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ABSTRACT 
 

In this paper we introduce a new type of weak separation axioms with some related theorems and show that they are 

equivalent with these in [1].  
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1. INTRODUCTION AND AUXILIARY 

RESULTS    
 

In this article let us prepare the background of the 

subject. Throughout this paper,       stands for 

topological space. Let   be a subset of  . A point   in   is 

called condensation point of   if for each   in   with   in 

 , the set U     is uncountable [2]. In 1982 the   closed 

set was first introduced by H. Z. Hdeib in [2], and he 

defined it as:   is   closed if it contains all its 

condensation points and the   open set is the 

complement of the   closed set. It is not hard to prove: 

any open set is   open. Also we would like to say that 

the collection of all   open subsets of   forms topology 

on  . The closure of   will be denoted by      , while the 

intersection of all   closed sets in   which containing   

is called the   closure of  , and will denote by       . 
Note that             . 

In 2005 M. Caldas, T. Fukutake, S. Jafari and T. 

Noiri [3] introduced some weak separation axioms by 

utilizing the notions of       open sets and   
    closure. In this paper we use M. Caldas, T. 

Fukutake, S. Jafari and T. Noiri [3] definitions to 

introduce new spaces by using the   open sets defined 

by H. Z. Hdeib in [3], we ecall it      Spaces 

       , and we show that      ,       space 

and   symmetric space are equivalent. 

For our main results we need the following 

definitions and results: 

 

Definition 1.1: [4] A space       is called a door space if 

every subset of   is either open or closed. 

 

Definition 1.2: [1] The topological space   is called 

      space if and only if, for each        there 

exist   open sets    and  , such that        , and 

       . 

 

Lemma 1.3: [1] The topological   is       if and only 

if for each         is   closed set in  . 

 

Definition 1.4: [1] The topological space   is called 

      space if and only if, for each        there 

exist two disjoint   open sets   and   with     and 

   . 

For our main result we need the following 

property of   closure of a set: 

 

Proposition 1.5: Let           be a family of subsets of 

the topological space         , then  

 

1.                         . 

2.                        . 
 

Proof:  

 

1. It is clear that           for each    .  

Then by (4) of Theorem 1.5.3 in [1], we have 

                     for each    . 

Therefore                           . 
 

Note that the opposite direction  is not true . For example  

consider the usual topology   for    , If       
 

 
    

     , and                . But               
        . Therefore                          . 
 

2. Since            for each    .  Then 

by (4) of Theorem 1.5.3 in [2], we get 

                          ,   for each 

   . Hence                       . 
 

Note that the opposite direction  is not true . For example  

consider the usual topology   for    , If     
 

 
    

     ,           
 

 
    and                

 

 
 
 

 
   . 

But                  
 

 
 
 

 
      . Thus 

                                    
 

2.      SPACES , FOR       
 

In this section we introduce some types of weak 

separation axioms by utilizing the   open sets defined in 

[3] 
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Definition 2.1: Let        , then the   kernal of   

denoted by          is the set 

          {O,where O is an  - open set in         
containing  }. 

 

Proposition 2.2: Let         , and    . Then  

                           . 
 

Proof: 

Let   be a subset of  , and           , such 

that             . Then             , which is an 

  open set containing  . This contradicts      
      . So              . 

Then Let      be a point satisfied               . 

Assume             then there exists an   open set 

  containing   but not  . Let             . Hence   

is an   open set containing   but not  . This contradicts 

              . So                       

      

Definition 2.3: A topological space         is said to be 

sober      if                 
 

Theorem 2.4: A topological space         is sober      

if and only if              for each      
 

Proof: 

Suppose that         is sober     . Assume 

there is a point    , with             . Let    , 

then     for any    open set   containing   , so 

           for each    . This implies   
∩  X    , which is a contradiction with  ∩  X    = . 

Now suppose   kernal        for every    . 

Assume   is not sober     , it mean there is   in    
such that                , then every    open set 

containing   must contain every point of  . This implies 

that   is the unique  - open set containing  . Therefore 

  kernal       , which is a contradiction with our 

hypothesis. Hence         is sober                

 

Definition 2.5: A map       is called   closed, if 

the image of every   closed subset of   is   closed in 

 . 

 

Proposition 2.6: If   is a space,   is a map defined on   

and    , then   

                  . 

Proof: 

We have         , then                
This implies                                     
Hence                              

 

Theorem 2.7: If       is one to one    closed map 

and   is sober      , then   is sober     . 

Proof: 

From Proposition 1.5, we have 

                                              

                                                                            

                                                                  . 

Thus   is sober               

 

Definition 2.8: A topological space        is called 

     if every    open set contains the   closure of 

each of its singletons. 

