Separation Axioms Via Turing point of an Ideal in Topological Space
Mathematics Department, College of Education For Pure sciences
University of Babylon
E-meal:drluayha11@yahoo.com
Ahmed B. AL-Nafee
Mathematics Department, College of Education For Pure sciences
University of Babylon
E-meal:Ahm_math_88@yahoo.com

Abstract

In this paper, we use the concept of the turing point and immersed it with separation axioms and investigate the relationship between them.

Keywords: Turing point, separation axioms.

1. Introduction and Preliminaries.

In 2012,Luay A. AL-Swidi and Dheargham A. Al-Sada.[2] introduced and studied the notion of turing point. They defined it as: Let I be an ideal on a topological space (X, T) and $x \in X$. we say that x is a "turing point " of I if $N^{c} \in I$ for each $N \in N_{x}$. In the same year, the present author [5] introduced relation between the separation axioms $\mathrm{R}_{\mathrm{i} i=0,1,2 \text { and } 3}, \mathrm{~T}_{\mathrm{i}}, \mathrm{i}=1,2,3$ and 4 , and kernel set in topological space.

Within this paper, the separation axioms $\mathrm{R}_{\mathrm{i}}, \mathrm{i}=0,1$, and $\mathrm{T}_{\mathrm{i}}, \mathrm{i}=0,1$, are characterized using a turing point. Further, the axioms $\mathrm{T}_{\mathrm{i}}, \mathrm{i}=0,1,2,3$ and 4 . are characterized using a turing point, associated with the axioms $\mathrm{R}_{\mathrm{i}}, \mathrm{i}=0,1$, and 3 .

Throughout this paper, spaces means topological spaces on which no separation axioms are assumed unless otherwise mentioned. We define an ideal on a topological space (X, T) at point x by $\mathrm{I}_{\mathrm{x}}=$ $\left\{U \subseteq X: x \in U^{c}\right\}$,where U is non-empty set. Let A be asubset of a space X. The closure and the interior of A are denoted by cl(A) and int(A), respectively.

Definition 1.1.

A topological space (X, T) is called

1) R_{0}-space $[1,3,7]$ if and only if for each open set G and $x \in G$ implies $\operatorname{cl}(\{x\}) \subseteq G$.
2) R_{1}-space $[1,3,7]$ if and only if for each two distinct point x, y of X with $\operatorname{cl}(\{x\}) \neq \operatorname{cl}(\{y\})$, then there exist
disjoint open sets U, V such that $\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}$ and $\mathrm{cl}(\{\mathrm{y}\}) \subseteq \mathrm{V}$
3) R_{2}-space [3]if it is property regular space.
4) R_{3}-space $[4]$ if and only if (X, T) is a normal and R_{1}-space.
5) Door space $[6,5]$ if every subset of X is either open or closed.
6) Symmetric space [7]if for each two point x, y of $X, y \in \psi-c l\{x\}$ iff $x \in \psi$-cl $\{y\}$.

Remark 1.2[3]

Each separation axiom is defined as the conjunction of two weaker axiom : T_{k} - space $=\mathrm{R}_{\mathrm{k}-1^{-}}$ space and $\mathrm{T}_{\mathrm{k}-1}$ space $=\mathrm{R}_{\mathrm{k}-1}$-space and T_{0}-space, $\mathrm{k}=1,2,3,4$

Remark 1.3[3]

Every R_{i}-space is an $\mathrm{R}_{\mathrm{i} \cdot 1}$-space $\mathrm{I}=0,1,2,3$.

Theorem 1.4[7]

A topological space (X, T) is $\psi-\mathrm{R}_{0}$-space if and only if for any two points x, y of $\mathrm{X} .(\mathrm{y} \in \psi-$ $\operatorname{cl}\{x\}$ iff $x \in \psi-\operatorname{cl}\{y\})$.

Theorem 1.5[6]

Every compact Hausdorf space is a T_{3}-space (and consequently regular).

Theorem 1.6[6]

Every compact Hausdorf space is a normal space (T_{3}-space).

2. \mathbf{T}_{i} and $\mathbf{R}_{\mathbf{i}}$-Spaces, $\mathbf{i}=\mathbf{0 , 1}$

Lemma 2.1

Let (X, T) be a topological space, for any pair of distinct points x and y of X. Then $\{y\}$ is closed set if and only if x is not turing point of I_{y}.

