T_i Spaces with Respect to Weak Forms of ω –Open Sets, for i = 0,1,2

Luay. A. Al-Swidi

Mathematics Department, College of Education, University of Babylon, Iraq.

Mustafa Hasan Hadi

Mathematics Department, College of Education, University of Babylon, Iraq.

Tel: 009647809346479 mustafahh1984@yahoo.com

Abstract. In this paper we introduce the associative separation axioms of the weak ω –open sets defined in [5], and

then give some new theorems about them.

Key words. Weak separation axioms, weak ω –open sets, weak T_0 spaces, weak T_1 spaces, weak T_2 spaces.

1. Introduction and Preliminaries

Through out this paper, (X, T) stands for topological space. Let (X, T) be a topological space and A a subset of X. A point x in X is called *condensation point* of A if for each U in T with x in U, the set $U \cap A$ is un countable [3]. In 1982 the ω -closed set was first introduced by H. Z. Hdeib in [3], and he defined it as: A is ω -closed if it contains all its condensation points and the ω -open set is the complement of the ω -closed set. Equivalently. A sub set W of a space (X, T), is ω -open if and only if for each $x \in W$, there exists $U \in T$ such that $x \in U$ and $U \setminus W$ is countable. The collection of all ω -open sets of (X, T) denoted T_{ω} form topology on X and it is finer than T. Several characterizations of ω -closed sets were provided in [1, 3, 4, 6].

In 2009 in [5] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced and investigated new notions called $\alpha - \omega$ -open, *pre* $-\omega$ -open, *b* $-\omega$ -open and $\beta - \omega$ -open sets which are weaker than ω -open set. Let us introduce these notions in the following definition:

Definition 1.1. [5] A subset A of a space X is called 1. $\alpha - \omega$ -open if $A \subseteq int_{\omega}(cl(int_{\omega}(A)))$. 2. $pre - \omega$ -open if $A \subseteq int_{\omega}(cl(A))$. 3. $b - \omega$ -open if $A \subseteq int_{\omega}(cl(A)) \cup cl(int_{\omega}(A))$. 4. $\beta - \omega$ -open if $A \subseteq cl(int_{\omega}(cl(A)))$.

For a subset A of \hat{X} , the ω – *interior* of the set A defined as the union of all ω – open sets contained in A, and denoted by $int_{\omega}(A)$. The closure of A will be denoted by cl(A).

Remark 1.2. [5] Any ω -open (resp. $\alpha - \omega$ -open, $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) sets need not be open (resp. α -open, pre -open, b -open and β -open) as can be seen in the following example:

In [5] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced relationships among the weak open sets above by the lemma below:

Lemma 1.3. [5] In any topological space: **1.** Any open set is ω -open. **2.** Any ω -open set is $\alpha - \omega$ -open. **3.** Any $\alpha - \omega$ -open set is $pre - \omega$ -open. **4.** Any $pre - \omega$ -open set is $\beta - \omega$ -open. **5.** Any $b - \omega$ -open set is $\beta - \omega$ -open. The converse is not true [5].

Remark 1.4. [5] The intersection of two $pre - \omega$ -open, (resp. $b - \omega$ -open and $\beta - \omega$ -open) sets need not be $pre - \omega$ -open, (resp. $b - \omega$ -open and $\beta - \omega$ -open) sets. As can be seen in the following example:

Example 1.5. [5] Let $X = \mathbb{R}$ with the usual topology T. Let A = Q and $B = (\mathbb{R} \setminus Q) \cup \{1\}$, then A and B are $pre - \omega$ -open, but $A \cap B = \{1\}$, is not $\beta - \omega$ -open since $cl(int_{\omega} (cl(\{1\}))) = cl(int_{\omega} (\{1\})) = cl(\{\emptyset\}) = \emptyset$.

Lemma 1.6. [5] The intersection of an $\alpha - \omega$ -open (resp. $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) subset of any topological space and an open subset is $\alpha - \omega$ -open (resp. $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) set.

Theorem 1.7. The union of an $\alpha - \omega$ -closed (resp. $pre - \omega$ - closed, $b - \omega$ - closed and $\beta - \omega$ - closed) subset of any topological space and a closed subset is $\alpha - \omega$ - closed (resp. $pre - \omega$ - closed, $b - \omega$ - closed and $\beta - \omega$ - closed) set.

