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Abstract: 

     In this paper we introduce relations between proper ideal and compactness. 

1. Introduction: 

     Ideal in topological spaces have been considered since 1930. This topic won its importance by the 

paper of Vaidyanathaswamy [11] and Kuratwoski [7].  

Applications to various fields were further investigated by Newcomb [10], Rancin [5], Hamlett and 

Jankovic [12], David A. Rose and T. R. Hamlett [3], Julian Dontchev and Maximilian Ganster [6], A.A 

. Nasef and T . Noiri [1], Abd El-Monsef et al. [8], Arafa A. Nasef [2], M. K. Gupta and T. Noiri [11], 

and M. K. Gupta and Rajneesh [10]. 

     A family 𝐼 of subsets of 𝑋 is an ideal on 𝑋 if  (i)𝐴, 𝐵 ∈ 𝐼 implies 𝐴 ∪ 𝐵 ∈ 𝐼 (ii) 𝐴 ∈ 𝐼 and 𝐵 ⊆ 𝐴 

implies 𝐵 ∈ 𝐼. If (iii) 𝑋 ∉ 𝐼 then 𝐼 is called proper ideal. In this paper we used only the proper ideal i.e. 

in this paper any ideal is proper idea. Let (𝑋 , 𝑇) be a topological space, by 𝑁𝑥  we will denote the open 

neighborhood system at a point 𝑥 ∈ 𝑋. 

Definition 2.1[13]: 

       Let 𝐼 be an ideal on a topological space 𝑋 and 𝑥 ∈ 𝑋. We say that 𝑥 is turing point of 𝐼 if for each 

𝑁 ∈  𝑁𝑥  implies 𝑁𝑐 ∈ 𝐼. 

Example 2.2[13]:  

     Let 𝑋 be a set and 𝑥 ∈ 𝑋. Then 𝐼 = {𝐴 ⊆ 𝑋: 𝑥 ∈ 𝐴𝑐}, is an ideal on 𝑋 and 𝑥 is a turing point of 𝐼. 

Definition 2.3: 

       Let 𝐼 be an ideal on a topological space 𝑋 and 𝑥 ∈ 𝑋. We say that 𝑥 is a bench point of 𝐼 if for each 

𝑁 ∈  𝑁𝑥  and for each 𝐴 ∈ 𝐼 we have 𝐴 ∩ 𝑁𝑐 ≠ 𝐴. 

Theorem 2.4: 

            Let 𝐼 be an ideal on a topological space 𝑋 and 𝑥 ∈ 𝑋. if 𝑥 is turing point then 𝑥 is bench point. 

Proof: 

Let 𝑥 is a turing point of 𝐼. If possible 𝑥 is not bench point then there is 𝑁 ∈ 𝑁𝑥  and 𝐴 ∈ 𝐼 such that 

𝐴 ∪ 𝑁𝑐 = 𝑋 and we have 𝑁 ∈ 𝐼, but 𝑁𝑐 ∈ 𝐼 so 𝑁 ∪ 𝑁𝑐 = 𝑋 ∈ 𝐼 contradiction with 𝑋 ∉ 𝐼. 

Remark 2.5: 

The converse not true in general for example: let (𝑋, 𝑇) be the usuall topological space, then 𝐼 = {𝐴 ⊆
ℝ: (0,2) ⊆ 𝐴𝑐} is an ideal on 𝑋 and 1 is bench point of 𝐼 but 1 is not turing point of 𝐼 because (0,

3

2
) ∈

𝑁1, but (0,
3

2
)𝑐 ∉ 𝐼. 

Definition 2.6[13]: 

     Let 𝐼 be a ideal on 𝑋. Then 𝐼 is said to be maximal ideal on 𝑋 if and only if 𝐼 is not contained in any 

other ideal on 𝑋. i.e 𝐼 is a maximal ideal on 𝑋 if and only if for every ideal 𝐽 on 𝑋 such that 𝐼 ⊆ 𝐽, then 

𝐼 = 𝐽. 
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Theorem 2.7: 

     Let 𝑋 be a topological space.  𝑋 is compact if and only if every maximal ideal 𝐼on 𝑋 there exists 

𝑥 ∈ 𝑋 is turing point of 𝐼. 