Proof.

Let $x, y \in X$ such that $x \neq y$. Assume that $\{y\}$ is closed set in X, so that $\{y\}=c l(\{y\})$. But $x \neq y$, we get that $\mathrm{x} \notin \mathrm{cl}(\{y\})$. Therefore ,there exists an open set U such that, $x \in U, U \cap\{y\}=\varnothing$. So that $x \in U$, $U^{c} \notin I_{y}$, because if $U^{c} \in I_{y}$, then $\mathrm{y} \in\{x\}^{c}=U$, that mean $U \cap\{y\} \neq \varnothing$, this a contraction. Hence x is not turing point of I_{y}.

Conversely

Let $x, y \in X$ such that $x \neq y$. Since x is not turing point of I_{y} then, there exists an open set U such that, $x \in U, U^{c} \notin \mathbf{y}$, so $\mathrm{y} \notin \mathrm{U}$. Thus $\mathrm{x} \in \mathrm{U}, \mathrm{U} \cap\{\mathrm{y}\}=\varnothing$ implies $\mathrm{x} \notin \mathrm{cl}(\{\mathrm{y}\})$.Hence $\{\mathrm{y}\}=\operatorname{cl}(\{\mathrm{y}\})$.Thus $\{y\}$ is closed set in X.

Theorem 2.2

Let (X, T) be a topological space ,then the following properties are equivalent:
a) (X, T) is a T_{0-} space
b) for any pair of distinct points x and y of $\mathrm{X}, \mathrm{x} \notin \operatorname{Tur}\{\mathrm{y}\}$ or $\mathrm{y} \notin \operatorname{Tur}\{\mathrm{x}\}$.
c) for any pair of distinct points x and y of $\mathrm{X}, \operatorname{cl}(\{\mathrm{x}\}) \neq \mathrm{cl}(\{y\})$.

proof

$\mathbf{a} \Rightarrow \mathbf{b}$. Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \neq \mathrm{y}$. Assume that $\mathrm{x} \notin \operatorname{Tur}\{\mathrm{x}\}$ or $\mathrm{y} \notin \operatorname{Tur}\{\mathrm{x}\}$. By assumption, there exists an open set U such that, $\mathrm{x} \in \mathrm{U}, \mathrm{U}^{\mathrm{c}} \notin \mathrm{I}_{\mathrm{y}}$,so $\mathrm{y} \notin \mathrm{U}$ or there exist an open set V such that, $\mathrm{y} \in \mathrm{V}$, $V^{c} \notin I_{x}$, so $x \notin V$ and we have $, x \in U, y \notin U$ or $y \in V, x \notin V$.Thus (X, T) is T_{0-} space .
$\mathbf{b} \Rightarrow \mathbf{a}$. Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $\mathrm{x} \neq \mathrm{y}$ and (X, T) is T_{0} - space, then there exists an open set U such that, $x \in U y \notin U$ or there exist an open set V such that $y \in V, x \notin V$ and so $x \in U, U^{c} \notin I_{y}$ or $y \in V, V^{c} \notin$ I_{x}. Thus x is not turing point of I_{y} or y is not turing point of I_{x}. Thus $x \notin \operatorname{Tur}\{y\}$ or $y \notin \operatorname{Tur}\{x\}$.
$\mathbf{b} \Rightarrow \mathbf{c}$. Let any pair of distinct points x and y of $\mathrm{X}, \mathrm{x} \notin \operatorname{Tur}\{\mathrm{y}\}$ or $\mathrm{y} \notin \operatorname{Tur}\{\mathrm{x}\}$. Then by lemma 2.1,then $\operatorname{cl}(\{x\})=\{x\}$ or $\operatorname{cl}(\{y\})=\{y\}$.That means $x \in \operatorname{cl}(\{x\})$ and $y \notin \operatorname{cl}(\{x\})$ or $\mathrm{y} \in \operatorname{cl}(\{x\})$ and $x \notin \operatorname{cl}(\{y\})$. Thus we have $x \in \operatorname{cl}(\{x\})$ but $x \notin \operatorname{cl}(\{y\})$.Hence $\operatorname{cl}(\{x\}) \neq c l(\{y\})$.
$\mathbf{c} \Rightarrow \mathbf{a}$. Let any pair of distinct points x and y of $\mathrm{X}, \operatorname{cl}(\{\mathrm{x}\}) \neq \mathrm{cl}(\{\mathrm{y}\})$.Then there exists at least one point $\mathrm{z} \in \mathrm{X}$ such that $\mathrm{z} \in \operatorname{cl}(\{\mathrm{x}\})$ but $\mathrm{z} \notin \mathrm{cl}(\{\mathrm{y}\})$. We claim that $\mathrm{x} \notin \mathrm{cl}(\{\mathrm{y}\})$. If $\mathrm{x} \in \operatorname{cl}(\{\mathrm{y}\})$ then $\{\mathrm{x}\} \subseteq$ $\operatorname{cl}(\{y\})$ implies $\operatorname{cl}(\{x\}) \subseteq \operatorname{Cl}(\{y\})$. So, $\mathrm{z} \in \operatorname{cl}(\{y\})$, which is a contradiction. Hence, $\mathrm{x} \notin \operatorname{cl}(\{y\})$. Now, x $\notin \operatorname{cl}(\{y\})$ implies $x \in X-\operatorname{cl}(\{y\})$, which is an open set in X containing x but not y. Hence X is a T_{o} space.