Proof:

Let *A* be an $\alpha - \omega$ -closed subset of a topological space *X* and *B* is a closed subset of *X*. Then A^c is $\alpha - \omega$ -open subset of *X* and B^c is an open subset of *X*. Then by Lemma 1.6 we have $A^c \cap B^c$ is an is $\alpha - \omega$ -open subset of *X* and $(A^c \cap B^c)^c$ is an $\alpha - \omega$ -closed subset of *X*. Therefore $(A^c \cap B^c)^c = A \cup B$ is $\alpha - \omega$ -closed subset of *X*. X

Theorem 1.8. [5] If $\{A_{\alpha} : \alpha \in \Delta\}$ is a collection of $\alpha - \omega$ -open (resp. $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) subsets of the topological space (X, T), then $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is $\alpha - \omega$ -open (resp. $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) set.

Theorem 1.9. If $\{A_{\alpha} : \alpha \in \Delta\}$ is a collection of $\alpha - \omega$ -closed (resp. $pre - \omega$ -closed, $b - \omega$ -closed and $\beta - \omega$ -closed) subsets of the topological space (X, T), then $\bigcap_{\alpha \in \Delta} A_{\alpha}$ is $\alpha - \omega$ -closed (resp. $pre - \omega$ -closed, $b - \omega$ -closed and $\beta - \omega$ -closed) set. **Proof:**

Let $\{A_{\alpha} : \alpha \in \Delta\}$ be a collection of $\alpha - \omega$ -closed subsets of *X*, then A_{α}^{c} (the complement set of A_{α}) is $\alpha - \omega$ - open set for each $\alpha \in \Delta$. Then by Theorem 1.8 we have $\bigcup_{\alpha \in \Delta} A_{\alpha}^{c}$ is $\alpha - \omega$ - open set. Therefore $(\bigcup_{\alpha \in \Delta} A_{\alpha}^{c})^{c} = \bigcap_{\alpha \in \Delta} A_{\alpha}$, is $\alpha - \omega$ - closed subsets of *X*. A similar proof for the other cases X

Definition 1.10. [5] A space (*X*, *T*) is called a *door space* if every subset of *X* is either open or closed.

Lemma 1.11. [5] If (X, T) is a door space, then every $pre - \omega$ -open set is ω -open.

Theorem 1.12. Let A be a $\beta - \omega$ -open set in the topological space (X, T), then A is $b - \omega$ -open, whenever X is door space.

Proof:

Let *A* be a $\beta - \omega$ -open subset of *X*. If *A* is open then by Lemma 1.4 it is $b - \omega$ -open. Then if *A* is closed we get $A \subseteq cl(int_{\omega}(A)) \subseteq int_{\omega}(cl(A)) \cup cl(int_{\omega}(A))$. Thus *A* is $b - \omega$ -open set in *X* X

Definition 1.13. [5] A subset A of a space X is called

1. An $\boldsymbol{\omega} - \boldsymbol{t} - \boldsymbol{set}$, if $int(A) = int_{\omega}(cl(A))$.

2. An $\omega - B$ -set if $A = U \cap V$, where U is an open set and V is an $\omega - t$ -set.

3. An $\boldsymbol{\omega} - \boldsymbol{t}_{\boldsymbol{\alpha}} - \boldsymbol{set}$, if $int(A) = int_{\boldsymbol{\omega}}(cl(int_{\boldsymbol{\omega}}(A)))$.

4. An $\omega - B_{\alpha}$ -set if $A = U \cap V$, where U is an open set and V is an $\omega - t_{\alpha}$ -set.

5. An ω -set if $A = U \cap V$, where U is an open set and $int(V) = int_{\omega}(V)$.

Definition 1.14. Let (*X*, *T*) be topological space. It said to be satisfy

1. The ω –*condition* if every ω –open set is ω –set.

2. The $\boldsymbol{\omega} - \boldsymbol{B}_{\alpha}$ -condition if every $\alpha - \omega$ -open set is $\omega - B_{\alpha}$ -set.

3. The $\omega - B$ -condition if every $pre - \omega$ -open is $\omega - B$ -set.

Now let us introduce the following lemma from [5].

Lemma 1.15. [5] For any subset A of a space X, We have

1. A is open if and only if A is ω –open and ω –set.

2. A is open If and only if A is $\alpha - \omega$ –open and $\omega - B_{\alpha}$ –set.

3. A is open if and only if A is $pre - \omega$ -open and $\omega - B$ -set.

Lemma 1.16. [5] Let (X, T) be a topological space, and let $A \subseteq X$. If A is $b - \omega$ -open set such that $int_{\omega}(A) = \emptyset$, then A is $pre - \omega$ -open.

