New Characterization Of

Kernel Set in Topological Spaces

Luay A. Al-Swidi Mathematics Department, College of Education For Pure Sciences University of Babylon E-mail:drluayha1@yahoo.com

Basim Mohammed M. Mathematics Department, College of Education For Pure Sciences University of Babylon E-mail: Bassm_na73@yahoo.com

ABSTRACT:

In this paper we introduce a kernelled point, boundary kernelled point and derived kernelled point of a subset A of X, and using these notions to define kernel set of topological spaces. Also we introduce kr-topological space .The investigation enables us to present some new separation axioms between T_0 and T_1 -spaces.

Key: kernelled point, boundary kernelled point, derived kernelled point, Kernel set, weak separation axioms, R_0 -space.

1. INTRODUCTION AND PRELIMINARIES

In the recent papers kernel of a set A (ker(A)) of a topological space defined as the intersection of all open superset of A. [2],[3].

In this paper we introduce that $x \in X$ is a kernelled point of a subset A of X (Briefly $x \in ker(A)$). Also we present the notions boundary kernelled point of A denoted it $x \in kr_{bd}(A)$, and x is derived kernelled point of A denoted it $kr_{dr}(A)$, we obtain that the kernel of a set A in topological space(X, T) is a union of A itself with the set of all boundary kernelled points (Briefly $kr_{bd}(A)$). Also it is a union of A itself with the set of all derived kernelled points (Briefly $kr_{dr}(A)$), and we gave some result of R_0 -space[1], [2], [4]], by using these notions.

Also in this paper we introduce kr-topological space iff kernel of a subset A of X is an open set. Via this kind of topological space we give a new characterization of separation axioms lying between T_0 and T_1 -spaces.

Definition 1.1 [1, 2, 4]

A topological space (X,T) is called an R_o -space if for each open set U and $x \in U$ then $cl\{x\} \subseteq U$.

Lemma 1.2 [2]

Let (*X*, *T*) be topological space then $x \in cl\{y\}$ *if* $f \in ker\{x\}$. for each $x \neq y \in X$

Theorem 1.3 [5]

A topological space (X, T) is a T₁-space if and only if for each $x \in X$ then $ker\{x\} = \{x\}$.

2. Kernel set

Definition 2.1

Let (X,T) be a topological space. A point x is said to be kernelled point of $A(Briefly x \in ker(A))$ iff for each F closed set contains x, then $F \cap A \neq \emptyset$.

Definition 2.2

Let (X,T) be a topological space. A point x is said to be boundary kernelled point of A(Briefly $x \in \operatorname{kr}_{\operatorname{bd}}(A)$) iff for each F closed set contains x, then $F \cap A \neq \emptyset$ and $F \cap A^c \neq \emptyset$.

Definition 2.3

Let (X,T) be a topological space. A point x is said to be derived kernelled point of A (Briefly $x \in kr_{dr}(A)$) iff for each F closed set contains x, then $A \cap F / \{x\} \neq \emptyset$.

Definition 2.4

We can define ker $\{x\}$ as follows ker $\{x\} = \{y: x \in F_y, F_y^c \in T\}$.

Theorem 2.5

Let (X, T) be a topological space and $x \neq y \in X$. Then x is a kernelled point of $\{y\}$ iff y is an adherent point of $\{x\}$.

Proof

Let x be a kernelled point of $\{y\}$. Then for every closed set F such that $x \in F$ implies $y \in F$, then $y \in \bigcap\{F: x \in F\}$, this means $y \in cl\{x\}$. Thus y is an adherent point of $\{x\}$.

Conversely

Let y be an adherent point of $\{x\}$. Then for every open set U such that $y \in U$ implies $x \in U$, then $x \in \bigcap \{U: y \in U\}$, this means $y \in ker\{x\}$. Thus x is a kernelled point of $\{y\}$.

Theorem 2.6

Let (X, T) be a topological space and $A \subseteq X$ and let $\operatorname{kr}_{dr}(A)$ be the set of all kernelled derived point of A, then $\operatorname{ker}(A) = A \cup \operatorname{kr}_{dr}(A)$.

Proof

Let $x \in A \cup \ker_{dr}(A)$ and if $x \in \ker_{dr}(A)$, then for every closed set *F* intersects *A* (in a point different from *x*). Therefore $x \in \ker\{x\}$. Hence $\ker_{dr}(A) \subseteq \ker(A)$, it follows that $A \cup \ker_{dr}(A) \subseteq \ker(A)$.