Theorem 2.3

If a topological space (X, T) is a R_{0} space. Then for any pair of distinct points x and y of X, y is not turing point of I_{x}.

Proof.

Assume that (X, T) is an R_{0} space, and let $x, y \in X$ such that $x \neq y$. By assumption ,then $\operatorname{cl}(\{x\})$ $\subseteq \mathrm{V}$, for each open set V containing x , implies $\mathrm{x} \notin(\operatorname{cl}(\{\mathrm{x}\}))^{\mathrm{c}}$ and so $\mathrm{cl}(\{\mathrm{x}\}) \notin \mathrm{I}_{\mathrm{x}}$, hence by definition of turing point we get that y is not turing point of I_{x}.

Remark 2.4

The converse of theorem 2.6 ,need not be true as seen from the following example .

Example:2.5

Let $X=\{x, y\}$ and $T=\{\varnothing,\{y\}, X\}$ then y is not turing point of $I_{x}=\{\varnothing,\{y\}\}$, but X is not a R_{0}. space,.

Remark 2.6

A topological space(X, T) is a symmetric if and only if it is an R_{0} space.

Proof

By definition, theorem 1.4 [directly] .

Theorem 2.7

Let (X, T) be a topological space ,then the following properties are equivalent:
a) (X, T) is a T_{1-} space
b) for each $\mathrm{x} \in \mathrm{X}$.Then $\{\mathrm{x}\}=\operatorname{Tur}\{\mathrm{x}\}$
c) for any pair of distinct points x and y of $\mathrm{X}, \mathrm{x} \notin \operatorname{Tur}\{\mathrm{y}\}$ and $\mathrm{y} \notin \operatorname{Tur}\{\mathrm{x}\}$.
d) for any pair of distinct points x and y of $\mathrm{X},\{\mathrm{x}\}$ and $\{\mathrm{y}\}$ are closed sets in X
e) for any pair of distinct points x and y of $\mathrm{X}, \operatorname{Tur}\{\mathrm{x}\} \cap \operatorname{Tur}\{\mathrm{y}\}=\varnothing$
f) for any pair of distinct points x and y of $\mathrm{X},(\mathrm{X}, \mathrm{T})$ is symmetric space, with $\mathrm{x} \notin \operatorname{Tur}\{\mathrm{y}\}$ or $\mathrm{y} \notin$ $\operatorname{Tur}\{\mathrm{x}\}$.

Proof.

