Separation Axioms Via Turing point of an Ideal in Topological Space

Luay A. Al-Swidi Mathematics Department, College of Education For Pure sciences University of Babylon E-meal:drluayha11@yahoo.com

Ahmed B. AL-Nafee Mathematics Department, College of Education For Pure sciences University of Babylon E-meal:Ahm_math_88@yahoo.com

ABSTRACT

In this paper, we use the concept of the turing point and immersed it with separation axioms and investigate the relationship between them.

Keywords: Turing point, separation axioms.

1. Introduction and Preliminaries.

In 2012,Luay A. AL-Swidi and Dheargham A. Al-Sada.[2] introduced and studied the notion of turing point. They defined it as: Let I be an ideal on a topological space (X,T) and $x \in X$. we say that x is a "turing point" of I if $N^c \in I$ for each $N \in N_x$. In the same year, the present author [5] introduced relation between the separation axioms $R_{i \ i=0,1,2and \ 3}$, $T_{i \ i=1,2,3and \ 4}$, and kernel set in topological space.

Within this paper, the separation axioms $R_{i,i=0,1}$ and $T_{i,i=0,1}$ are characterized using a turing point. Further, the axioms $T_{i,i=0,1,2,3 \text{ and } 4}$ are characterized using a turing point, associated with the axioms $R_{i,i} = _{0,1,2and 3}$.

Throughout this paper, spaces means topological spaces on which no separation axioms are assumed unless otherwise mentioned. We define an ideal on a topological space (X,T) at point x by $I_x = \{U \subseteq X : x \in U^c\}$, where U is non-empty set. Let A be asubset of a space X. The closure and the interior of A are denoted by cl(A) and int(A), respectively.

Definition 1.1.

A topological space(X,T) is called

1) R_o –space[1,3,7] if and only if for each open set G and $x \in G$ implies $cl({x}) \subseteq G$.

2) R_1 –space[1,3,7]if and only if for each two distinct point x, y of X with $cl({x})\neq cl({y})$, then there exist

disjoint open sets U,V such that $cl({x}) \subseteq U$ and $cl({y}) \subseteq V$

3) R₂-space [3] if it is property regular space.

4) R_3 -space [4] if and only if (X,T) is a normal and R_1 -space.

5) Door space[6,5] if every subset of X is either open or closed.

6) Symmetric space [7] if for each two point x, y of X, $y \in \psi$ -cl{x} iff $x \in \psi$ -cl{y}.

Remark 1.2[3]

Each separation axiom is defined as the conjunction of two weaker axiom : T_{k} - space = R_{k-1} -space and T_{k-1} space = R_{k-1} -space and T_{0} -space , k=1,2,3,4

Remark 1.3[3]

Every R_i -space is an R_{i-1} -space I = 0,1,2,3.

Theorem 1.4[7]

A topological space (X,T) is ψ - R_o –space if and only if for any two points x, y of X .($y \in \psi$ cl{x} iff $x \in \psi$ -cl{y}).

Theorem 1.5[6]

Every compact Hausdorf space is a T₃-space (and consequently regular).

Theorem 1.6[6]

Every compact Hausdorf space is a normal space (T₃-space).

2.T_i and R_i -Spaces, i =0,1

Lemma 2.1

Let (X,T) be a topological space , for any pair of distinct points x and y of X. Then $\{y\}$ is closed set if and only if x is not turing point of I_y .

Proof.

Let $x,y \in X$ such that $x \neq y$. Assume that $\{y\}$ is closed set in X, so that $\{y\}=cl(\{y\})$. But $x \neq y$, we get that $x \notin cl(\{y\})$. Therefore, there exists an open set U such that, $x \in U$, $U \cap \{y\} = \emptyset$. So that $x \in U$, $U^c \notin I_y$, because if $U^c \in I_y$, then $y \in \{x\}^c = U$, that mean $U \cap \{y\} \neq \emptyset$, this a contraction. Hence x is not turing point of I_y .

