

©2010-11 IJST Journal. All rights reserved

http://www.ejournalofsciences.org

Weak Separation Axioms via Ω –Open Set and Ω –Closure Operator

Luay. A. Al-Swidi, Mustafa H. Hadi

University of Babylon, College of Education Ibn-Hayan, Mathematics Department

ABSTRACT

In this paper we introduce a new type of weak separation axioms with some related theorems and show that they are equivalent with these in [1].

Keywords: Weak separation axioms, weak ω – open sets, weak regular spaces.

1. INTRODUCTION AND AUXILIARY RESULTS

In this article let us prepare the background of the subject. Throughout this paper, (X,T) stands for topological space. Let A be a subset of X. A point x in X is called *condensation* point of A if for each U in T with x in U, the set $U \cap A$ is uncountable [2]. In 1982 the ω –closed set was first introduced by H. Z. Hdeib in [2], and he defined it as: A is ω –*closed* if it contains all its condensation points and the ω –*open* set is the complement of the ω –closed set. It is not hard to prove: any open set is ω –open. Also we would like to say that the collection of all ω –open subsets of X forms topology on X. The closure of A will be denoted by cl(A), while the intersection of all ω –closed sets in X which containing A is called the ω –*closure* of A, and will denote by $cl_{\omega}(A)$. Note that $cl_{\omega}(A) \subset cl(A)$.

In 2005 M. Caldas, T. Fukutake, S. Jafari and T. Noiri [3] introduced some weak separation axioms by utilizing the notions of $\delta - pre$ –open sets and $\delta - pre$ –closure. In this paper we use M. Caldas, T. Fukutake, S. Jafari and T. Noiri [3] definitions to introduce new spaces by using the ω –open sets defined by H. Z. Hdeib in [3], we ecall it $\omega - R_i$ –Spaces i = 0,1,2, and we show that $\omega - R_0$, $\omega^* - T_1$ space and ω –symmetric space are equivalent.

For our main results we need the following definitions and results:

Definition 1.1: [4] A space (X, T) is called a *door space* if every subset of X is either open or closed.

Definition 1.2: [1] The topological space *X* is called $\omega^* - T_1$ space if and only if, for each $x \neq y \in X$, there exist ω -open sets *U* and *V*, such that $x \in U, y \notin U$, and $y \in V, x \notin V$.

Lemma 1.3: [1] The topological X is $\omega^* - T_1$ if and only if for each $x \in X, \{x\}$ is ω -closed set in X.

Definition 1.4: [1] The topological space X is called $\omega^* - T_2$ space if and only if, for each $x \neq y \in X$, there

exist two disjoint ω –open sets U and V with $x \in U$ and $y \in V$.

For our main result we need the following property of ω –closure of a set:

Proposition 1.5: Let $\{A_{\lambda}, \lambda \in \Lambda\}$ be a family of subsets of the topological space (X, T), then

1. $cl_{\omega}(\cap_{\lambda \in \Lambda} A_{\lambda}) \subseteq \cap_{\lambda \in \Lambda} cl_{\omega}(A_{\lambda})$. **2**. $\cup_{\lambda \in \Lambda} cl_{\omega}(A_{\lambda}) \subseteq cl_{\omega}(\cup_{\lambda \in \Lambda} A_{\lambda})$.

Proof:

 It is clear that ∩_{λ∈Λ} A_λ ⊆ A_λ for each λ ∈ Λ. Then by (4) of Theorem 1.5.3 in [1], we have cl_ω(∩_{λ∈Λ} A_λ) ⊆ cl_ω(A_λ) for each λ ∈ Λ. Therefore cl_ω(∩_{λ∈Λ} A_λ) ⊂∩_{λ∈Λ} cl_ω(A_λ).

Note that the opposite direction is not true. For example consider the usual topology *T* for \mathbb{R} , If $A_i = \left(0, \frac{1}{i}\right), i = 1, 2, ..., \text{ and } \bigcap_{i \in \mathbb{N}} cl_{\omega}(A_i) = \{0\}$. But $cl_{\omega}(\bigcap_{i \in \mathbb{N}} A_i) = cl_{\omega}(\emptyset) = \emptyset$. Therefore $\bigcap_{\lambda \in \Lambda} cl_{\omega}(A_{\lambda}) \nsubseteq cl_{\omega}(\bigcap_{\lambda \in \Lambda} A_{\lambda})$.

Since A_λ ⊆ ∪_{λ∈Λ} A_λ, for each λ ∈ Λ. Then by (4) of Theorem 1.5.3 in [2], we get cl_ω(A_λ) ⊆ cl_ω(∪_{λ∈Λ} A_λ), for each λ ∈ Λ. Hence ∪_{λ∈Λ} cl_ω(A_λ) ⊆ cl_ω(∪_{λ∈Λ} A_λ.