$\mathbf{a} \Rightarrow \mathbf{b}$. Assume that (X, T) is a T_{1-} space, let $x \in X$. We will prove that $\{x\}=\operatorname{Tur}\{x\}$. It is clear that $\{\mathrm{x}\} \subseteq \operatorname{Tur}\{\mathrm{x}\}$. Let $\mathrm{y} \in \mathrm{X}$ be such that $\mathrm{x} \neq \mathrm{y}$. By assumption, there exist an open set V such that, $\mathrm{y} \in \mathrm{V}$ and $\mathrm{x} \notin \mathrm{V}$ so $\mathrm{V}^{\mathrm{c}} \notin \mathrm{I}_{\mathrm{x}}$, that is, y is not turing point of I_{x}. and so, $\mathrm{y} \notin \operatorname{Tur}\{\mathrm{x}\}$. Thus $\operatorname{Tur}\{\mathrm{x}\} \subseteq\{\mathrm{x}\}$. Therefore $\{x\}=\operatorname{Tur}\{x\}$.
$\mathbf{b} \Rightarrow \mathbf{a}$. Assume that $\{\mathrm{x}\}=\operatorname{Tur}\{\mathrm{x}\}$, for each $\mathrm{x} \in \mathrm{X}$. Let (X, T) be not $\mathrm{T}_{1_{-}}$space and let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $\mathrm{x} \neq \mathrm{y}$. Then for each open set V containing x , it contains y ,so we get that y is not turing point of I_{x}, thus,, $\operatorname{Tur}\{\mathrm{x}\}$ contains y , it is follows that, $\operatorname{Tur}\{\mathrm{x}\} \neq\{\mathrm{x}\}$, this is contraction with assumption.Thus (X,T) is a $\mathrm{T}_{1 \text { - }}$ space.
$\mathbf{b} \Rightarrow \mathbf{c}$. Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $\mathrm{x} \neq \mathrm{y}$. since $\{\mathrm{x}\}=\operatorname{Tur}\{\mathrm{x}\}$, for each $\mathrm{x} \in \mathrm{X}$. So that $\mathrm{x} \notin \operatorname{Tur}\{\mathrm{y}\}$ and $\mathrm{y} \notin \operatorname{Tur}\{\mathrm{x}\}$.
$\mathbf{c} \Rightarrow \mathbf{d}$. Let any pair of distinct points x and y of $\mathrm{X}, \mathrm{x} \notin \operatorname{Tur}\{\mathrm{y}\}$ and $\mathrm{y} \notin \operatorname{Tur}\{\mathrm{x}\}$. Then by lemma 2.1,then $\{x\}$ and $\{y\}$ are closed subsets of X.
$\mathbf{d} \Rightarrow \mathbf{e}$. Let any pair of distinct points x and y of X . By assumption, then $\{\mathrm{x}\}$ and $\{\mathrm{y}\}$ are closed sets and as such $\{x\}^{c}$ and $\{y\}^{c}$ are open sets. Thus $y \in\{x\}^{c}$ but $x \notin\{x\}^{c}$ and $x \in\{y\}^{c}$ but $y \notin\{y\}^{d}$. Therefore $\mathrm{x} \in \operatorname{Tur}\{\mathrm{x}\}$ but $\mathrm{y} \in \operatorname{Tur}\{\mathrm{y}\}$. Thus $\operatorname{Tur}\{\mathrm{x}\} \cap \operatorname{Tur}\{\mathrm{y}\}=\varnothing$
$\mathrm{e} \Rightarrow \mathbf{a}$. Let $\mathrm{x} \neq \mathrm{y}$, for each $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\operatorname{Tur}\{\mathrm{x}\} \cap \operatorname{Tur}\{\mathrm{y}\}=\varnothing$, such that (X, T) is not T_{1-} space. Then for each open set V containing x, it contains y, so $x, y \in V$, implies $V^{c} \in I_{x}$ and $V^{c} \in I_{y}$, so we get that $\mathrm{x} \in \operatorname{Tur}\{\mathrm{x}\}$ and $\mathrm{x} \in \operatorname{Tur}\{\mathrm{y}\}$.So that $\operatorname{Tur}\{\mathrm{x}\} \cap \operatorname{Tur}\{\mathrm{y}\} \neq \varnothing$. This is a contraction. Hence (X, T) is a T_{1-} space
$\mathbf{a} \Rightarrow \mathbf{f}$. Assume that (X, T) is a T_{1-} space. Then by remark 2.6 , it is a R_{0-} space and T_{0}-space . Hence (X, T) is symmetric space and $\mathrm{y} \notin \operatorname{Tur}\{\mathrm{x}\}$ and $\mathrm{x} \notin \operatorname{Tur}\{\mathrm{y}\}$ [Theorem 2.2 and remark 2.6].
$\mathbf{f} \Rightarrow \mathbf{a}$. Let $\mathrm{x} \neq \mathrm{y}$, for each $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and (X, T) is symmetric space, with $\mathrm{x} \notin \operatorname{Tur}\{\mathrm{y}\}$ or $\mathrm{y} \notin \operatorname{Tur}\{\mathrm{x}\}$.Then by remark 2.6, it is a R_{0-} space. Also it is a T_{0} space [since $x \notin \operatorname{Tur}\{y\}$ or $y \notin \operatorname{Tur}\{x\}$]. Thus it is a $\mathrm{T}_{1-\text { space [By remark 1.2]. }}$

