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ABSTRACT:

In this paper we introduce a kernelled point, boundary kernelled point and derived kernelled
point of a subset A of X, and using these notions to define kernel set of topological spaces. Also we
introduce kr-topological space .The investigation enables us to present some new separation axioms
between T, and T;-spaces.
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1. INTRODUCTION AND PRELIMINARIES

In the recent papers kernel of a set A (kerifid))of a topological space defined as the
intersection of all open superset of A. [2],[3].

In this paper we introduce that x € X is a kernelled point of a subset A of X (Briefly x €
ker(A)) . Also we present the notions boundary kernelled point of A denoted it x € kr;; (A), and x is
derived kernelled point of A denoted it kry, (A), we obtain that the kernel of a set A in topological
space(X, T) is a union of A itself with the set of all boundary kernelled points (Briefly kr;;(A)). Also
it is a union of A itself with the set of all derived kernelled points (Briefly kry, (A)), and we gave some
result of Ry-space[1], [2], [4]], by using these notions.

Also in this paper we introduce kr-topological space iff kernel of a subset A of X is an open
set. Via this kind of topological space we give a new characterization of separation axioms lying
between T, and T;-spaces.

Definition1.1[1,2,4]

A topological space (X,T) is called an R,-space if for each open set Uand x € U
then cl{x} € U.

Lemma 1.2 [2]
Let (X, T) be topological space then x € cl{y} if f y € ker{x}.foreachx = y € X
Theorem 1.3 [5]
A topological space (X, T) is a Ty-space if and only if for each x € X then ker{x} = {x}.

244 ISSN 1661-464X



Archives Des Sciences Vol 65, No. 9;Sep 2012

2. Kernel set
Definition 2.1

Let (X,T) be a topological space. A point x is said to be kernelled point of A(Briefly x €
ker(A)) iff for each F closed set contains x, then FNA # Q.

Definition 2.2

Let (X,T) be a topological space. A point x is said to be boundary kernelled point of
A(Briefly x € kryq (4)) iff for each F closed set contains x, then FNA # @ and FNA® # Q.

Definition 2.3

Let (X,T) be a topological space. A point x is said to be derived kernelled point of A
(Briefly x € kry, (A)) iff for each F closed set contains x, then ANF / {x} # @.

Definition 2.4
We can define kerifix} as follows ker{x} = {y:x € F, ,F; € T}.
Theorem 2.5

Let (X, T) be a topological space and x # y € X. Then x is a kernelled point of {y} iff y is
an adherent point of {x}.

Proof

Let x be a kernelled point of {y}. Then for every closed set F such that x € Fimplies
y € Ftheny € N{F:x € F}, thismeans y € cl{x}. Thus y is an adherent point of {x}.

Conversely

Let y be an adherent point of {x}. Then for every open set U such that y € Uimplies
x € Ujthenx € N{U:y € U3}, thismeans y € ker{x}. Thus x is a kernelled point of {y}.

Theorem 2.6

Let (X,T) be a topological space and A € X and let kry, (4) be the set of all kernelled
derived point of 4, then ker(4) = AUkrg, (4).

Proof

Let x € AUkry, (4) and if x € kry, (A) , then for every closed set F intersects A (in a point
different fromx). Therefore x € ker{x}. Hence krg.(A) € ker(4), it follows that AUkry. (4) S
ker(A).
To demonstrate the reverse inclusion, we let x be a point of ker(4). If x € A, then x € AUkrg, (4).
Suppose that x ¢ A. Since x € ker(A4), then for every closed set F containing x implies FNA # @, this
means ANF /{x} # ®. Thenx € krq,(4) , so thatx € AUkry. (4). Hence ker(4) € AUkry, (4).
Thus ker(4) = AUkry, (4).

Theorem 2.7

Let (X,T) be a topological space and A € X and let kry4 (A) be the set of all kernelled
boundary point of A, then ker(4) = AU krpq (4).

Proof

Letx € AU kr,q(A) and if x € kryy(A) , then for every closed set F intersects A.
Therefore x € ker{x}. Hence kryq(A) S ker(A), it follows that AU krq (4) S ker(4).

To demonstrate the reverse inclusion, we let x be a point of ker(A). If x € A, then x € AU krpq (4).
Suppose that x ¢ A.implies x € A°. Since x € ker(A), then for every closed set F containing x implies
FNA # @ and FNA® # @. Then x € kryq(A4) , so that x € AU kryq (4). Hence ker(4) € AU krpq (4).
Thus ker(4) = AUkry, (4).
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Theorem 2.8

Let (X, T) be a topological space and A is a subset of X. then A is an open set iff every
x kernelled point of A is an interior point of A.