Note that the opposite direction is not true. For example consider the usual topology *T* for \mathbb{R} , If $A_i = \left\{\frac{1}{i}\right\}, i = 1, 2, ..., , cl_{\omega}(A_i) = \left\{\frac{1}{i}\right\}$, and $\bigcup_{i \in \mathbb{N}} cl_{\omega}(A_i) = \left\{1, \frac{1}{2}, \frac{1}{3}, ...\right\}$. But $cl_{\omega}(\bigcup_{i \in \mathbb{N}} A_i) = \left\{1, \frac{1}{2}, \frac{1}{3}, ..., 0\right\}$. Thus $cl_{\omega}(\bigcup_{\lambda \in \Lambda} A_{\lambda}) \not\subseteq \bigcup_{\lambda \in \Lambda} cl_{\omega}(A_{\lambda})$

2. $\omega - R_i - Spaces$, for i = 0,1

In this section we introduce some types of weak separation axioms by utilizing the ω –open sets defined in [3]

©2010-11 IJST Journal. All rights reserved

http://www.ejournalofsciences.org

Definition 2.1: Let $A \subset (X, T)$, then the ω –*kernal* of A denoted by ω – *ker*(A) is the set

 $\omega - ker(A) = \cap \{O, where O \text{ is an } \omega \text{ open set in } (X, T) \text{ containing } A \}.$

Proposition 2.2: Let $A \subset (X, T)$, and $x \in X$. Then $\omega - ker(A) = \{x \in X : cl_{\omega}(\{x\}) \cap A \neq \emptyset\}.$

Proof:

Let *A* be a subset of *X*, and $x \in \omega - ker(A)$, such that $cl_{\omega}(\{x\}) \cap A = \emptyset$. Then $x \notin X \setminus cl_{\omega}(\{x\})$, which is an ω -open set containing *A*. This contradicts $x \in \omega - ker(A)$. So $cl_{\omega}(\{x\}) \cap A \neq \emptyset$.

Then Let $x \in X$, be a point satisfied $cl_{\omega}(\{x\}) \cap A \neq \emptyset$. Assume $x \notin \omega - ker(A)$, then there exists an ω -open set *G* containing *A* but not *x*. Let $y \in cl_{\omega}(\{x\}) \cap A$. Hence *G* is an ω -open set containing *y* but not *x*. This contradicts $cl_{\omega}(\{x\}) \cap A \neq \emptyset$. So $x \in \omega - ker(A)$

Definition 2.3: A topological space (X, T) is said to be sober $\omega - R_0$ if $\bigcap_{x \in X} cl_{\omega}(\{x\}) = \emptyset$.

Theorem 2.4: A topological space (X, T) is sober $\omega - R_0$ if and only if $\omega - ker(\{x\}) \neq X$ for each $x \in X$.

Proof:

Suppose that (X, T) is sober $\omega - R_0$. Assume there is a point $y \in X$, with $\omega - ker(\{y\}) = X$. Let $x \in X$, then $x \in V$ for any ω - open set V containing y, so $y \in cl_{\omega}(\{x\})$ for each $x \in X$. This implies $y \in \bigcap x \in X$ class, which is a contradiction with $\bigcap x \in X$ class.

Now suppose ω -kernal({*x*}) $\neq X$ for every $x \in X$. Assume *X* is not sober $\omega - R_0$, it mean there is *y* in *X* such that $y \in \bigcap_{x \in X} cl_{\omega}(\{x\})$, then every ω - open set containing *y* must contain every point of *X*. This implies that *X* is the unique ω - open set containing *y*. Therefore ω -kernal({*y*}) = *X*, which is a contradiction with our hypothesis. Hence (*X*, *T*) is sober $\omega - R_0$

Definition 2.5: A map $f: X \to Y$ is called ω -*closed*, if the image of every ω -*closed* subset of X is ω -*closed* in Y.

