (i)*A*, $B \in I$ implies $A \cup B \in I$ (ii) $A \in I$ and $B \subseteq A$ implies $B \in I$. If (iii) $X \notin I$ then *I* is called proper ideal. In this paper we used only the proper ideal i.e. in this paper any ideal is proper idea. Let (X, T) be a topological space, by N_x we will denote the open neighborhood system at a point $x \in X$.

Definition 2.1[13]:

Let *I* be an ideal on a topological space *X* and $x \in X$. We say that *x* is turing point of *I* if for each $N \in N_x$ implies $N^c \in I$.

Example 2.2[13]:

Let *X* be a set and $x \in X$. Then $I = \{A \subseteq X : x \in A^c\}$, is an ideal on *X* and *x* is a turing point of *I*.

Definition 2.3:

Let *I* be an ideal on a topological space *X* and $x \in X$. We say that *x* is a bench point of *I* if for each $N \in N_x$ and for each $A \in I$ we have $A \cap N^c \neq A$.

Theorem 2.4:

Let *I* be an ideal on a topological space X and $x \in X$. if x is turing point then x is bench point.

Proof:

Let x is a turing point of I. If possible x is not bench point then there is $N \in N_x$ and $A \in I$ such that $A \cup N^c = X$ and we have $N \in I$, but $N^c \in I$ so $N \cup N^c = X \in I$ contradiction with $X \notin I$.

Remark 2.5:

The converse not true in general for example: let (X, T) be the usuall topological space, then $I = \{A \subseteq \mathbb{R}: (0,2) \subseteq A^c\}$ is an ideal on X and 1 is bench point of I but 1 is not turing point of I because $(0,\frac{3}{2}) \in N_1$, but $(0,\frac{3}{2})^c \notin I$.

Definition 2.6[13]:

Let *I* be a ideal on *X*. Then *I* is said to be maximal ideal on *X* if and only if *I* is not contained in any other ideal on *X*. i.e *I* is a maximal ideal on *X* if and only if for every ideal *J* on *X* such that $I \subseteq J$, then I = J.

Theorem 2.7:

Let X be a topological space. X is compact if and only if every maximal ideal Ion X there exists $x \in X$ is turing point of I.

Definition 2.8:

Let (X, T) be a topological space. An ideal I on X is called C-ideal if and only if for each $A \in T$ and every point $x \in A$ there is $B \in T$ such that $x \in B \subseteq A$ and either $B \in I$ or $B^c \in I$.

Theorem 2.9:

Let (X, T) be a topological space. An ideal I on X is called C-ideal if and only if F is a closed set and $x \in F^c$ imply there is a closed set K such that $K \subseteq F$, $x \in K^c$ and either $K \in I$ or $K^c \in I$.

Proposition 2.10:

Let (X, T) be a topological space. Then

- 1. An ideal *I* on *X* is called *C*-ideal if and only if *A* is open amd $x \in A$ imply there is *B* open such that $x \in B$ and either $(B \cap A)^c \in I$ or $B \in I$.
- 2. An ideal *I* on *X* is called *C*-ideal if and only if *A* is open and $x \in A$ imply there is *B* open such that $x \in B$ and either $(B \cap A)^c \in I$ or $(B \cap A) \in I$.

Theorem 2.11:

The topological space (X, T) is compact if and only if every C-ideal on X has a turing point.

Proof:

Let the space be a compact and let *I* be *C*-ideal on *X*. If possible, let *I* has not turing point. Then for each $x \in X$ implies there is an open set *A* containing *x* such that $A^c \notin I \dots (*)$

Since *I* is *C*-ideal, then there is an open set B_x such that $x \in B_x \subseteq A$ and either $B_x \in I$ or $B^c \in I$. If $B_x^c \in I$ and $A^c \subseteq B_x^c$ implies $A^c \in I$ contradiction (*). So that $B_x \in I$. Let $\mathcal{B} = \{B_x : x \in X\}$. Then \mathcal{B} is an open cover of *X*. Since *X* is compact, then there is a finite number B_1, \ldots, B_n of members of \mathcal{B} such that $X = \bigcup_{i=1}^n B_i$. But $B_i \in I$, $i = 1, \ldots, n$ and so $X = \bigcup_{i=1}^n B_i \in I$ and this contradiction because $X \notin I$. Therefore *I* has a turing point.