Conversely

Let $x,y \in X$ such that $x \neq y$. Since x is not turing point of I_y then, there exists an open set U such that, $x \in U$, $U^c \notin I_y$, so $y \notin U$. Thus $x \in U$, $U \cap \{y\} = \emptyset$ implies $x \notin cl(\{y\})$. Hence $\{y\} = cl(\{y\})$. Thus $\{y\}$ is closed set in X.

Theorem 2.2

Let (X,T) be a topological space , then the following properties are equivalent:

- a) (X,T) is a T_{0} -space
- b) for any pair of distinct points x and y of X, $x \notin Tur\{y\}$ or $y \notin Tur\{x\}$.
- c) for any pair of distinct points x and y of X, $cl({x})\neq cl({y})$.

proof

 $a\Rightarrow b$. Let $x, y \in X$ with $x \neq y$. Assume that $x \notin Tur\{x\}$ or $y \notin Tur\{x\}$. By assumption, there exists an open set U such that, $x \in U$, $U^c \notin I_y$, so $y \notin U$ or there exist an open set V such that, $y \in V$, $V^c \notin I_x$, so $x \notin V$ and we have , $x \in U$, $y \notin U$ or $y \in V$, $x \notin V$. Thus (X,T) is T_0 -space.

b \Rightarrow **a**. Let x,y \in X such that x \neq y and (X,T) is T₀ space, then there exists an open set U such that, x \in U y \notin U or there exist an open set V such that y \in V, x \notin V and so x \in U, U^c \notin I_y or y \in V, V^c \notin I_x. Thus x is not turing point of I_y or y is not turing point of I_x. Thus x \notin Tur{y} or y \notin Tur{x}.

b \Rightarrow **c**. Let any pair of distinct points x and y of X, $x \notin \text{Tur}\{y\}$ or $y \notin \text{Tur}\{x\}$. Then by lemma 2.1,then $cl(\{x\})=\{x\}$ or $cl(\{y\})=\{y\}$.That means $x \in cl(\{x\})$ and $y \notin cl(\{x\})$ or $y \in cl(\{x\})$ and $x \notin cl(\{y\})$. Thus we have $x \in cl(\{x\})$ but $x \notin cl(\{y\})$.Hence $cl(\{x\})\neq cl(\{y\})$.

c⇒**a**. Let any pair of distinct points x and y of X, $cl({x})\neq cl({y})$. Then there exists at least one point $z \in X$ such that $z \in cl({x})$ but $z \notin cl({y})$. We claim that $x \notin cl({y})$. If $x \in cl({y})$ then ${x} \subseteq cl({y})$ implies $cl({x}) \subseteq Cl({y})$. So, $z \in cl({y})$, which is a contradiction. Hence, $x \notin cl({y})$. Now, $x \notin cl({y})$ implies $x \in X - cl({y})$, which is an open set in X containing x but not y. Hence X is a T_o space.

Theorem 2.3

If a topological space (X,T) is a R_{o} -space. Then for any pair of distinct points x and y of X, y is not turing point of I_{x} .

Proof.

Assume that (X,T) is an R_{0} space, and let $x,y \in X$ such that $x \neq y$. By assumption ,then cl({x})

 \subseteq V, for each open set V containing x, implies $x \notin (cl(\{x\}))^c$ and so $cl(\{x\}) \notin I_x$, hence by definition of turing point we get that y is not turing point of I_x .

Remark 2.4

The converse of theorem 2.6, need not be true as seen from the following example .

Example:2.5

Let X ={x,y} and T={ \emptyset ,{y},X} then y is not turing point of I_x={ \emptyset ,{y}} but X is not a R₀.

space,.

Remark 2.6

A topological space(X,T) is a symmetric if and only if it is an R_0 space.

Proof

By definition, theorem 1.4 [directly].