Proof

Let A be an open set, then ker(4) = A = int(A), implies every kernelled point is an
interior point.

Conversely

Let every x kernelled point of A is an interior point of A. Then ker(A) < int(A4). Hence
int(A) € A < ker(A), implies int(A) = A = keriffAd). Thus A is an open set

Corollary 2.9
A subset A of X is an open set iff for each x kernelled point then x & cl(A°).
Proof
By theorem 2.8.
Theorem 2.10
A subset A of X is a closed set iff for each ker(A4¢) Ncl(4) = @.
Proof

Let A is a closed set. Then A€ is an open set, implies A° = ker(A4¢) [By theorem 2.8].
Hence A = cl(A). Thusker(A°) Ncl(4) = @.

Conversely

Let ker(A°) Ncl(A) = @, then for each x € ker(A4¢), implies x & cl(A4), implies x €
ext(A). Therefore x € int(A°). Hence by theorem 2.8, A€ is an open set. Thus A is a closed set.

Corollary 2.11

Every interior point is a kernelled point.
Proof

Clearly.
Theorem 2.12

A topological space(X,T) is an Ry-space iff every adherent point of {x} is a kernelled point
of {x}.

Proof

Let (X,T) be an Rjy-space. Then for each x € X, Kker{x} = cl{x}[ By theorem 1.2]. Thus
every adherent point of {x} is a kernelled point of {x}

Conversely

Let every adherent point of {x} is a kernelled point of {x} and let U € T, x € U. Then
cl{x} € ker{x} for each x € X. Since ker{x} = N{U:U € T,x € U}, impliescl{x} € U for each U
open set contains x. Thus (X, T) is an Ry-space.

Theorem 2.13

A topological space (X,T) is T,-space iff for each x # y € X, either x is not kernelled
point of {y} or y is not kernelled point of {x}.

Proof

Let a topological space (X, T) is Ty-space. Then for each x # y € X there exist an open set U
suchthat e U, y & U (say), implies y € U¢. Hence U°€ is a closed, then y is not kernelled point of {x}.
Thus either x is not kernelled point of {y} or y is not kernelled point of {x}.
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Conversely

Let for each x # y € X, either x is not kernelled point of {y} or y is not kernelled point of
{x}. Then there exist a closed set F such that x € F,FN{y} =0 or y € F,FN{x} = @, implies
x € F¢,y e FCorx € F¢,y & F°. Hence F¢ is an open set. Thus (X, T) is Ty-space.

Theorem 2.14
A topological space(X, T) is an T; -space iff kry, {x} = @, for each x € X.
Proof

Let (X,T) be an T;-space. Then for each x € X, Kker{x} = {x}[ By theorem 1.3]. since
kry. {x} = ker{x} — {x}. Thus kry {x} = @

Conversely

Let kry, {x} = @. By theorem 2.5, ker{x} = {x}Ukr, {x}, implies ker{x} = {x}. Hence by
theorem 1.3, (X, T) is aT;-space.

Theorem 2.15

A topological space (X, T) is T;-space iff for each x # y € X, x is not kernelled point of
{y} and y is not kernelled point of {x}.

Proof

Let a topological space (X, T) is T;-space. Then for each x # y € X there exist open sets
U,Vsuchthate U, ygUandy eV, x ¢V ,implies x e V¢, {y}NV¢ =g andy € U ,{x}NU° =
@. Hence UcandV ¢ are a closed sets, then y is not kernelled point of {x}. Thus x is not kernelled point
of {y} and y is not kernelled point of {x}.

Conversely

Let for each x # y € X, x is not kernelled point of {y} and y is not kernelled point of {x}.
Then there exist a closed sets Fy, F, such that x € F; , FiN{y} = @ and y € F,, F,N{x} = @, implies
x€F5,y¢F; andy € F{ ,x & F{. Hence Ff and F; are open sets. Thus (X, T) is T;-space.

3. kr —spaces
Definition 3.1

A topological space (X, T) is said to be kr-space iff for each subset A of X then ker(A4) is an
open set.

Definition 3.2

A topological kr-space (X, T) is said to be T -space iff for each subset x € X, then kry,. {x}
is an open set.