Corollary 2.8

A topological space (X, T) is a T_{1-} space if and only if ,for each $x \in X$. Then $\operatorname{cl}(\{x\})=\operatorname{Tur}\{x\}$.

Proof

By theorem 2.7 [directly].

Theorem 2.9

A topological space (X, T) is R_{1-} space if and only if ,for each $x, y \in X$ such that $x \neq y$ with $\operatorname{cl}(\{x\}) \neq \mathrm{cl}(\{y\})$,then ,there exist disjoint open sets U, V such that $\mathrm{cl}(\operatorname{Tur}\{\mathrm{x}\}) \subseteq \mathrm{U}$ and $\operatorname{cl}(\operatorname{Tur}\{\mathrm{y}\}) \subseteq \mathrm{V}$.

Proof .

Assume that $\mathrm{x} \neq \mathrm{y}$ with $\operatorname{cl}([\mathrm{x}\}) \neq \operatorname{cl}(\{\mathrm{y}\})$ and(X,T)is an R_{1-} space for each $\mathrm{x}, \mathrm{y} \in \mathrm{X}$. By assumption, then there exist disjoint open sets U, V such that $\mathrm{cl}(\{\mathrm{x}\}) \subseteq \mathrm{U}$ and $\operatorname{cl}(\{y\}) \subseteq \mathrm{V}$. Also (X, T) is a T_{1} - space[Remark 1.2] and So by corollary2.11, then $\operatorname{cl}(\{x\})=\operatorname{Tur}\{x\}$ and $\operatorname{cl}(\{y\})=\operatorname{Tur}\{x\}$ implies $\operatorname{cl}(\operatorname{Tur}\{x\})=\operatorname{cl}(\operatorname{cl}(\{x\}))=\operatorname{cl}(\{x\}) \subseteq U$, and $=\operatorname{cl}(\operatorname{Tur}\{y\})=\operatorname{cl}(\operatorname{cl}(\{y\}))=\operatorname{cl}(\{y\}) \subseteq V$.

Conversely

Assume that $\mathrm{x} \neq \mathrm{y}$ with $\operatorname{cl}(\{\mathrm{x}\}) \neq \operatorname{cl}(\{y\})$,for each $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, then there exist disjoint open sets U, V such that $\operatorname{cl}(\operatorname{Tur}\{x\}) \subseteq U$ and $\operatorname{cl}(\operatorname{Tur}\{y\}) \subseteq V$.Since, $\{x\} \subseteq \operatorname{Tur}\{x\}$ and $\{y\} \subseteq \operatorname{Tur}\{y\}$.Then, $\operatorname{cl}(\{x\}) \subseteq \operatorname{cl}(\operatorname{Tur}\{x\})=$ $\operatorname{cl}(\operatorname{Tur}\{x\}) \subseteq \mathrm{U}$ andcl $(\{y\}) \subseteq \operatorname{cl}\left(\operatorname{Tur}\{y\} \subseteq V\right.$. Therefore (X, T) is R_{1-} space.

3. $T_{i}, i=1,2,3$ and 4. associated with the axioms $R_{i}, i=0,1,2$ and 3

Theorem 3.1

For an R_{1-} space (X, T) the following properties are equivalent:
a) (X, T) is a T_{2-} space
b) for each $x \in X,\{x\}=\operatorname{Tur}\{x\}$
c) for $x, y \in X$ with $x \neq y, \operatorname{Tur}\{x\} \cap \operatorname{Tur}\{y\}=\varnothing$
d) for $x, y \in X$ with $x \neq y, x \notin \operatorname{Tur}\{y\}$ and $y \notin \operatorname{Tur}\{x\}$.