Theorem 2.7

Let (X,T) be a topological space , then the following properties are equivalent:

- a) (X,T) is a T_{1-} space
- b) for each $x \in X$.Then $\{x\}=Tur\{x\}$
- c) for any pair of distinct points x and y of X, $x \notin Tur\{y\}$ and $y \notin Tur\{x\}$.
- d) for any pair of distinct points x and y of X, $\{x\}$ and $\{y\}$ are closed sets in X
- e) for any pair of distinct points x and y of X, $Tur\{x\} \cap Tur\{y\} = \emptyset$
- f) for any pair of distinct points x and y of X, (X,T) is symmetric space, with x ∉ Tur{y} or y ∉ Tur{x}.

Proof.

 $a\Rightarrow b$. Assume that (X,T) is a T_1 space, let $x \in X$. We will prove that $\{x\} = Tur\{x\}$. It is clear that $\{x\} \subseteq Tur\{x\}$. Let $y \in X$ be such that $x\neq y$. By assumption, there exist an open set V such that, $y \in V$ and $x \notin V$ so $V^c \notin I_x$, that is, y is not turing point of I_x . and so, $y \notin Tur\{x\}$. Thus $Tur\{x\} \subseteq \{x\}$. Therefore $\{x\} = Tur\{x\}$.

b \Rightarrow **a.** Assume that {x} = Tur{x}, for each x \in X. Let (X,T) be not T₁-space and let x,y \in X such that x \neq y. Then for each open set V containing x, it contains y,so we get that y is not turing point of I_x, thus ,Tur{x} contains y ,it is follows that, Tur{x} \neq {x} ,this is contraction with assumption. Thus (X,T) is a T₁-space

b \Rightarrow **c.** Let $x,y \in X$ such that $x \neq y$. since $\{x\} = Tur\{x\}$, for each $x \in X$. So that $x \notin Tur\{y\}$ and $y \notin Tur\{x\}$.

c⇒d. Let any pair of distinct points x and y of X, $x \notin Tur\{y\}$ and $y \notin Tur\{x\}$. Then by lemma 2.1,then {x} and{y} are closed subsets of X.

d \Rightarrow **e.** Let any pair of distinct points x and y of X. By assumption, then {x} and {y} are closed sets and as such {x}^c and {y}^c are open sets. Thus $y \in \{x\}^c$ but $x \notin \{x\}^c$ and $x \in \{y\}^c$ but $y \notin \{y\}^c$. Therefore $x \in Tur\{x\}$ but $y \in Tur\{y\}$. Thus $Tur\{x\} \cap Tur\{y\} = \emptyset$

e⇒a. Let $x\neq y$, for each $x,y\in X$ and $Tur\{x\} \cap Tur\{y\} = \emptyset$, such that (X,T) is not T_{1-} space. Then for each open set V containing x, it contains y, so x, $y \in V$, implies $V^c \in I_x$ and $V^c \in I_y$, so we get that $x \in Tur\{x\}$ and $x \in Tur\{y\}$. So that $Tur\{x\} \cap Tur\{y\} \neq \emptyset$. This is a contraction. Hence (X,T) is a T_{1-} space

 $a \Rightarrow f$. Assume that (X,T) is a T₁ - space. Then by remark 2.6, it is a R₀- space and T₀ -space. Hence (X,T) is symmetric space and $y \notin Tur\{x\}$ and $x \notin Tur\{y\}$ [Theorem 2.2 and remark 2.6].

f⇒**a.** Let $x\neq y$, for each $x,y\in X$ and (X,T) is symmetric space, with $x\notin Tur\{y\}$ or $y\notin Tur\{x\}$. Then by remark 2.6, it is a R_{o-} space . Also it is a T_{o-} space [since $x\notin Tur\{y\}$ or $y\notin Tur\{x\}$]. Thus it is a T_{1-} space[By remark 1.2].

Corollary 2.8

A topological space(X,T) is a T_1 -space if and only if , for each $x \in X$. Then $cl({x}) = Tur{x}$. **Proof**

By theorem 2.7 [directly].