Conversely. Assume every *C*-ideal has a turing point and let \mathfrak{F} be a family of closed sets with the finite intersection property. Let \mathfrak{A} the family of all finite intersection of members of \mathfrak{F} , then by theorem, $\mathfrak{A}^c = \{A^c : A \in \mathfrak{A}\}$ is a subbase of an ideal *I* and $\mathfrak{A}^c \subseteq I$. Suppose \mathfrak{A} has empty intersection. To show that *I* is a *C*-ideal, let *F* be a closed set and let $x \in F^c$. Now there is $A \in \mathfrak{A}$ such that $x \in A^c$ and so $K = A \cup F$ is a closed set such that $x \in K^c$, $F \subseteq K$. Hence $K^c \in I$ because $F \in \mathfrak{A}, F \subseteq K$, then $F^c \in \mathfrak{A}^c \subseteq I, K^c \subseteq F^c$. So that *I* is a *C*-ideal and so has a turing point *y*. Hence *y* is in each member of \mathfrak{A} (because if there is $U \in \mathfrak{A}$ and $y \notin U$, then $y \in U^c$. i.e. $U^c \in N_y$. Since *y* is turing point of *I*, then $U \in I$. Since $U^c \in \mathfrak{A}^c$, then $U^c \in I$. So that $U \cup U^c = X \in I$ contradiction). So that $y \in \cap \mathfrak{A}$ and we

have *X* is compact. **Theorem 2.12:**

Let (X, T) be a topological space, $x \in X$ and I be an ideal on X. Then this equivalent:

- 1. *I* is *C*-ideal
- 2. *x* is bench point of *I* if and only if *x* is turing point of *I*.

Proof:

(1. implies 2.). Let *I* be a *C*-ideal and let *x* be a bench point of *I*. To show *x* is turing point of *I*, let $N \in N_x$, then there is an open set *B* such that $x \in B \subseteq N$ and either $B \in I$ or $B^c \in I$ because *I* is a *C*-ideal. Hence $B \notin I$, because if possible $B \in I$, $B \in N_x$ and *x* is bench point of *I* then $B \cup B^c \neq X$ contradiction. So that $B^c \in I$. Since $N^c \subseteq B^c$, then $N^c \in I$. So *x* is turing point of *I*.

Conversely. Clear from theorem 2.4.

(2. implies 1.). Assume 2., hold. Let A is an open set and $x \in A$ then x is either a bench point or not a bench point of I. If x is bench point then x is turing point, so $A^c \in I$ and $x \in A \subseteq A$. If x is not bench point, then there is $U \in N_x$ and $B \in I$ such that $B \cup U^c = X$, so $U \subseteq B$ and we have $U \in I$. Then $M = A \cap U$ is open, $x \in M \subseteq A$. Hence $M \in I$ because $M \subseteq U$ and $U \in I$. So that I is a C-ideal.

Corollary 2.13:

A topological space (X, T) is compact if and only if every C-ideal has a bench point.

Lemma 2.14:

If an ideal I on a compact space has one and only one bench point x then x is a turing point of I.

Proof:

Let *I* be an ideal on a compact space *X* and *x* is a bench point of *I*. Let $N \in N_x$. If $y \in N^c$ then *y* is not bench point of *I* because only *x* is bench point of *I*. Then there is $B_y \in N_y$ and $A \in I$ such that $B_y^c \cup A = X$, so $B_y \subseteq A$ and we have $B_y \in I$. Now $\mathcal{B} = \{B_y : y \in N^c\}$ is an open cover of N^c and N^c is compact because any closed subset of compact space is compact. Hence a finite subfamily B_1, \dots, B_n of \mathcal{B} covers N^c i.e. $N^c \subseteq \bigcup_{i=1}^n B_i$. But $B_i \in I, i = 1, \dots, n$, so $\bigcup_{i=1}^n B_i \in I$ and we have $N^c \in I$. Therefore *x* is a turing point of *I*.

Theorem 2.15:

Let (X, T) be a topological space, A a subset of X and T_A be a relative topology. A is compact if and only if every C-ideal on A has a turing point in a topological space in (A, T_A) .