Proof .

$\mathbf{a} \Rightarrow \mathbf{b}$. Let $\mathrm{x} \in \mathrm{X}$. Since (X, T) is a T_{2}-space ,then it is a T_{1}-space. Therefore , by theorem 2.7, part $' \mathrm{~b}$ ',$\{\mathrm{x}\}=\operatorname{Tur}\{\mathrm{x}\}$ for each $\mathrm{x} \in \mathrm{X}$.
$\mathbf{b} \Rightarrow \mathbf{a}$. Assume that $\{\mathrm{x}\}=\operatorname{Tur}\{\mathrm{x}\}$, for each $\mathrm{x} \in \mathrm{X}$. Then (X, T) is a T_{1-} space[Theorem 2.7 , part ' b '].But (X, T) is an R_{1}-space, then (X, T) is a $\mathrm{T}_{2 \text {-space[Remark 1.2]. }}$.
$\mathbf{a} \Rightarrow \mathbf{c}$. Since (X, T) be a T_{2}-space, then it is aT_{1}-space, and so $\operatorname{Tur}\{\mathrm{x}\} \cap \operatorname{Tur}\{\mathrm{y}\}=\varnothing[$ Theorem 2.7, part'e'], for any pair of distinct points x and y of X.
$\mathbf{c} \Rightarrow \mathbf{a}$. Let x and y be two distinct points in X . By assumption, (X, T) is a $\mathrm{T}_{1 \text {-space }}$ [Theorem 2.7 part 'e']. But (X, T) is an R_{1}-space, implies (X, T) is a T_{2}-space [Remark 1.2].
$\mathbf{c} \Rightarrow \mathbf{d}$. Let x and y be two distinct points in X . By assumption , (X, T) is a $\mathrm{T}_{1 \text {-space[Theorem } 2.7}$ part 'e'].Therefore by theorem 2.7 part 'c', then $x \notin \operatorname{Tur}\{y\}$ and $y \notin \operatorname{Tur}\{x\}$.
$\mathbf{d} \Rightarrow \mathbf{a}$. Let x and y be two distinct points in X. By assumption, then (X, T) is a T_{1-} space $[B y$ theorem2.7 part'c'].But (X, T) is an R_{1}-space .Hence (X, T) is a T_{2}-space [Remark 1.2].

Remark 3.2

Observe that every T_{2}-space is an T_{1}-space and every T_{1}-space is an T_{0}-space the converse, need not be true. But it is true generally, if (X, T) is an R_{1}-space as seen from the following theorem.

Theorem 3.3

For an $\mathrm{R}_{1 \text { - }}$ space (X, T) the following properties are equivalent:
a) (X, T) is a T_{2-} space
b) for each $x, y \in X$ such that $x \neq y$, either $x \notin \operatorname{Tur}\{y\}$ or $y \notin \operatorname{Tur}\{x\}$.
proof.
$\mathbf{a} \Rightarrow \mathbf{b}$. Let x and y be two distinct points in X. Since (X, T) be a T_{2-} space ,then (X, T) be a T_{0-} space by theorem2.2 part 'b' ,either $x \notin \operatorname{Tur}\{y\}$ or $y \notin \operatorname{Tur}\{x\}$.
$b \Rightarrow \mathbf{a}$.
Let x and y be two distinct points in X, where $x \notin \operatorname{Tur}\{y\}$ or $y \notin \operatorname{Tur}\{x\}$, this impels that (X,T) is a $T_{0 \text {-space[By theorem2.2].But }}(X, T)$ is an R_{1}-space .Hence (X, T) is a $T_{2 \text {-space. [Remark 1.2]. }}$.

Remark 3.4

Observe that every T_{3}-space is an T_{2}-space ,the converse, need not be true. But it is true generally, if (X, T) is an R_{2}-space as seen from the following corollary.