Definition 2.8: 

     Let (𝑋, 𝑇) be a topological space. An ideal 𝐼 on 𝑋 is called 𝐶-ideal if and only if for each 𝐴 ∈ 𝑇 and 

every point 𝑥 ∈ 𝐴 there is 𝐵 ∈ 𝑇 such that 𝑥 ∈ 𝐵 ⊆ 𝐴 and either 𝐵 ∈ 𝐼 or 𝐵𝑐 ∈ 𝐼. 

Theorem 2.9: 

     Let (𝑋, 𝑇) be a topological space. An ideal 𝐼 on 𝑋 is called 𝐶-ideal if and only if 𝐹 is a closed set 

and 𝑥 ∈ 𝐹𝑐  imply there is a closed set 𝐾 such that 𝐾 ⊆ 𝐹, 𝑥 ∈ 𝐾𝑐  and either 𝐾 ∈ 𝐼 or 𝐾𝑐 ∈ 𝐼. 

Proposition 2.10: 

     Let (𝑋, 𝑇) be a topological space. Then 

1. An ideal 𝐼 on 𝑋 is called 𝐶-ideal if and only if 𝐴 is open amd 𝑥 ∈ 𝐴 imply there is 𝐵 open 

such that 𝑥 ∈ 𝐵 and either (𝐵 ∩ 𝐴)𝑐 ∈ 𝐼  or  𝐵 ∈ 𝐼. 

2. An ideal 𝐼 on 𝑋 is called 𝐶-ideal if and only if 𝐴 is open amd 𝑥 ∈ 𝐴 imply there is 𝐵 open 

such that 𝑥 ∈ 𝐵 and either (𝐵 ∩ 𝐴)𝑐 ∈ 𝐼  or  (𝐵 ∩ 𝐴) ∈ 𝐼. 

Theorem 2.11: 

     The topological space (𝑋, 𝑇) is compact if and only if every 𝐶-ideal on 𝑋 has a turing point. 

Proof: 

     Let the space be a compact and let 𝐼 be 𝐶-ideal on 𝑋. If possible, let 𝐼 has not turing point. Then for 

each 𝑥 ∈ 𝑋 implies there is an open set 𝐴 containing 𝑥 such that 𝐴𝑐 ∉ 𝐼  …(*) 

Since 𝐼 is 𝐶-ideal, then there is an open set 𝐵𝑥  such that 𝑥 ∈ 𝐵𝑥 ⊆ 𝐴 and either 𝐵𝑥 ∈ 𝐼 or 𝐵𝑐 ∈ 𝐼. If 

𝐵𝑥
𝑐 ∈ 𝐼 and 𝐴𝑐 ⊆ 𝐵𝑥

𝑐  implies 𝐴𝑐 ∈ 𝐼 contradiction (*). So that 𝐵𝑥 ∈ 𝐼. Let ℬ = {𝐵𝑥 ∶ 𝑥 ∈ 𝑋}. Then ℬ is 

an open cover of 𝑋. Since 𝑋 is compact, then there is a finite number 𝐵1 , … , 𝐵𝑛  of members of ℬ such 

that 𝑋 =∪𝑖=1
𝑛 𝐵𝑖 . But 𝐵𝑖 ∈ 𝐼, 𝑖 = 1, … , 𝑛 and so 𝑋 =∪𝑖=1

𝑛 𝐵𝑖 ∈ 𝐼 and this contradiction because 𝑋 ∉ 𝐼. 

Therefore 𝐼 has a turing point. 

     Conversely. Assume every 𝐶-ideal has a turing point and let 𝔉 be a family of closed sets with the 

finite intersection property. Let 𝔄 the family of all finite intersection of members of  𝔉, then by 

theorem ,  𝔄𝑐 = {𝐴𝑐 : 𝐴 ∈ 𝔄} is a subbase of an ideal 𝐼 and 𝔄𝑐 ⊆ 𝐼. Suppose 𝔄 has empty intersection.  