To demonstrate the reverse inclusion, we let *x* be a point of ker(*A*). If $x \in A$, then $x \in A \cup kr_{dr}(A)$. Suppose that $x \notin A$. Since $x \in ker(A)$, then for every closed set *F* containing *x* implies $F \cap A \neq \emptyset$, this means $A \cap F / \{x\} \neq \emptyset$. Then $x \in kr_{dr}(A)$, so that $x \in A \cup kr_{dr}(A)$. Hence $ker(A) \subseteq A \cup kr_{dr}(A)$. Thus $ker(A) = A \cup kr_{dr}(A)$.

Theorem 2.7

Let (X, T) be a topological space and $A \subseteq X$ and let $\operatorname{kr}_{\operatorname{bd}}(A)$ be the set of all kernelled boundary point of *A*, then $\operatorname{ker}(A) = A \bigcup \operatorname{kr}_{\operatorname{bd}}(A)$.

Proof

Let $x \in A \cup \operatorname{kr}_{\operatorname{bd}}(A)$ and if $x \in \operatorname{kr}_{\operatorname{bd}}(A)$, then for every closed set F intersects A. Therefore $x \in \operatorname{ker}\{x\}$. Hence $\operatorname{kr}_{\operatorname{bd}}(A) \subseteq \operatorname{ker}(A)$, it follows that $A \cup \operatorname{kr}_{\operatorname{bd}}(A) \subseteq \operatorname{ker}(A)$.

To demonstrate the reverse inclusion, we let x be a point of ker(A). If $x \in A$, then $x \in A \cup \operatorname{kr}_{bd}(A)$. Suppose that $x \notin A$.implies $x \in A^c$. Since $x \in \operatorname{ker}(A)$, then for every closed set F containing x implies $F \cap A \neq \emptyset$ and $F \cap A^c \neq \emptyset$. Then $x \in \operatorname{kr}_{bd}(A)$, so that $x \in A \cup \operatorname{kr}_{bd}(A)$. Hence ker(A) $\subseteq A \cup \operatorname{kr}_{bd}(A)$. Thus ker(A) = $A \cup \operatorname{kr}_{dr}(A)$.

Theorem 2.8

Let (X, T) be a topological space and A is a subset of X. then A is an open set iff every x kernelled point of A is an interior point of A.

Proof

Let A be an open set, then ker(A) = A = int(A), implies every kernelled point is an interior point.

Conversely

Let every x kernelled point of A is an interior point of A. Then $ker(A) \subseteq int(A)$. Hence $int(A) \subseteq A \subseteq ker(A)$, implies int(A) = A = ker(A). Thus A is an open set

Corollary 2.9

A subset A of X is an open set iff for each x kernelled point then $x \notin cl(A^c)$.

Proof

By theorem 2.8.

Theorem 2.10

A subset A of X is a closed set iff for each $ker(A^c) \cap cl(A) = \emptyset$.

Proof

Let A is a closed set. Then A^c is an open set, implies $A^c = \ker(A^c)$ [By theorem 2.8]. Hence A = cl(A). Thusker $(A^c) \cap cl(A) = \emptyset$.

Conversely

Let $\ker(A^c) \cap cl(A) = \emptyset$, then for each $x \in \ker(A^c)$, implies $x \notin cl(A)$, implies $x \in ext(A)$. Therefore $x \in int(A^c)$. Hence by theorem 2.8, A^c is an open set. Thus A is a closed set.

Corollary 2.11

Every interior point is a kernelled point.

Proof

Clearly.

Theorem 2.12

A topological space (X, T) is an R_0 -space iff every adherent point of $\{x\}$ is a kernelled point of $\{x\}$.

Proof

Let (X, T) be an R_0 -space. Then for each $x \in X$, $ker\{x\} = cl\{x\}$ [By theorem 1.2]. Thus every adherent point of $\{x\}$ is a kernelled point of $\{x\}$

Conversely

Let every adherent point of $\{x\}$ is a kernelled point of $\{x\}$ and let $U \subseteq T$, $x \in U$. Then $cl\{x\} \subseteq ker\{x\}$ for each $x \in X$. Since $ker\{x\} = \bigcap \{U: U \in T, x \in U\}$, implies $cl\{x\} \subseteq U$ for each U open set contains x. Thus (X, T) is an R_0 -space.