Corollary 3.5

For an $R_{2 \text { - }}$ space (X, T) the following properties are equivalent:
a) (X, T) is a T_{3-} space
b) for $x \in X,\{x\}=\operatorname{Tur}\{x\}$.
c) for $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \neq \mathrm{y}, \operatorname{Tur}\{\mathrm{x}\} \cap \operatorname{Tur}\{\mathrm{y}\}=\varnothing$
d) or $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \neq \mathrm{y}, \mathrm{x} \notin \operatorname{Tur}\{\mathrm{y}\}$ and $\mathrm{y} \notin \operatorname{Tur}\{\mathrm{x}\}$.
proof
By remark 1.3 , remark1.2 and theorem3.2.

Theorem 3.6

For an $\mathrm{R}_{2 \text { - }}$ space (X, T) the following properties are equivalent:
(a) $\quad(X, T)$ is a T_{3-} space
(b) for each $x, y \in X$ such that $x \neq y$, either $x \notin \operatorname{Tur}\{y\}$ or $y \notin \operatorname{Tur}\{x\}$.

proof

$\mathbf{a} \Rightarrow \mathbf{b}$. Let x and y be two distinct points in X. Since (X, T) be a T_{3-} space ,then (X, T) be a T_{0-} space by theorem 2.2 part ' b^{\prime},either $x \notin \operatorname{Tur}\{y\}$ or $y \notin \operatorname{Tur}\{x\}$.
$\mathbf{b} \Rightarrow \mathbf{a}$. Let x and y be two distinct points in $\mathrm{X} \mathrm{x} \notin \operatorname{Tur}\{\mathrm{y}\}$ or $\mathrm{y} \notin \operatorname{Tur}\{\mathrm{x}\}$, this impels that (X, T) is a T_{0}-space[By theorem2.2].But (X, T) is an R_{2}-space .Hence (X, T) is a T_{3}-space. [Remark 1.2].

Theorem 3.7

For a compact $\mathrm{R}_{1-\text { space }}(\mathrm{X}, \mathrm{T})$ the following properties are equivalent:
a) (X, T) is a T_{3-} space
b) for $x, y \in X$ with $x \neq y, x \notin \operatorname{Tur}\{y\}$ and $y \notin \operatorname{Tur}\{x\}$.
c) for $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \neq \mathrm{y}, \operatorname{Tur}\{\mathrm{x}\} \cap \operatorname{Tur}\{\mathrm{y}\}=\varnothing$
d) for $x \in X,\{x\}=\operatorname{Tur}\{x\}$.
proof
$\mathbf{a} \Rightarrow \mathbf{b}$. Let x and y be two distinct points in X . By assumption ,then (X, T) is a $\mathrm{T}_{1 \text { - }}$ space , and so, for each $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $\mathrm{x} \neq \mathrm{y}, \mathrm{x} \notin \operatorname{Tur}\{\mathrm{y}\}$ and $\mathrm{y} \notin \operatorname{Tur}\{\mathrm{x}\}[$ Theorem2.7 part 'c'].
$\mathbf{b} \Rightarrow \mathbf{a}$. Let x and y be two distinct points in X. .By assumption, then (X, T) is a $\mathrm{T}_{1 \text {-space }}$ (By theorem2.7part ' c ']. But (X, T) is R_{1}-space. Hence (X, T) is $\mathrm{T}_{2 \text { - }}$ space [Remark 1.2]. Which implies that (X, T) is a compact $\mathrm{T}_{2 \text { - }}$ space. So that (X, T) is a $\mathrm{T}_{3 \text { - }}$ space [Theorem 1.5].
$\mathbf{b} \Rightarrow \mathbf{c}$. Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $\mathrm{x} \neq \mathrm{y}, \mathrm{x} \notin \operatorname{Tur}\{\mathrm{y}\}$ and $\mathrm{y} \notin \operatorname{Tur}\{\mathrm{x}\}$, and so by theorem2.7part 'c', then (X, T) is a T_{1-} space, and so for each $x, y \in X$ such that $x \neq y, \operatorname{Tur}\{x\} \cap \operatorname{Tur}\{y\}=\varnothing[$ Theorem2.7 part 'e'].
$\mathbf{c} \Rightarrow \mathbf{d}$. Let $\mathrm{x} \in \mathrm{X}$. By assumption, then (X, T) is a T_{1-} space [by theorem2.7 part 'e'], and so for each $x \in X$,then $\{x\}=\operatorname{Tur}\{x\}$ [theorem2.7 part 'b'].
$\mathbf{d} \Rightarrow \mathbf{a}$. Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $\mathrm{x} \neq \mathrm{y}$. By assumption, then (X, T) is a T_{1-} space [By theorem2.7 part 'b']. But (X, T) is a compact R_{1}-space and so (X, T) is a compact T_{2} - space [Remark 1.2]. Hence (X, T) is a $\mathrm{T}_{3 \text { - }}$ space [by theorem 1.5].