Proposition 2.6: If *X* is a space, *f* is a map defined on *X* and $A \subseteq X$, then

Proof:

$$cl_{\omega}(f(A)) \subseteq f(cl_{\omega}(A)).$$

We have $A \subseteq cl_{\omega}(A)$, then $f(A) \subseteq f(cl_{\omega}(A))$ This implies $cl_{\omega}(f(A)) \subseteq cl_{\omega}(f(cl_{\omega}(A))) = f(cl_{\omega}(A))$. Hence $cl_{\omega}(f(A)) \subseteq f(cl_{\omega}(A)$

Theorem 2.7: If $f: X \to Y$ is one to one ω -closed map and X is sober $\omega - R_0$, then Y is sober $\omega - R_0$. **Proof:**

From Proposition 1.5, we have

$$\bigcap_{y \in Y} cl_{\omega}(\{y\}) \subset \bigcap_{x \in X} cl_{\omega}(\{f(x)\}) \subset \bigcap_{x \in X} f(cl_{\omega}(\{x\}))$$
$$= f(\bigcap_{x \in X} cl_{\omega}(\{x\}))$$

Thus Y is sober
$$\omega - R_0$$

$$= f(\emptyset) = \emptyset.$$

Definition 2.8: A topological space (X, T) is called $\omega - R_0$ if every ω -open set contains the ω -closure of each of its singletons.

Theorem 2.9: The topological door space is $\omega - R_0$ if and only if it is $\omega^* - T_1$.

Proof:

Let x, y are distinct points in X. Since (X, T) is door space so that for each x in , $\{x\}$ is open or closed.

i. 1. When $\{x\}$ is open, hence ω -open set in *X*. Let $V = \{x\}$, then $x \in V$, and $y \notin V$. Therefore since (X, T) is $\omega - R_0$ space, so that $cl_{\omega}(\{x\}) \subset V$. Then $x \notin X \setminus V$, while $y \in X \setminus V$, where $X \setminus V$ is an ω -open subset of *X*.

2. Whenever $\{x\}$ is closed, hence it is ω -closed, $y \in X \setminus \{x\}$, and $X \setminus \{x\}$ is ω -open set in X. Then since (X,T) is $\omega - R_0$ space, so that $cl_{\omega}(\{y\}) \subset X \setminus \{x\}$. Let $V = X \setminus cl_{\omega}(\{y\})$, then $x \in V$, but $y \notin V$, and V is an ω -open set in X. Thus we obtain (X,T) is $\omega^* - T_1$.

ii. For the other direction assume (X, T) is $\omega^* - T_1$, and let *V* be an ω -open set of *X*, and $x \in V$. For each $y \in X \setminus V$, there is an ω -open set V_y such that $x \notin V_y$, but $y \in V_y$. So $cl_{\omega}(\{x\}) \cap V_y = \emptyset$, which is true for each $y \in X \setminus V$. Therefore $cl_{\omega}(\{x\}) \cap (\bigcup_{y \in X \setminus V} V_y) = \emptyset$. Then since $y \in V_y$, $X \setminus V \subset \bigcup_{y \in X \setminus V} V_y$, and $cl_{\omega}(\{x\}) \subset V$. Hence (X, T) is $\omega - R_0$

Definition 2.10: A topological space (X,T) is ω –*symmetric* if for x and y in the space $X, x \in cl_{\omega}(\{y\})$ implies $y \in cl_{\omega}(\{x\})$.

Proposition 2.11: Let X be a door ω -symetric topological space. Then for each $x \in X$, the set $\{x\}$ is ω -closed.

Proof:

Let $x \neq y \in X$, since X is a door space so $\{y\}$ is open or closed set in X. When $\{y\}$ is open, so it is ω -open, let $V_y = \{y\}$. Whenever $\{y\}$ is ω -closed, $x \notin \{y\} = cl_{\omega}(\{y\})$. Since X is ω -symetric we get $y \notin cl_{\omega}(\{x\})$. Put $V_y = X \setminus cl_{\omega}(\{x\})$, then $x \notin V_y$ and $y \in V_y$, and V_y is ω -open set in X. Hence we get for each $y \in X \setminus \{x\}$ there is an ω -open set V_y such that $x \notin V_y$ and $y \in V_y$. Therefore $X \setminus \{x\} = \bigcup_{y \in X \setminus \{x\}} V_y$ is ω -open, and $\{x\}$ is ω -closed \Box

Proposition 2.12: Let (X,T) be $\omega^* - T_1$ topological space, then it is ω -symetric space.

Proof:

Let $x \neq y \in X$. Assume $y \notin cl_{\omega}(\{x\})$, then since X is $\omega - T_1$ there is an open set U containing x but not y, so $x \notin cl_{\omega}(\{y\})$. This completes the proof

©2010-11 IJST Journal. All rights reserved

Theorem 2.13: The topological door space is ω – symmetric if and only if it is $\omega^* - T_1$.

Proof:

Let (X, T) be a door ω – symmetric space. Then using Proposition 2.11 for each $\in X$, $\{x\}$ is ω –closed set in X. Then Lemma 1.3, we get that (X, T) is $\omega^* - T_1$. On the other hand, assume (X, T) is $\omega^* - T_1$, then directly by Proposition 2.12. (X, T) is ω – symmetric space

Corollary 2.14: Let (X, T) be a topological door space, then the following are equivalent:

1. (X, T) is $\omega - R_0$ space. **2.** (X, T) is $\omega^* - T_1$ space. **3.** (X, T) is ω - symmetric space.