To show that 𝐼 is a 𝐶-ideal, let 𝐹 be a closed set and let 𝑥 ∈ 𝐹𝑐 . Now there is 𝐴 ∈ 𝔄 such that 𝑥 ∈ 𝐴𝑐  

and so 𝐾 = 𝐴 ∪ 𝐹 is a closed set such that 𝑥 ∈ 𝐾𝑐 , 𝐹 ⊆ 𝐾. Hence 𝐾𝑐 ∈ 𝐼 because 𝐹 ∈ 𝔄, 𝐹 ⊆ 𝐾, then 

𝐹𝑐 ∈ 𝔄𝑐 ⊆ 𝐼, 𝐾𝑐 ⊆ 𝐹𝑐 . So that 𝐼 is a 𝐶-ideal and so has a turing point 𝑦. Hence 𝑦 is in each member of 

𝔄 ( because if there is 𝑈 ∈ 𝔄 and 𝑦 ∉ 𝑈, then 𝑦 ∈ 𝑈𝑐 . i.e. 𝑈𝑐 ∈ 𝑁𝑦 . Since 𝑦 is turing point of 𝐼, then 

𝑈 ∈ 𝐼. Since 𝑈𝑐 ∈ 𝔄𝑐 , then 𝑈𝑐 ∈ 𝐼. So that 𝑈 ∪ 𝑈𝑐 = 𝑋 ∈ 𝐼 contradiction). So that 𝑦 ∈ ∩ 𝔄 and we 

have 𝑋 is compact. 

Theorem 2.12: 

     Let (𝑋, 𝑇) be a topological space, 𝑥 ∈ 𝑋 and 𝐼 be an ideal on 𝑋. Then this equivalent: 

1. 𝐼 is 𝐶-ideal 

2. 𝑥 is bench point of 𝐼 if and only if 𝑥 is turing point of 𝐼. 

Proof: 

     (1. implies 2.). Let 𝐼 be a 𝐶-ideal and let 𝑥 be a bench point of 𝐼. To show 𝑥 is turing point of 𝐼, let 

𝑁 ∈ 𝑁𝑥 , then there is an open set 𝐵 such that 𝑥 ∈ 𝐵 ⊆ 𝑁 and either 𝐵 ∈ 𝐼 or 𝐵𝑐 ∈ 𝐼 because 𝐼 is a 𝐶-

ideal. Hence 𝐵 ∉ 𝐼, because if possible 𝐵 ∈ 𝐼, 𝐵 ∈ 𝑁𝑥  and 𝑥 is bench point of 𝐼 then 𝐵 ∪ 𝐵𝑐 ≠ 𝑋 

contradiction. So that 𝐵𝑐 ∈ 𝐼. Since 𝑁𝑐 ⊆ 𝐵𝑐 , then 𝑁𝑐 ∈ 𝐼. So 𝑥 is turing point of 𝐼. 

Conversely. Clear from theorem2.4. 

     (2. implies 1.). Assume 2., hold. Let 𝐴 is an open set and 𝑥 ∈ 𝐴 then 𝑥 is either a bench point or not 

a bench point of 𝐼. If 𝑥 is bench point then 𝑥 is turing point, so 𝐴𝑐 ∈ 𝐼 and 𝑥 ∈ 𝐴 ⊆ 𝐴. If 𝑥 is not bench 

point, then there is 𝑈 ∈ 𝑁𝑥  and 𝐵 ∈ 𝐼 such that 𝐵 ∪ 𝑈𝑐 = 𝑋, so 𝑈 ⊆ 𝐵 and we have 𝑈 ∈ 𝐼. Then 

𝑀 = 𝐴 ∩ 𝑈 is open, 𝑥 ∈ 𝑀 ⊆ 𝐴. Hence 𝑀 ∈ 𝐼 because 𝑀 ⊆ 𝑈 and 𝑈 ∈ 𝐼. So that 𝐼 is a 𝐶-ideal. 
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Corollary 2.13: 

     A topological space (𝑋, 𝑇) is compact if and only if every 𝐶-ideal has a bench point. 