Theorem 2.16:

Let (X, T) be a topological space, A a closed subset of X and T_A the relative topology. If I is a C-ideal on (A, T_A) , then I is a C-ideal on (X, T).

Definition 2.17:

Let $X \neq \emptyset$ and let P(X) denote the family of all subset of X. An ideal I is called P(X)-ideal if and only if $A \in P(X)$ and $x \in A$ imply there is $B \in P(X)$ such that $x \in B \subseteq A$ and $B \in I$ or $B^c \in I$.

Observe that an ideal is P(X)-ideal if and only if $A \in P(X)$ and $x \in A^c$ imply there is $B \in P(X)$ such that $x \in B^c$, $A \subseteq B$ and $B \in I$ or $B^c \in I$.

Remark 2.18:

- 1. Not every *C*-ideal is P(X)-ideal for example: let $X = \{1, 2, 3\}$ and $T = \{\emptyset, \{1, 2\}, X\}$. Then $I = \{\emptyset, \{3\}\}$ is *C*-ideal but is not P(X)-ideal.
- Not every P(X)-ideal is C-ideal for example: let X = R and T = {Ø, Q, R}. Then I = {A ⊆ R: A is finite} is p(x)-ideal because for each A ∈ p(x) and x ∈ A, then x ∈ {x} ⊆ A and {x} ∈ I. but I is not C-ideal because Q ∈ T and any x ∈ Q only Q ∈ T such that x ∈ Q ⊆ Q and Q, Q^c ∉ I.

Theorem 2.19:

Let (X, T) be a topological space. Then

1. Every ideal I on X has not bench point is p(x)-ideal.

2.Every ideal *I* on *X* has not bench point is *C*-ideal.

Proof:

1.Let *I* be an ideal and has not bench point. Let $A \in p(x)$ and $x \in A$. Since *x* is not bench point of *I*, then there exists $U \in N_x$, $B \in I$ such that $U^c \cup B = X$, so $U \subseteq B$ and we have $U \in I$. Let $M = A \cap U$, then $x \in M \subseteq A$. Hence $M \in I$ because $M \subseteq U$. So that *I* is p(x)-ideal. 2.A similar proof 1.

Theorem 2.20:

Every p(x)-ideal has a bench point if and only if every *C*-ideal has a bench point.

Proof:

Suppose every p(x)-ideal has a bench point. If possible *I* is a *C*-ideal and has not bench point then *I* is p(x)-ideal and so *I* has a bench point.

Conversely. By theorem 2.4.

Theorem 2.21:

Let (X, T) be a topological space. X is compact if and only if every P(X)-ideal has a bench point.

Definition 2.22:

Let (X, T) be a topological space and let \mathfrak{B} ba a bace for the toplogy T. Let us call an ideal I a \mathfrak{B} -ideal if and only if $A \in \mathfrak{B}$ and $x \in A$ imply there is $B \in \mathfrak{B}$ such that $x \in B \subseteq A$ and $B \in I$ or $B^c \in I$.

Theorem 2.23:

Let (X, T) be a topological space and let I be an ideal on X. I is C-ideal if and only if I is \mathfrak{B} -ideal.

Proof:

Let *I* be a *C*-ideal on *X*. Let $A \in \mathfrak{B}$ and $x \in A$, then $A \in T$. Since *I* is *C*-ideal, then there is $B \in T$ such that $x \in B \subseteq A$ and either $B \in I$ or $B^c \in I$. If $B^c \in I$, then $A^c \in I$ because $A^c \subseteq B^c$. Suppose $B \in I$, then $B = \bigcup_i B_i$ for some $B_i \in \mathfrak{B}$. Since $x \in B$, then $x \in B_i$ for some $B_i \subseteq \bigcup_i B_i = B$ and $B \in I$, then $B_i \in I$. Therefore *I* is \mathfrak{B} -ideal.

Conversely. Let *I* be a \mathfrak{B} -ideal on *X*. Let $A \in T$ and $x \in A$, then $A = \bigcup_i B_i$ for some $B_i \in \mathfrak{B}$, so there is $B_i \subseteq A$ such that $x \in B_i$ and $B_i \in \mathfrak{B}$. Since *I* is \mathfrak{B} -ideal then there is $B \in \mathfrak{B}$ such that $x \in B \subseteq B_i$ and either $B \in I$ or $B^c \in I$. So that there is $B \in T$ such that $x \in B \subseteq A$ and either $B \in I$ or $B^c \in I$. Therefore *I* is *C*-ideal.