Theorem 2.9

A topological space(X,T) is R_1 space if and only if ,for each $x,y \in X$ such that $x \neq y$ with $cl(\{x\})\neq cl(\{y\})$, then , there exist disjoint open sets U,V such that $cl(Tur\{x\})\subseteq U$ and $cl(Tur\{y\})\subseteq V$.

Proof.

Assume that $x \neq y$ with $cl([x]) \neq cl(\{y\})$ and (X,T) is an R_1 -space for each $x,y \in X$. By assumption, then there exist disjoint open sets U, V such that $cl(\{x\}) \subseteq U$ and $cl(\{y\}) \subseteq V$. Also (X,T) is a $T_1 _$ space[Remark 1.2] and So by corollary2.11, then $cl(\{x\})=Tur\{x\}$ and $cl(\{y\})=Tur\{x\}$ implies $cl(Tur\{x\})=cl(cl(\{x\}))=cl(\{x\})\subseteq U$, and $=cl(Tur\{y\})=cl(cl(\{y\}))=cl(\{y\})\subseteq V$.

Conversely

Assume that $x \neq y$ with $cl(\{x\})\neq cl(\{y\})$, for each $x,y \in X$, then there exist disjoint open sets U,V such that $cl(Tur\{x\})\subseteq U$ and $cl(Tur\{y\})\subseteq V$.Since, $\{x\}\subseteq Tur\{x\}$ and $\{y\}\subseteq Tur\{y\}$.Then, $cl(\{x\})\subseteq cl(Tur\{x\})= cl(Tur\{x\})\subseteq U$ and $cl(\{y\})\subseteq cl(Tur\{y\})\subseteq V$. Therefore (X,T) is R_{1-} space.

$3.T_i$, i=1,2,3 and 4. associated with the axioms R_i , i =0,1,2and 3

Theorem 3.1

For an R_1 space (X,T) the following properties are equivalent:

- a) (X,T) is a T_{2} -space
- b) for each $x \in X$, $\{x\} = Tur\{x\}$
- c) for x, $y \in X$ with $x \neq y$, $Tur\{x\} \cap Tur\{y\} = \emptyset$
- d) for $x, y \in X$ with $x \neq y$, $x \notin Tur\{y\}$ and $y \notin Tur\{x\}$.

Proof.

a⇒b. Let $x \in X$. Since (X,T) is a T₂.space ,then it is a T₁-space. Therefore ,by theorem 2.7, part 'b', {x} =Tur{x} for each $x \in X$.

b \Rightarrow **a.** Assume that {x}=Tur{x}, for each x \in X. Then (X,T) is a T₁ space[Theorem 2.7, part 'b'].But (X,T) is a R₁-space, then (X,T) is a T₂-space[Remark 1.2].

a⇒c. Since (X,T) be a T₂-space,then it is aT₁-space,and so Tur{x} ∩Tur{y}=Ø [Theorem 2.7, part'e'], for any pair of distinct points x and y of X.

c⇒a. Let x and y be two distinct points in X. By assumption,(X,T) is a T₁-space [Theorem 2.7 part 'e']. But (X,T) is a R₁-space, implies (X,T) is a T₂-space [Remark 1.2].

c⇒**d.** Let x and y be two distinct points in X. By assumption ,(X,T) is a T₁₋space[Theorem 2.7 part 'e']. Therefore by theorem2.7 part 'c', then $x \notin Tur\{y\}$ and $y \notin Tur\{x\}$.

d \Rightarrow **a.** Let x and y be two distinct points in X .By assumption, then (X,T) is a T₁-space [By theorem2.7 part'c'].But (X,T) is an R₁-space .Hence (X,T) is a T₂-space [Remark 1.2].

Remark 3.2

Observe that every T_2 -space is an T_1 -space and every T_1 -space is an T_0 -space the converse, need not be true. But it is true generally, if (X,T) is an R_1 -space as seen from the following theorem.