 

Lemma 2.14: 

      If an ideal 𝐼 on a compact space has one and only one bench point 𝑥 then 𝑥 is a turing point of 𝐼. 

Proof: 

     Let 𝐼 be an ideal on a compact space 𝑋 and 𝑥 is a bench point of 𝐼. Let 𝑁 ∈ 𝑁𝑥 . If 𝑦 ∈ 𝑁𝑐  then 𝑦 is 

not bench point of 𝐼 because only 𝑥 is bench point of 𝐼. Then there is 𝐵𝑦 ∈ 𝑁𝑦  and 𝐴 ∈ 𝐼 such that 

𝐵𝑦
𝑐 ∪ 𝐴 = 𝑋, so 𝐵𝑦 ⊆ 𝐴 and we have 𝐵𝑦 ∈ 𝐼. Now ℬ = {𝐵𝑦 ∶ 𝑦 ∈ 𝑁𝑐} is an open cover of 𝑁𝑐  and 𝑁𝑐  is 

compact because any closed subset of compact space is compact. Hence a finite subfamily 𝐵1 , … , 𝐵𝑛  of 

ℬ covers 𝑁𝑐  i.e. 𝑁𝑐 ⊆∪𝑖=1
𝑛 𝐵𝑖 . But 𝐵𝑖 ∈ 𝐼, 𝑖 = 1, … , 𝑛, so ∪𝑖=1

𝑛 𝐵𝑖 ∈ 𝐼 and we have 𝑁𝑐 ∈ 𝐼. Therefore 𝑥 

is a turing point of 𝐼. 

Theorem 2.15: 

     Let (𝑋, 𝑇) be a topological space, 𝐴 a subset of 𝑋 and 𝑇𝐴  be a relative topology. 𝐴 is compact if and 

only if every 𝐶-ideal on 𝐴 has a turing point in a topological space in (𝐴, 𝑇𝐴). 

Theorem 2.16: 

     Let (𝑋, 𝑇) be a topological space, 𝐴 a closed subset of 𝑋 and 𝑇𝐴  the relative topology. If 𝐼 is a 𝐶-

ideal on (𝐴, 𝑇𝐴), then 𝐼 is a 𝐶-ideal on (𝑋, 𝑇). 

Definition 2.17: 

        Let 𝑋 ≠ ∅ and let 𝑃(𝑋) denote the family of all subset of 𝑋. An ideal 𝐼 is called 𝑃(𝑋)-ideal if and 

only if 𝐴 ∈ 𝑃(𝑋) and 𝑥 ∈ 𝐴 imply there is 𝐵 ∈ 𝑃(𝑋) such that 𝑥 ∈ 𝐵 ⊆ 𝐴 and 𝐵 ∈ 𝐼 or 𝐵𝑐 ∈ 𝐼. 

Observe that an ideal is 𝑃(𝑋)-ideal if and only if 𝐴 ∈ 𝑃(𝑋) and 𝑥 ∈ 𝐴𝑐  imply there is 𝐵 ∈ 𝑃(𝑋) such 

that 𝑥 ∈ 𝐵𝑐 , 𝐴 ⊆ 𝐵 and 𝐵 ∈ 𝐼 or 𝐵𝑐 ∈ 𝐼. 

Remark 2.18: 

1. Not every 𝐶-ideal is 𝑃(𝑋)-ideal for example: let 𝑋 = {1, 2, 3} and 𝑇 =  ∅,  1,2 , 𝑋 . Then 

𝐼 =  ∅,  3   is 𝐶-ideal but is not 𝑃(𝑋)-ideal. 