Theorem 2.24:

Let (X, T) be a topological space. X is compact if and only if every \mathfrak{B} -ideal has a turing point if and only if every \mathfrak{B} -ideal has a bench point.

Definition 2.25:

Let (X, T) be a topological space and let S be a subbace for the topology T. An ideal I is called S-ideal if and only if $S_1 \in S$ and $x \in S_1$ imply there is $S_2 \in S$ such that $x \in S_2$ and either $(S_1 \cap S_2)^c \in I$ or $S_2 \in I$.

Observe that any maximal ideal is S-ideal.

Definition 2.26:

Let (X, T) be a topological space, $x \in X$, I ideal on X and let S be a subbace for the topology T. We say that

1.*x* is S-turing point of *I* if for each $S \in S$ and $x \in S$ implies $S^c \in I$.

2.*x* is a S-bench point of *I* if and only if $S^c \cup A \neq X$ for each $x \in S \in S$.

Theorem 2.27:

Let (X, T) be a topological space, S be a subbace for the topology T, I be an ideal on X and $x \in X$. x is turing point of I if and only if x is a S-turing point of I.

Proof:

Suppose x is S-turing point of I. Let $N \in T$ and $x \in N$, so $x \in N = \bigcup_i (S_{i_1} \cap S_{i_2} \cap ... \cap S_{i_{n_i}})$ where $S_{i_k} \in S$. Then $x \in S = (S_{i_1} \cap S_{i_2} \cap ... \cap S_{i_{n_i}}) \subseteq N$ for some *i*, then $x \in S_{i_1}, S_{i_2}, ..., S_{i_{n_i}}$ and we have by hypothesis we have $(S_{i_1})^c, (S_{i_2})^c, ..., (S_{i_{n_i}})^c \in I$ then $S^c = (S_{i_1} \cap S_{i_2} \cap ... \cap S_{i_{n_i}})^c = (S_{i_1})^c \cup (S_{i_2})^c \cup ... \cup (S_{i_{n_i}})^c \in I$ since $N^c \subseteq S^c$, then $N^c \in I$. Therefore x is turing point of I.

Conversely. Suppose x is a turing point of I. Let $S \in S$ such that $x \in S$, then $S \in T$. Since x is a turing point of I, then $S^c \in I$. So that x is a S-turing point of I.

Theorem 2.28:

Let (X, T) be a topological space, S be a subbace for the topology T, I be an ideal on X and $x \in X$. If x is bench point of I, then x is a S-bench point of I.

Proof:

Let x be a bench point of I. Let $S \in S$, $x \in S$, then $S \in T$. Since x is bench point of I, then $S^c \cup A \neq X$ for each $A \in I$. Therefore x is a S-bench point of I.

Remark 2.29:

The converse for theorem above is not true for example: Let

 $X = \{a, b, c, d, e\}, \text{ then } S = \{\{a, b, c\}, \{c, d\}, \{d, e\}\} \text{ is a subbace of a topology}$ $T = \{X, \{a, b, c\}, \{c, d\}, \{d, e\}, \{c\}, \{d\}, \emptyset, \{a, b, c, d\}, \{c, d, e\}\}. \text{ Let } I = \{\emptyset, \{c\}\}, \text{ then } c \text{ is } S \text{ -bench point } of I \text{ but } x \text{ is not bench point of } I \text{ because } c \in \{c\} \in T \text{ and } \{c\} \in I, \text{ so that } \{c\} \cup \{c\}^c = X.$

Theorem 2.30:

Let (X, T) be a topological space, $x \in X$ and I be an ideal on X. Then this equivalent:

1.I is S-ideal

2.x is S-bench point of I if and only if x is S-turing point of I.