Theorem 3.3

For an R_1 -space (X,T) the following properties are equivalent:

- a) (X,T) is a T_{2} -space
- b) for each $x,y \in X$ such that $x \neq y$, either $x \notin Tur\{y\}$ or $y \notin Tur\{x\}$.

proof.

a ⇒**b.** Let x and y be two distinct points in X. Since (X,T) be a T₂₋ space ,then (X,T) be a T₀₋ space by theorem2.2 part 'b' ,either $x \notin Tur\{y\}$ or $y \notin Tur\{x\}$.

b ⇒a.

Let x and y be two distinct points in X, where $x \notin Tur\{y\}$ or $y \notin Tur\{x\}$, this impels that (X,T) is a T₀-space[By theorem2.2].But (X,T) is an R₁-space .Hence (X,T) is a T₂-space. [Remark 1.2].

Remark 3.4

Observe that every T_3 –space is an T_2 -space ,the converse, need not be true. But it is true generally, if (X,T) is an R_2 -space as seen from the following corollary.

Corollary 3.5

For an R_2 -space (X,T) the following properties are equivalent:

- a) (X,T) is a T_{3} -space
- b) for $x \in X$, $\{x\}=Tur\{x\}$.
- c) for x, $y \in X$ with $x \neq y$, Tur{x} \cap Tur{y}= \emptyset
- d) or $x, y \in X$ with $x \neq y$, $x \notin Tur\{y\}$ and $y \notin Tur\{x\}$.

proof

By remark 1.3, remark 1.2 and theorem 3.2.

Theorem 3.6

For an R_{2} -space (X,T) the following properties are equivalent:

- (a) (X,T) is a T_{3} space
- (b) for each $x,y \in X$ such that $x \neq y$, either $x \notin Tur\{y\}$ or $y \notin Tur\{x\}$.

proof

a ⇒**b.** Let x and y be two distinct points in X. Since (X,T) be a T₃₋ space ,then (X,T) be a T₀₋ space by theorem2.2 part 'b' ,either $x \notin Tur\{y\}$ or $y \notin Tur\{x\}$.

b \Rightarrow **a.** Let x and y be two distinct points in X x \notin Tur{y} or y \notin Tur{x}, this impels that (X,T)

is a T_{0} -space[By theorem2.2].But (X,T) is an R_2 -space .Hence (X,T) is a T_3 -space. [Remark 1.2].

Theorem 3.7

For a compact R_1 -space(X,T) the following properties are equivalent:

- a) (X,T) is a T_{3} -space
- b) for $x, y \in X$ with $x \neq y$, $x \notin Tur\{y\}$ and $y \notin Tur\{x\}$.
- c) for x, $y \in X$ with $x \neq y$, $Tur\{x\} \cap Tur\{y\} = \emptyset$
- d) for $x \in X$, $\{x\}=Tur\{x\}$.

proof

a⇒b. Let x and y be two distinct points in X. By assumption ,then (X,T) is a T₁ space , and so, for each $x,y \in X$ such that $x \neq y$, $x \notin Tur\{y\}$ and $y \notin Tur\{x\}$ [Theorem2.7 part 'c'].

b \Rightarrow **a.** Let x and y be two distinct points in X .By assumption, then (X,T) is a T₁₋space[By theorem2.7part 'c']. But (X,T) is R₁-space. Hence (X,T) is T₂₋ space [Remark 1.2]. Which implies that (X,T) is a compact T₂₋ space. So that (X,T) is a T₃₋space [Theorem 1.5].

b \Rightarrow **c.** Let $x,y \in X$ such that $x \neq y$, $x \notin Tur\{y\}$ and $y \notin Tur\{x\}$, and so by theorem 2.7 part 'c', then (X,T) is a T₁.space, and so for each $x,y \in X$ such that $x \neq y$, $Tur\{x\} \cap Tur\{y\} = \emptyset$ [Theorem 2.7 part 'e'].