Remark 3.8

Observe that every T_{4}-space is an T_{3}-space, the converse, need not be true. But it is true generally, if (X, T) is a compact R_{1}-space as seen from the following corollary.

Corollary 3.9

For a compact $\mathrm{R}_{1 \text { - }}$ space (X, T) the following properties are equivalent:
a) (X, T) is a T_{4} space
b) for $x, y \in X$ with $x \neq y, x \notin \operatorname{Tur}\{y\}$ and $y \notin \operatorname{Tur}\{x\}$.
c) for $x, y \in X$ with $x \neq y, \operatorname{Tur}\{x\} \cap \operatorname{Tur}\{y\}=\varnothing$
d) for $x \in X,\{x\}=\operatorname{Tur}\{x\}$.

proof

By Remark 1.2,theorem2.7 part 'b', theorem 3.7 part 'b'and theorem1.6 [directly].

Theorem 2.10

For a compact $\mathrm{R}_{1 \text { - }}$ space (X, T) the following properties are equivalent:
(a) $\quad(X, T)$ is a $T_{3 \text { - }}$ space
(b) for $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \neq \mathrm{y}$, either $\mathrm{x} \notin \operatorname{Tur}\{\mathrm{y}\}$ or $\mathrm{y} \notin \operatorname{Tur}\{\mathrm{x}\}$.

proof.

$\mathbf{a} \Rightarrow \mathbf{b}$. Let x and y be two distinct points in X. Since (X, T) be a T_{3-} space ,then (X, T) be a T_{0-} space, hence by theorem2.2 part 'b' ,either $x \notin \operatorname{Tur}\{y\}$ or $y \notin \operatorname{Tur}\{x\}$.
$\mathbf{b} \Rightarrow \mathbf{a}$. Let x and y be two distinct points in X where $x \notin \operatorname{Tur}\{y\}$ or $y \notin \operatorname{Tur}\{x\}$, hence by theorem $2.2,(X, T)$ is a T_{0}-space. In addition (X, T) is a compact R_{1}-space. Hence, by remark $1.2,(X, T)$ is a compact T_{2}-space. Hence, by theorem1.5, (X, T) is a T_{3}-space.

Corollary 3.11

For a compact $\mathrm{R}_{1 \text { - }}$ space (X, T) the following properties are equivalent:
(a) $\quad(X, T)$ is a T_{4-} space
(b) for $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\mathrm{x} \neq \mathrm{y}$, either $\mathrm{x} \notin \operatorname{Tur}\{\mathrm{y}\}$ or $\mathrm{y} \notin \operatorname{Tur}\{\mathrm{x}\}$.

proof

By theorem 3.8 and remake 3.6 [directly].

REFERENCE

[1] N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk SSSR, 38 (1943), 110-113.
[2] L. A. AL-Swidi and Dheargham A. Al-Sada "Turing Point of Proper Ideal" Archive Des Science (Impact factor 0.474) ISSN:1661464X Volume 65 No. 7 Jul(2012), 219-220.JST Journal. All rights reserved.
[3] A.S. Davis, "Indexed Systems of Neighborhoods for General Topological Spaces," The Amer. Math. Monthly, 68,886-893 (1961).
[4] L. A. AL-Swidi and Mohammed, B.(2012)."Separation axioms via kernel set in topological spaces" Archive Des sciences, Vol .65, No. 7 ,pp $41-48$.
[5] T. Noiri, A. Al-Omari and M. S. M. Noorani " ,Weak forms of open sets and decomposition of continuity", E.J.P.A.M. 2(1): 73-84 (2009).
[6] J.N.Sharma.(1977)."general topology" Krishna prakashan, Meerut(U.P).
[7] Bishwambhar Roy and M.N.Mukherjee. A unified theory for R_{0}, R_{1} and certain other separation properties and their variant forms ,Bol .Soc.paran. Mat.(3s)v.28.2(2010):15-24