Proof:

(1. implies 2.). Let *I* be a S-ideal and let x be a S-bench point of *I*. To show x is S-turing point of *I*, let $S \in S$ and $x \in S$, then there is $S_1 \in S$ such that $x \in S_1$ and either $S_1 \in I$ or $(S \cap S_1)^c \in I$ because *I* is a S-ideal. Hence $S_1 \notin I$, because if possible $S_1 \in I$, and x is S-bench point of *I* then $S_1 \cup S_1^c \neq X$ contradiction. So that $(S \cap S_1)^c \in I$. Since $S^c \subseteq (S \cap S_1)^c$, then $S^c \in I$. So x is S-turing point of *I*.

Conversely. Let *x* be a *S*-turing point of *I*, then $S^c \in I$ for each $S \in S$ such that $x \in S$. To prove that $S^c \cup B \neq X$ for each $S \in \mathfrak{A}$ such that $x \in S$ and for each $B \in I$. if possible $S^c \cup B = X$, then $S \subseteq B$, then $S \in I$. But $S^c \in I$, so $S \cap S^c = X \in I$ contradiction. Therefore *x* is *S*-bench point of *I*.

(2. implies 1.). Assume 2., hold. Let $S \in S$ and $x \in S$ then x is either a S-bench point or not a Sbench point of I. If x is S-bench point then x is S-turing point, so $S^c = (S \cap S)^c \in I$. If x is not Sbench point, then there is $S_1 \in S$, $x \in S_1$ and there is $B \in I$ such that $B \cup S_1^c = X$, so $S_1 \subseteq B$ and we have $S_1 \in I$. Therefore I is S-ideal.

Corollary 2.31:

An ideal without any S-bench points is a S-ideal. hence if an ideal is not S-ideal then it has a S-bench point.

Theorem 2.32:

Let (X, T) be a topological space, $x \in X$ and I be a S-ideal on X. Then x is bench point of I if and only if x is turing point of I.

Proof:

Direct by theorem 2.28, theorem 2.30, and theorem 2.27.

Theorem 2.33:

Let (X, T) be a topological space I be an ideal on X. If I is S-ideal, then I is C-ideal.

Proof:

Direct from theorem 2.32, and theorem 2.12.

Theorem 2.34:

A space is compact if and only if every S- ideal has a S-turing point.

Proof:

Let X is compact .Let I is S- ideal, then by theorem 2.33, we have I is C-ideal. Since X is compact then by theorem 2.11, we have I has a turing point. So by theorem 2.30 we have I has a S-turing point.

Conversely. Suppose every S- ideal has a S-turing point. Since every maximal ideal is S-ideal, then every maximal ideal has a S-turing point. By theorem 2.30, we have every maximal ideal has a turing point and by theorem 2.7, X is compact.

References:

[1] A. A. Nasef and T. Noiri, "*On* α*-compact modulo an ideal*", Far East J. Math. Sci., 6:6(1998), 857-865.

[2] Arafa A. Nasef, "Some classes of compactness in terms of ideals", S. J. of math, Volume 27, No. 3, pp. 343-352, July 2001.

[3] David A. Rose and T. R. Haamlett, "On one-point I-compactification and local I-compactness",

math. Siovaca, 42(1992), No. 3, 359-369.

[5] D. V. Rancin, "Compactness modulo an ideal", Soviet Math. Dokl., 13:1 (1972), 193-197.

[6] J. Dontchev and M. Ganster, "On compactness with respect to countable extensions of ideals and the generalized Banach Category theorem", Acta Math. Hungar. 88(1-2) (2000), 53-58.

[7] Kuratwoski, K, "Topology", Vol. I. NewYork: Academic Press, 1966.

[8] M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, "*S-compactness via ideals*", Tamkang Jour. of Math., 24:4(1993), 431-443.

[9] M. K. Gupta and T. Noir, "*C-compactness Modulo an Ideal*" Received 24 January 2006; Revised 30 March 2006; Accepted 4 April 2006.

[10] R. L. Newcomb, "Topologies Which Are Compact Modulo an Ideal", Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, 1967.

[11] R. Vaidynatahswamy," the localization theory in set topology", Inaian Acad. 20(1945), 51-61.

[12] T. R. Hamlett and D. Jankovic, "Compactness with respect to an ideal", Boll. Un. Math. Ital. 7: 4B(1990), 849-861.

[13] Luay A. AL-Swidi and Dheargham A. Al-Sada "*Turing Point of Proper Ideal*" Archive Des Science ISSN:1661-464X Volume 65 No. 7 Jul(2012), 219-220.