c⇒d. Let $x \in X$. By assumption, then (X,T) is a T₁ space [by theorem2.7 part 'e'], and so for each $x \in X$, then {x} = Tur{x} [theorem2.7 part 'b'].

d⇒a. Let $x,y \in X$ such that $x \neq y$. By assumption, then (X,T) is a T₁₋ space [By theorem2.7 part 'b']. But (X,T) is a compact R₁-space and so (X,T) is a compact T₂₋ space [Remark 1.2]. Hence (X,T) is a T₃₋ space [by theorem 1.5].

Remark 3.8

Observe that every T_4 –space is an T_3 -space, the converse, need not be true. But it is true generally, if (X,T) is a compact R_1 -space as seen from the following corollary.

Corollary 3.9

For a compact R_1 space (X,T) the following properties are equivalent:

- a) (X,T) is a T_{4} -space
- b) for $x, y \in X$ with $x \neq y$, $x \notin Tur\{y\}$ and $y \notin Tur\{x\}$.
- c) for x, $y \in X$ with $x \neq y$, $Tur\{x\} \cap Tur\{y\} = \emptyset$
- d) for $x \in X$, $\{x\}=Tur\{x\}$.

proof

By Remark 1.2, theorem 2.7 part 'b', theorem 3.7 part 'b'and theorem 1.6 [directly].

Theorem 2.10

For a compact R_1 space (X,T) the following properties are equivalent:

- (a) (X,T) is a T_{3-} space
- (b) for $x, y \in X$ with $x \neq y$, either $x \notin Tur\{y\}$ or $y \notin Tur\{x\}$.

proof.

 $a \Rightarrow b.$ Let x and y be two distinct points in X. Since (X,T) be a T₃₋ space ,then (X,T) be a T₀₋ space, hence by theorem 2.2 part 'b' ,either $x \notin Tur\{y\}$ or $y \notin Tur\{x\}$.

b \Rightarrow **a.** Let x and y be two distinct points in X where $x \notin \text{Tur}\{y\}$ or $y \notin \text{Tur}\{x\}$, hence by theorem 2.2, (X, T) is a T₀-space. In addition (X, T) is a compact R₁-space. Hence, by remark 1.2, (X, T) is a compact T₂-space. Hence, by theorem 1.5, (X, T) is a T₃-space.

Corollary 3.11

For a compact R_{1} space (X,T) the following properties are equivalent:

- (a) (X,T) is a T_{4} -space
- (b) for $x, y \in X$ with $x \neq y$, either $x \notin Tur\{y\}$ or $y \notin Tur\{x\}$.

proof

By theorem 3.8 and remake 3.6 [directly].

REFERENCE

 N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk SSSR, 38 (1943), 110–113.

- [2] L. A. AL-Swidi and Dheargham A. Al-Sada "Turing Point of Proper Ideal" Archive Des Science (Impact factor 0.474) ISSN:1661-464X Volume 65 No. 7 Jul(2012), 219-220.JST Journal. All rights reserved.
- [3] A.S. Davis, "Indexed Systems of Neighborhoods for General Topological Spaces," The Amer. Math. Monthly, 68,886 – 893 (1961).
- [4] L. A. AL-Swidi and Mohammed, B.(2012)."Separation axioms via kernel set in topological spaces" Archive Des sciences, Vol.65, No.7, pp 41-48.
- [5] T. Noiri, A. Al-Omari and M. S. M. Noorani ", Weak forms of open sets and decomposition of continuity", E.J.P.A.M. 2(1): 73-84 (2009).
- [6] J.N.Sharma.(1977)."general topology" Krishna prakashan, Meerut(U.P).
- [7] Bishwambhar Roy and M.N.Mukherjee. A unified theory for R₀, R₁ and certain other separation properties and their variant forms ,Bol .Soc.paran. Mat.(3s)v.28.2(2010):15-24