2. Not every 𝑃(𝑋)-ideal is 𝐶-ideal for example: let 𝑋 = ℝ and 𝑇 =  ∅, ℚ, ℝ . Then 𝐼 = {𝐴 ⊆
ℝ: 𝐴 is finite} is 𝑝(𝑥)-ideal because for each 𝐴 ∈ 𝑝(𝑥) and 𝑥 ∈ 𝐴, then 𝑥 ∈ {𝑥} ⊆ 𝐴 and 

{𝑥} ∈ 𝐼. but 𝐼 is not 𝐶-ideal because ℚ ∈ 𝑇 and any 𝑥 ∈ ℚ only ℚ ∈ 𝑇 such that 𝑥 ∈ ℚ ⊆ ℚ 

and  ℚ, ℚ𝑐 ∉ 𝐼. 

Theorem 2.19: 

     Let (𝑋, 𝑇) be a topological space. Then 

1.Every ideal 𝐼 on 𝑋 has not bench point is 𝑝(𝑥)-ideal. 

2.Every ideal 𝐼 on 𝑋 has not bench point is 𝐶-ideal. 

Proof: 

1.Let 𝐼 be an ideal and has not bench point. Let 𝐴 ∈ 𝑝(𝑥) and 𝑥 ∈ 𝐴. Since 𝑥 is not bench point of 𝐼, 

then there exists 𝑈 ∈ 𝑁𝑥 , 𝐵 ∈ 𝐼 such that 𝑈𝑐 ∪ 𝐵 = 𝑋, so 𝑈 ⊆ 𝐵 and we have 𝑈 ∈ 𝐼. Let 𝑀 = 𝐴 ∩ 𝑈, 

then 𝑥 ∈ 𝑀 ⊆ 𝐴. Hence 𝑀 ∈ 𝐼 because 𝑀 ⊆ 𝑈. So that 𝐼 is 𝑝(𝑥)-ideal. 

2.A similar proof 1. 

Theorem 2.20: 

     Every 𝑝(𝑥)-ideal has a bench point if and only if every 𝐶-ideal has a bench point. 

Proof: 

     Suppose every 𝑝(𝑥)-ideal has a bench point. If possible 𝐼 is a 𝐶-ideal and has not bench point then 𝐼 

is 𝑝(𝑥)-ideal and so 𝐼 has a bench point. 

     Conversely. By theorem2.4. 

Theorem 2.21: 



Archives Des Sciences Vol 65, No. 10;Oct 2012

413 ISSN 1661-464X

 

     Let (𝑋, 𝑇) be a topological space. 𝑋 is compact if and only if  every 𝑃(𝑋)-ideal has a bench point. 

Definition 2.22: 

     Let (𝑋, 𝑇) be a topological space and let 𝔅 ba a bace for the toplogy 𝑇. Let us call an ideal 𝐼 a 𝔅-

ideal if and only if 𝐴 ∈ 𝔅 and 𝑥 ∈ 𝐴 imply there is 𝐵 ∈ 𝔅 such that 𝑥 ∈ 𝐵 ⊆ 𝐴 and 𝐵 ∈ 𝐼 or 𝐵𝑐 ∈ 𝐼. 

 

Theorem 2.23: 

     Let (𝑋, 𝑇) be a topological space and let 𝐼 be an ideal on 𝑋. 𝐼 is 𝐶-ideal if and only if 𝐼 is 𝔅-ideal. 

Proof: 

     Let 𝐼 be a 𝐶-ideal on 𝑋. Let 𝐴 ∈ 𝔅 and 𝑥 ∈ 𝐴, then 𝐴 ∈ 𝑇. Since 𝐼 is 𝐶-ideal, then there is 𝐵 ∈ 𝑇 

such that 𝑥 ∈ 𝐵 ⊆ 𝐴 and either 𝐵 ∈ 𝐼 or 𝐵𝑐 ∈ 𝐼. If 𝐵𝑐 ∈ 𝐼, then 𝐴𝑐 ∈ 𝐼 because 𝐴𝑐 ⊆ 𝐵𝑐 . Suppose 

𝐵 ∈ 𝐼, then 𝐵 =∪𝑖 𝐵𝑖  for some 𝐵𝑖 ∈ 𝔅. Since 𝑥 ∈ 𝐵, then 𝑥 ∈ 𝐵𝑖  for some 𝐵𝑖 . Since 𝐵𝑖 ⊆∪𝑖 𝐵𝑖 = 𝐵 

and 𝐵 ∈ 𝐼, then 𝐵𝑖 ∈ 𝐼. Therefore 𝐼 is 𝔅-ideal. 