 

Theorem 2.9: The topological door space is      if and 

only if it is      . 

 

Proof: 

Let     are distinct points in  . Since         is 

door space so that for each   in  ,     is open or closed. 

i. 1. When     is open, hence   open set in  . Let  

      , then    , and     . Therefore since         

is      space, so that             Then        , 

while      , where     is an   open subset of  . 

   2. Whenever     is closed, hence it is   closed, 

       , and       is   open set in  . Then since 

       is      space, so that                  . Let 

              , then    , but    , and   is an 

  open set in X. Thus we obtain         is      . 

ii. For the other direction assume          is      , and 

let   be an   open set of  ,  and     . For each 

     , there is an   open set      such that     , but 

    . So                  which is true for each 

       Therefore                          Then 

since     ,             , and           . Hence 

        is                 

 

Definition 2.10: A topological space        is 

  symmetric if for   and   in the space  ,            

implies              
 

Proposition 2.11:  Let   be a door   symetric 

topological space . Then for each      ,  the set     is 

  closed. 

 

Proof:  

Let      , since   is a door space so     is 

open or closed set in  . When     is open, so it is 

  open, let       . Whenever     is   closed , 

              . Since   is   symetric we get 

          . Put              , then      and 

    , and    is   open set in  . Hence we get for each 

        there is an   open set    such that      and 

    . Therefore                   is   open,  and 

    is   closed           

 

Proposition 2.12: Let        be        topological 

space, then it is   symetric space. 

 

Proof: 

Let       .  Assume           , then 

since   is      there is an open set   containing   but 

not  , so           . This completes the proof           
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Theorem 2.13: The topological door space is   
 symmetric if and only if it is      . 

 

Proof:  

Let         be a door    symmetric space. Then 

using Proposition 2.11 for each    ,     is   closed set 

in  . Then Lemma 1.3, we get that         is      . On 

the other hand, assume         is      , then directly by 

Proposition 2.12.         is    symmetric space           

 

Corollary 2.14: Let         be a topological door space, 

then the following are equivalent: 

 

1.          is      space. 

2.          is       space. 

3.          is    symmetric space. 

 

Proof: 

The proof follows immediately from Theorem 

2.9 and Theorem 2.13          

 

Corollary 2.15: If         is a topological door space, 

then it is      space if and only if for each    , the 

set     is   closed set. 

 

Proof: 

  We can prove this corollary by using Corollary 

2.14 and Lemma 1.3          

 

Theorem 2.16: Let         be a topological space 

contains at least two points. If   is      space, then it is 

sober      space. 

 

Proof: 

  Let   and   are two distinct points in  . Since 

        is      space so by Theorem 2.8 it is       . 

Then Lemma 1.3 implies                 and 

              . Therefore  

                                       

   Hence         is sober      space         

 

Definition 2.17: A topological door space         is said 

to be       space if for   and   in  , with          
        , there are disjoint   open set   and   such that 

          , and           . 

 

Theorem 2.18: The topological door space is       if 

and only if it is       space. 

 

Proof:  

Let   and   be two distinct points in  . Since   is 

door space so 

for each   in  , The set     is open or closed. 

i. If     is open. Since          , then            
 . Thus                    
ii. Whenever      is closed, so it is   closed and 

                    . Therefore          
        . We have ( X, T ) is      space, so that there 

are disjoint   open sets   and V such that   
          , and             , so X is       

space. 

For the opposite side let   and   be any points in 

 , with                  . Since every       space 

is       space so by (3) of Theorem 2.2.15           
     and                , this implies    . Since   is 

      there are two disjoint   open sets   and   such 

that               , and                . This 

proves   is      space           

 

Corollary 2.19: Let        be a topological door space. 

Then if    is       space then it is      space. 

 

Proof: 

Let   be an      door space. Then by Theorem 2.17    

is       space. Then since every       space is 

     , so that by Theorem 2.9,     is       space. 

 

REFERENCES 
 

[1] M. H. Hadi, " Weak forms of   open sets and 

decomposition of separation axioms" , M. Sc. 

Thesis, Babylon University (2011). 

 

[2] H. Z. Hdeib, "  -closed mappings",  Rev. 

Colomb. Mat. 16 (3-4): 65-78 (1982). 

 

[3] M. Caldas, T. Fukutake, S. Jafari and T. Norani, " 

Some applications of   - preopen sets in 

topological spaces ", Bulletin of the Institute of 

Mathematics Academia  Sinica, 33(3):261-276 

(2005). 

 

[4] T. Noiri, A. Al-Omari and M. S. M. Noorani, "  

Weak forms of  open sets and decomposition of 

continuity", E.J.P.A.M. 2(1): 73-84 (2009). 

 