Theorem 3.3
In topological kr-space (X, T), every T;-space is Tj-space.
Proof

Let (X,T) be a T;-space. Then for each x € X, ker{x} = {x}[By theorem 2.10].
As kry, {x} = ker{x} — {x}, implies kr,.{x} = @. Thus (X, T) is a T, -space.

Theorem 3.4
In topological kr-space (X, T), everyT; -space is a T,-space.
Proof

Let (X,T) be a Tj,-space and let x # y € X. Thenkry, {x} is an open set. Therefore there
exist two cases:

i) y € kry,{x} is an open set. Since x & kry,{x}. Thus (X, T) is a Ty-space
ii)y & kry, {x}, implies y & ker{x}. But ker{x} is an open set. Thus(X, T) isa T,-space.
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Definition 3.5

A topological kr-space (X, T) is said to be T, -space iff for each x # y € X, ker{x}Nker{y}
is degenerated (empty or singleton set).

Theorem 3.6
In topological kr-space (X, T), every T;-space is T, -space.
Proof

Let (X,T) be a T;-space. Then for each x # y € X, ker{x} = {x} and ker{y} = {y} [By
theorem 1.3], implies ker{x}Nker{y} = @. Thus (X, T) is a T, -space..

Theorem 3.7
In topological kr-space (X, T), every T, -space. is a T,-space.
Proof

Let (X,T) be a T;-space. Then for each x # y € X, ker{x}Nker{y} is degenerated (empty
or singleton set). Therefore there exist three cases:

i) ker{x} N ker{y} = @, implies(X,T) is a T,-space
ii)ker{x} N ker{y} = {x} or {y}, implies y & ker{x} or x & ker{y}, implies (X, T) is a T,-space.

iii) ker{x} Nker{y} = {z},z # x # y,z € X, implies y ¢ ker{x} and x & Kerify},
implies (X, T) is a Ty-space.

Definition 3.8
A topological kr-space (X,T) is said to be  Ty-space iff for each x #y € X,
kerifix}Nkerify} is empty or {x} or {y}.
Theorem 3.9
In topological kr-space (X, T), every T;-space is Ty — space.
Proof

Let (X,T) be a Ty-space. Then for each x # y € X, ker{x} = {x} and ker{y} = {y} [By
theorem 1.3], implies kerifk Nker{y} = @. Thus (X, T) is a Ty-space.

Theorem 3.10
In topological kr-space (X, T), every Ty-Space. is a T,-space.
Proof

Let (X,T) be a Ty-space. Then for each x # y € X, ker{x}Nker{y} is degenerated (empty
or singleton set). Therefore there exist two cases:

i) ker{x} N ker{y} = @, implies(X, T) is a Ty-space
ii)ker{x} N ker{y} = {x} or {y}, implies y & ker{x} or x & ker{y}, implies (X, T) is a T,-space.
Theorem 3.11

A topological kr-space (X, T) is T,-space iff for each x # y € X, then ker{x} N ker{y} = @
Proof

Let a topological kr-space (X,T) is T,-space. Then for each x # y € X there exist disjoint
open sets U,V such that x€U, and ye€eV. Hence Kker{x}cU and ker{y}cV.
Thus ker{x} N ker{y} = @

Conversely

Let for each x # y € X, ker{x} N ker{y} = @. Since (X, T) be a topological kr-space, this
means kernel is an open set. Thus (X, T) is T,-space.

Theorem 3.12

A topological kr-space (X,T) is a regular space iff for each F closed set and x ¢ F, then
ker(F) Nker{x} = @
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Proof
By the same way of proof of theorem 3.11
Theorem 3.13

A topological kr-space (X, T) is a normal space iff for each disjoint closed sets G , H, then
ker(G) Nker(H) = @

Proof
By the same way of proof of theorem 3.11

REFERENCES
[1] A.S.Davis. Indexed system of Neighborhood for general Topology Amer.
Math. Soc. (9) 68(1961), 886-893.

[2] Bishwambhar Roy and M.N.Mukherjee. A unified theory for Ry, Riand certain other separation
properties

and their variant forms, Bol. Soc. Paran. Mat. (3s) v.28.2(2010):15-24

[3] M.L.Colasante and D.V. Zypen. Minimal regular and minimal presober topologies, Revista Notas
de

Matematica, Vol.5(1),No.275.2009,P.73-84
[4] N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk SSSR
38 (1943), 110-113.

[5] L. A. Al-Swidi and B. Mohammed, Separation axiom via kernel set, Archive des sciences, Vol 65,
No.

7(2012), pp 41-48

249 ISSN 1661-464X