     Conversely. Let 𝐼 be a 𝔅-ideal on 𝑋. Let 𝐴 ∈ 𝑇 and 𝑥 ∈ 𝐴, then 𝐴 =∪𝑖 𝐵𝑖  for some 𝐵𝑖 ∈ 𝔅 , so 

there is 𝐵𝑖 ⊆ 𝐴 such that 𝑥 ∈ 𝐵𝑖  and 𝐵𝑖 ∈ 𝔅. Since 𝐼 is 𝔅-ideal then there is 𝐵 ∈ 𝔅 such that 𝑥 ∈ 𝐵 ⊆
𝐵𝑖  and either 𝐵 ∈ 𝐼 or 𝐵𝑐 ∈ 𝐼. So that there is 𝐵 ∈ 𝑇 such that 𝑥 ∈ 𝐵 ⊆ 𝐴 and either 𝐵 ∈ 𝐼 or 𝐵𝑐 ∈ 𝐼. 

Therefore 𝐼 is 𝐶-ideal. 

Theorem 2.24: 

     Let (𝑋, 𝑇) be a topological space. 𝑋 is compact if and only if every 𝔅-ideal has a turing point if and 

only if every 𝔅-ideal has a bench point. 

Definition 2.25: 

     Let (𝑋, 𝑇) be a topological space and let 𝒮 be a subbace for the topology 𝑇. An ideal 𝐼 is called 𝒮-

ideal if and only if  𝑆1 ∈ 𝒮 and 𝑥 ∈ 𝑆1 imply there is 𝑆2 ∈ 𝒮 such that 𝑥 ∈ 𝑆2 and either (𝑆1 ∩ 𝑆2)𝑐 ∈ 𝐼 

or 𝑆2 ∈ 𝐼. 

     Observe that any maximal ideal is 𝒮-ideal.  

Definition 2.26: 

     Let (𝑋, 𝑇) be a topological space, 𝑥 ∈ 𝑋, 𝐼 ideal on 𝑋 and let 𝒮 be a subbace for the topology 𝑇. We 

say that  

1.𝑥 is 𝒮-turing point of 𝐼 if for each 𝑆 ∈ 𝒮 and 𝑥 ∈ 𝑆 implies 𝑆𝑐 ∈ 𝐼. 

2.𝑥 is a 𝒮-bench point of 𝐼 if and only if 𝑆𝑐 ∪ 𝐴 ≠ 𝑋 for each 𝑥 ∈ 𝑆 ∈ 𝒮. 

Theorem 2.27: 

     Let (𝑋, 𝑇) be a topological space, 𝒮 be a subbace for the topology 𝑇, 𝐼 be an ideal on 𝑋 and 𝑥 ∈ 𝑋. 𝑥 

is turing point of 𝐼 if and only if  𝑥 is a 𝒮-turing point of 𝐼. 