Theorem 2.13

A topological space (X,T) is T_0 -space iff for each $x \neq y \in X$, either x is not kernelled point of $\{y\}$ or y is not kernelled point of $\{x\}$.

Proof

Let a topological space (X, T) is T_0 -space. Then for each $x \neq y \in X$ there exist an open set U such that $\in U$, $y \notin U$ (say), implies $y \in U^c$. Hence U^c is a closed, then y is not kernelled point of $\{x\}$. Thus either x is not kernelled point of $\{y\}$ or y is not kernelled point of $\{x\}$.

Conversely

Let for each $x \neq y \in X$, either x is not kernelled point of $\{y\}$ or y is not kernelled point of $\{x\}$. Then there exist a closed set F such that $x \in F$, $F \cap \{y\} = \emptyset$ or $y \in F$, $F \cap \{x\} = \emptyset$, implies $x \notin F^c$, $y \in F^c$ or $x \in F^c$, $y \notin F^c$. Hence F^c is an open set. Thus (X, T) is T_0 -space.

Theorem 2.14

A topological space (X, T) is an T_1 -space iff $kr_{dr}\{x\} = \emptyset$, for each $x \in X$.

Proof

Let (X,T) be an T_1 -space. Then for each $x \in X$, $ker\{x\} = \{x\}[$ By theorem 1.3]. since $kr_{dr}\{x\} = ker\{x\} - \{x\}$. Thus $kr_{dr}\{x\} = \emptyset$

Conversely

Let $kr_{dr}\{x\} = \emptyset$. By theorem 2.5, $ker\{x\} = \{x\} \bigcup kr_{dr}\{x\}$, implies $ker\{x\} = \{x\}$. Hence by theorem 1.3, (X, T) is aT_1 -space.

Theorem 2.15

A topological space (X, T) is T_1 -space iff for each $x \neq y \in X$, x is not kernelled point of $\{y\}$ and y is not kernelled point of $\{x\}$.

Proof

Let a topological space (X,T) is T_1 -space. Then for each $x \neq y \in X$ there exist open sets U, V such that $\in U$, $y \notin U$ and $y \in V$, $x \notin V$, implies $x \in V^c$, $\{y\} \cap V^c = \emptyset$ and $y \in U^c$, $\{x\} \cap U^c = \emptyset$. Hence U^c and V^c are a closed sets, then y is not kernelled point of $\{x\}$. Thus x is not kernelled point of $\{y\}$ and y is not kernelled point of $\{x\}$.

Conversely

Let for each $x \neq y \in X$, x is not kernelled point of $\{y\}$ and y is not kernelled point of $\{x\}$. Then there exist a closed sets F_1, F_2 such that $x \in F_1, F_1 \cap \{y\} = \emptyset$ and $y \in F_2, F_2 \cap \{x\} = \emptyset$, implies $x \in F_2^c$, $y \notin F_2^c$ and $y \in F_1^c$, $x \notin F_1^c$. Hence F_1^c and F_2^c are open sets. Thus (X, T) is T_1 -space.

3. kr -spaces

Definition 3.1

A topological space (X, T) is said to be kr-space iff for each subset A of X then ker(A) is an open set.

Definition 3.2

A topological kr-space (X, T) is said to be T_k -space iff for each subset $x \in X$, then $kr_{dr}\{x\}$ is an open set.

Theorem 3.3

In topological kr-space (X, T), every T_1 -space is T_k -space.

Proof

Let (X,T) be a T_1 -space. Then for each $x \in X$, ker $\{x\} = \{x\}$ [By theorem 2.10]. As $kr_{dr}\{x\} = ker\{x\} - \{x\}$, implies $kr_{dr}\{x\} = \emptyset$. Thus (X,T) is a T_k -space.

Theorem 3.4

In topological kr-space (X, T), every T_k -space is a T_0 -space.

Proof

Let (X, T) be a T_k -space and let $x \neq y \in X$. Then $kr_{dr}\{x\}$ is an open set. Therefore there exist two cases:

i) $y \in kr_{dr}\{x\}$ is an open set. Since $x \notin kr_{dr}\{x\}$. Thus (X, T) is a T_0 -space

ii) $y \notin kr_{dr}\{x\}$, implies $y \notin ker\{x\}$. But $ker\{x\}$ is an open set. Thus(X, T) is a T_0 -space.

Definition 3.5

A topological *kr*-space (*X*,*T*) is said to be T_L -space iff for each $x \neq y \in X$, ker{*x*}∩ker{*y*} is degenerated (empty or singleton set).