Proof:

The proof follows immediately from Theorem 2.9 and Theorem 2.13 $\hfill \Box$

Corollary 2.15: If (X,T) is a topological door space, then it is $\omega - R_0$ space if and only if for each $x \in X$, the set $\{x\}$ is ω -closed set.

Proof:

We can prove this corollary by using Corollary 2.14 and Lemma 1.3 \Box

Theorem 2.16: Let (X,T) be a topological space contains at least two points. If X is $\omega - R_0$ space, then it is sober $\omega - R_0$ space.

Proof:

Let x and y are two distinct points in X. Since (X,T) is $\omega - R_0$ space so by Theorem 2.8 it is $\omega^* - T_1$. Then Lemma 1.3 implies $cl_{\omega}(\{x\}) = \{x\}$ and $cl_{\omega}(\{y\}) = \{y\}$. Therefore $\bigcap_{p \in X} cl_{\omega}(\{p\}) \subset cl_{\omega}(\{x\}) \cap cl_{\omega}(\{y\}) = \{x\} \cap \{y\} = \emptyset$. Hence (X,T) is sober $\omega - R_0$ space \Box

Definition 2.17: A topological door space (X, T) is said to be $\omega - R_1$ *space* if for x and y in , with $cl_{\omega}(\{x\}) \neq cl_{\omega}(\{y\})$, there are disjoint ω -open set U and V such that $cl_{\omega}(\{x\}) \subset U$, and $cl_{\omega}(\{y\}) \subset V$.

Theorem 2.18: The topological door space is $\omega - R_1$ if and only if it is $\omega^* - T_2$ space.

Proof:

Let x and y be two distinct points in X. Since X is door space so

for each x in X. The set $\{x\}$ is open or closed.

i. If $\{x\}$ is open. Since $\{x\} \cap \{y\} = \Box$, then $\{x\} \cap cl_{\omega}\{y\} = \Box$. Thus $cl_{\omega}(\{x\}) \neq cl_{\omega}(\{y\})$.

ii. Whenever $\{x\}$ is closed, so it is ω -closed and $cl_{\omega}\{x\}\cap\{y\} = \{x\}\cap\{y\} = \Box$. Therefore $cl_{\omega}(\{x\}) \neq cl_{\omega}(\{y\})$. We have (X, T) is $\omega - R_1$ space, so that there are disjoint ω -open sets U and V such that $x \in cl_{\omega}(\{x\}) \subset U$, and $y \in cl_{\omega}(\{y\}) \subset V$, so X is $\omega^* - T_2$ space.

For the opposite side let x and y be any points in X, with $cl_{\omega}(\{x\}) \neq cl_{\omega}(\{y\})$. Since every $\omega^* - T_2$ space is $\omega^* - T_1$ space so by (3) of Theorem 2.2.15 $cl_{\omega}(\{x\}) = \{x\}$ and $cl_{\omega}(\{y\}) = \{y\}$, this implies $x \neq y$. Since X is $\omega^* - T_2$ there are two disjoint ω -open sets U and V such that $cl_{\omega}(\{x\}) = \{x\} \subset U$, and $cl_{\omega}(\{y\}) = \{y\} \subset V$. This proves X is $\omega - R_1$ space \Box

Corollary 2.19: Let (X,T) be a topological door space. Then if X is $\omega - R_1$ space then it is $\omega - R_0$ space.

Proof:

Let *X* be an $\omega - R_1$ door space. Then by Theorem 2.17 *X* is $\omega^* - R_2$ space. Then since every $\omega^* - T_2$ space is $\omega^* - T_1$, so that by Theorem 2.9, *X* is $\omega - R_0$ space.

REFERENCES

- [1] M. H. Hadi, " Weak forms of ω –open sets and decomposition of separation axioms", M. Sc. Thesis, Babylon University (2011).
- [2] H. Z. Hdeib, " ω-closed mappings", Rev. Colomb. Mat. 16 (3-4): 65-78 (1982).
- [3] M. Caldas, T. Fukutake, S. Jafari and T. Norani, " Some applications of δ- preopen sets in topological spaces ", Bulletin of the Institute of Mathematics Academia Sinica, 33(3):261-276 (2005).
- [4] T. Noiri, A. Al-Omari and M. S. M. Noorani, " Weak forms of ωopen sets and decomposition of continuity", E.J.P.A.M. 2(1): 73-84 (2009).