Proof: 

     Suppose  𝑥 is 𝒮-turing point of 𝐼. Let 𝑁 ∈ 𝑇 and 𝑥 ∈ 𝑁, so 𝑥 ∈ 𝑁 =∪𝑖 (𝑆𝑖1
∩ 𝑆𝑖2

∩ …∩ 𝑆𝑖𝑛𝑖
)       

where 𝑆𝑖𝑘
∈ 𝒮.Then  𝑥 ∈ 𝑆 = (𝑆𝑖1

∩ 𝑆𝑖2
∩ …∩ 𝑆𝑖𝑛𝑖

) ⊆ 𝑁 for some 𝑖, then 𝑥 ∈ 𝑆𝑖1
, 𝑆𝑖2

, … , 𝑆𝑖𝑛𝑖
 and we 

have by hypothesis we have (𝑆𝑖1
)𝑐 , (𝑆𝑖2

)𝑐 , … , (𝑆𝑖𝑛𝑖
)𝑐 ∈ 𝐼then 𝑆𝑐 = (𝑆𝑖1

∩ 𝑆𝑖2
∩ …∩ 𝑆𝑖𝑛𝑖

)𝑐 = (𝑆𝑖1
)𝑐 ∪

(𝑆𝑖2
)𝑐 ∪ …∪ (𝑆𝑖𝑛𝑖

)𝑐 ∈ 𝐼 Since 𝑁𝑐 ⊆ 𝑆𝑐 , then 𝑁𝑐 ∈ 𝐼. Therefore 𝑥 is turing point of 𝐼. 

Conversely. Suppose 𝑥 is a turing point of 𝐼. Let 𝑆 ∈ 𝒮 such that 𝑥 ∈ 𝑆, then 𝑆 ∈ 𝑇. Since 𝑥 is a turing 

point of 𝐼, then 𝑆𝑐 ∈ 𝐼. So that 𝑥 is a 𝒮-turing point of 𝐼. 

Theorem 2.28: 

     Let (𝑋, 𝑇) be a topological space, 𝒮 be a subbace for the topology 𝑇, 𝐼 be an ideal on 𝑋 and 𝑥 ∈ 𝑋. 

If 𝑥 is bench point of 𝐼, then 𝑥 is a 𝒮-bench point of 𝐼. 

Proof: 

     Let 𝑥 be a bench point of 𝐼. Let 𝑆 ∈ 𝒮, 𝑥 ∈ 𝑆, then 𝑆 ∈ 𝑇. Since 𝑥 is bench point of 𝐼, then 𝑆𝑐 ∪
𝐴 ≠ 𝑋 for each 𝐴 ∈ 𝐼. Therefore 𝑥 is a 𝒮-bench point of 𝐼. 

Remark 2.29: 
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     The converse for theorem above is not true for example: Let  

𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, then 𝒮 =   𝑎, 𝑏, 𝑐 ,  𝑐, 𝑑 ,  𝑑, 𝑒   is a subbace of a topology 

𝑇 =  𝑋,  𝑎, 𝑏, 𝑐 ,  𝑐, 𝑑 ,  𝑑, 𝑒 ,  𝑐 ,  𝑑 , ∅,  𝑎, 𝑏, 𝑐, 𝑑 ,  𝑐, 𝑑, 𝑒  . Let 𝐼 =  ∅,  𝑐  , then 𝑐 is 𝒮-bench point 

of 𝐼 but 𝑥 is not bench point of 𝐼 because 𝑐 ∈ {𝑐} ∈ 𝑇 and {𝑐} ∈ 𝐼, so that  𝑐 ∪  𝑐 𝑐 = 𝑋.   

Theorem 2.30: 

     Let (𝑋, 𝑇) be a topological space, 𝑥 ∈ 𝑋 and 𝐼 be an ideal on 𝑋. Then this equivalent: 

1.𝐼 is 𝒮-ideal 

2.𝑥 is 𝒮-bench point of 𝐼 if and only if 𝑥 is 𝒮-turing point of 𝐼. 