Theorem 3.6

In topological kr-space (X, T), every T_1 -space is T_L -space.

Proof

Let (X,T) be a T_1 -space. Then for each $x \neq y \in X$, ker $\{x\} = \{x\}$ and ker $\{y\} = \{y\}$ [By theorem 1.3], implies ker $\{x\} \cap \text{ker}\{y\} = \emptyset$. Thus (X,T) is a T_L -space..

Theorem 3.7

In topological kr-space (X, T), every T_L -space. is a T_0 -space.

Proof

Let (X, T) be a T_L -space. Then for each $x \neq y \in X$, ker $\{x\} \cap ker\{y\}$ is degenerated (empty or singleton set). Therefore there exist three cases:

i) $\ker{x} \cap \ker{y} = \emptyset$, *implies*(*X*, *T*) is a *T*₀-space

ii)ker{x} \cap ker{y} = {x} or {y}, implies $y \notin$ ker{x} or $x \notin$ ker{y}, implies (X, T) is a T_0 -space.

iii) $\ker\{x\} \cap \ker\{y\} = \{z\}, z \neq x \neq y, z \in X$, implies $y \notin \ker\{x\}$ and $x \notin \ker\{y\}$, implies (X, T) is a T_0 -space.

Definition 3.8

A topological kr-space (X, T) is said to be T_N -space iff for each $x \neq y \in X$, ker $\{x\} \cap ker \{y\}$ is empty or $\{x\}$ or $\{y\}$.

Theorem 3.9

In topological kr-space (X, T), every T_1 -space is T_N – space.

Proof

Let (X,T) be a T_N -space. Then for each $x \neq y \in X$, ker $\{x\} = \{x\}$ and ker $\{y\} = \{y\}$ [By theorem 1.3], implies ker $\{x \cap ker\{y\} = \emptyset$. Thus (X,T) is a T_N -space.

Theorem 3.10

In topological kr-space (X, T), every T_N -space. is a T_0 -space.

Proof

Let (X, T) be a T_N -space. Then for each $x \neq y \in X$, ker $\{x\} \cap ker\{y\}$ is degenerated (empty or singleton set). Therefore there exist two cases:

i) $\ker\{x\} \cap \ker\{y\} = \emptyset$, implies(X, T) is a T_0 -space

ii)ker{x} \cap ker{y} = {x} or {y}, implies $y \notin$ ker{x} or $x \notin$ ker{y}, implies (X, T) is a T_0 -space.

Theorem 3.11

A topological *kr*-space (*X*, *T*) is *T*₂-space iff for each $x \neq y \in X$, then ker{x} \cap ker{y} = \emptyset

Proof

Let a topological kr-space (X, T) is T_2 -space. Then for each $x \neq y \in X$ there exist disjoint open sets U, V such that $x \in U$, and $y \in V$. Hence $ker\{x\} \subseteq U$ and $ker\{y\} \subseteq V$. Thus $ker\{x\} \cap ker\{y\} = \emptyset$

Conversely

Let for each $x \neq y \in X$, ker{x} \cap ker{y} = \emptyset . Since (X, T) be a topological *kr*-space, this means kernel is an open set. Thus (X, T) is T_2 -space.

Theorem 3.12

A topological kr-space (X, T) is a regular space iff for each F closed set and $x \notin F$, then $\ker(F) \cap \ker\{x\} = \emptyset$

Proof

By the same way of proof of theorem 3.11

Theorem 3.13

A topological kr-space (X, T) is a normal space iff for each disjoint closed sets G, H, then $ker(G) \cap ker(H) = \emptyset$

Proof

By the same way of proof of theorem 3.11

REFERENCES

[1] A.S.Davis. Indexed system of Neighborhood for general Topology Amer.

Math. Soc. (9) 68(1961), 886-893.

[2] Bishwambhar Roy and M.N.Mukherjee. A unified theory for R_0 , R_1 and certain other separation properties

and their variant forms, Bol. Soc. Paran. Mat. (3s) v.28.2(2010):15-24

[3] M.L.Colasante and D.V. Zypen. Minimal regular and minimal presober topologies, Revista Notas de

Matematica, Vol.5(1), No.275.2009, P.73-84

[4] N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk SSSR 38 (1943), 110-113.

[5] L. A. Al-Swidi and B. Mohammed, Separation axiom via kernel set, Archive des sciences, Vol 65, No.

7(2012), pp 41-48