Proof: 

     (1. implies 2.). Let 𝐼 be a 𝒮-ideal and let 𝑥 be a 𝒮-bench point of 𝐼. To show 𝑥 is 𝒮-turing point of 𝐼, 

let 𝑆 ∈ 𝒮 and 𝑥 ∈ 𝑆, then there is 𝑆1 ∈ 𝒮 such that 𝑥 ∈ 𝑆1 and either 𝑆1 ∈ 𝐼 or (𝑆 ∩ 𝑆1)𝑐 ∈ 𝐼 because 𝐼 

is a 𝒮-ideal. Hence 𝑆1 ∉ 𝐼, because if possible 𝑆1 ∈ 𝐼, and 𝑥 is 𝒮-bench point of 𝐼 then 𝑆1 ∪ 𝑆1
𝑐 ≠ 𝑋 

contradiction. So that (𝑆 ∩ 𝑆1)𝑐 ∈ 𝐼. Since 𝑆𝑐 ⊆ (𝑆 ∩ 𝑆1)𝑐 , then 𝑆𝑐 ∈ 𝐼. So 𝑥 is 𝒮-turing point of 𝐼. 

     Conversely. Let 𝑥 be a 𝒮-turing point of 𝐼, then 𝑆𝑐 ∈ 𝐼 for each 𝑆 ∈ 𝒮 such that 𝑥 ∈ 𝑆. To prove 

that 𝑆𝑐 ∪ 𝐵 ≠ 𝑋 for each 𝑆 ∈ 𝔄 such that 𝑥 ∈ 𝑆 and for each 𝐵 ∈ 𝐼. if possible 𝑆𝑐 ∪ 𝐵 = 𝑋, then 𝑆 ⊆
𝐵, then 𝑆 ∈ 𝐼. But 𝑆𝑐 ∈ 𝐼, so 𝑆 ∩ 𝑆𝑐 = 𝑋 ∈ 𝐼 contradiction. Therefore 𝑥 is 𝒮-bench point of 𝐼. 

     (2. implies 1.). Assume 2., hold. Let 𝑆 ∈ 𝒮 and 𝑥 ∈ 𝑆 then 𝑥 is either a 𝒮-bench point or not a 𝒮-

bench point of 𝐼. If 𝑥 is 𝒮-bench point then 𝑥 is 𝒮-turing point, so 𝑆𝑐 = (𝑆 ∩ 𝑆)𝑐 ∈ 𝐼. If 𝑥 is not 𝒮-

bench point, then there is 𝑆1 ∈ 𝒮, 𝑥 ∈ 𝑆1 and there is 𝐵 ∈ 𝐼 such that 𝐵 ∪ 𝑆1
𝑐 = 𝑋, so 𝑆1 ⊆ 𝐵 and we 

have 𝑆1 ∈ 𝐼. Therefore 𝐼 is 𝒮-ideal. 

Corollary 2.31: 

     An ideal without any 𝒮-bench points is a 𝒮-ideal. hence if an ideal is not 𝒮-ideal then it has a 𝒮-

bench point. 

Theorem 2.32: 

     Let (𝑋, 𝑇) be a topological space, 𝑥 ∈ 𝑋 and 𝐼 be a 𝒮-ideal on 𝑋. Then 𝑥 is bench point of 𝐼 if and 

only if 𝑥 is turing point of 𝐼. 

Proof: 

     Direct by theorem 2.28, theorem 2.30, and theorem 2.27. 

Theorem 2.33: 

     Let (𝑋, 𝑇) be a topological space 𝐼 be an ideal on 𝑋. If 𝐼 is 𝒮-ideal, then 𝐼 is 𝐶-ideal. 

Proof: 

     Direct from theorem 2.32, and theorem 2.12. 

Theorem 2.34: 

     A space is compact if and only if every 𝒮- ideal has a 𝒮-turing point. 

Proof: 

     Let 𝑋 is compact .Let 𝐼 is 𝒮- ideal, then by theorem 2.33, we have 𝐼 is 𝐶-ideal. Since 𝑋 is compact 

then by theorem 2.11, we have 𝐼 has a turing point. So by theorem 2.30 we have 𝐼 has a 𝒮-turing point. 

Conversely. Suppose every 𝒮- ideal has a 𝒮-turing point. Since every maximal ideal is 𝒮-ideal, then 

every maximal ideal has a 𝒮-turing point. By theorem2.30, we have every maximal ideal has a turing 

point and by theorem2.7 , 𝑋 is compact. 
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