Definition 1.17. Let X be a topological space. We say that a subset A of X is ω -compact [2] (resp. $\alpha - \omega$ -compact, $\beta - \omega$ -compact and $\beta - \omega$ -compact) if for each cover of ω -open (resp. $\alpha - \omega$ -open, pre $-\omega$ -open, b $-\omega$ -open and $\beta - \omega$ -open) sets from X contains a finite subcover for A.

Definition 1.18. A function $f:(X,\sigma) \to (Y,\tau)$ is called ω -continuous (resp. $\alpha - \omega$ -continuous, pre $-\omega$ -continuous and $\beta - \omega$ -continuous), if for each $x \in X$, and each ω -open (resp. $\alpha - \omega$ -open, pre $-\omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) set V containing f(x), there exists an ω -open (resp. $\alpha - \omega$ -open, pre $-\omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) set U containing x, such that $f(U) \subset V$.

2. weak T_0 spaces

In this article, let us introduce the weak T_0 spaces with some relations, propositions and theorems.

Definition 2.1. Let X be a topological space. If for each $x \neq y \in X$, either there exists a set U, such that $x \in U$, $y \notin U$, or there exists a set U such that $x \notin U$, $y \notin U$. Then X called

1. $\omega - T_0$ space, whenever U is ω -open set in X.

2. $\alpha - \omega - T_0$ space, whenever U is $\alpha - \omega$ -open set in X.

3. $pre-\omega - T_0$ space, whenever U is pre $-\omega$ -open set in X.

4. $\boldsymbol{b} - \boldsymbol{\omega} - \boldsymbol{T}_0$ space, whenever U is $\boldsymbol{b} - \boldsymbol{\omega}$ -open set in X.

5. $\beta - \omega - T_0$ space, whenever U is $\beta - \omega$ -open set in X.

Using Lemma 1.3 we can write the following proposition:

Proposition 2.2. Let (X, T) be a topological space.

1. If (X,T) is T_0 , then it is $\omega - T_0$. 2. If (X,T) is $\omega - T_0$, then it is $\alpha - \omega - T_0$. 3. If (X,T) is $\alpha - \omega - T_0$, then it is $pre-\omega - T_0$

4. If (X,T) is $pre-\omega - T_0$, then it is $b - \omega - T_0$.

5. If (X,T) is $b - \omega - T_0$, then it is $\beta - \omega - T_0$.

Remark 2.3. The converse of the above theorem is not true as we see in the following example:

Example 2.4. Let $X = \{1,2,3\}$ with the topology $T = \{\emptyset, X, \{1\}\}$. It is clear that (X, T) is $\omega - T_0$ space but not T_0 space.

Х

Theorem 2.5. Let (X,T) be a door space. Then we have: **1.** Every $pre -\omega - T_0$ space is $\omega - T_0$. **2.** Every $\beta - \omega - T_0$ space is $b - \omega - T_0$. **Proof:** Directly from Definition 2.1, Lemma 1.11 and Theorem 1.12

Theorem 2.6. Let (*X*,*T*), be a topological space.

1. If (X, T) is $\omega - T_0$ topological space satisfies the ω -condition, then it is T_0 topological space.

2. If (*X*, *T*) is $\alpha - \omega - T_0$ topological space satisfies the $\omega - B_\alpha$ -condition, then it is T_0 topological space.

3. If (X, T) is $pre - \omega - T_0$ topological space satisfies the $\omega - B$ -condition, then it is T_0 topological space.

Proof:

Directly from Definition 2.1, Definition 1.14 and Lemma 1.15 X

Proposition 2.7. If (X,T) is $b - \omega - T_0$ topological space with the property that any $b - \omega$ -open subset has empty ω -interior. Then it is $pre - \omega - T_0$.

Proof:

Directly from Definition 2.1 and Lemma 1.16 X One can summarize the theorems above by Figure 1.

3. weak T₁ space

Weak types of $\omega - T_1$ spaces is the subject of this article. Also we introduce some related results.

Definition 3.1. Let X be a topological space. For each $x \neq y \in X$, there exists a set U, such that $x \in U, y \notin U$, and there exists a set V such that $y \in V, x \notin V$, then X is called

1. $\omega - T_1$ space if U is open and V is ω -open sets in X.

2. $\alpha - \omega - T_1$ space if U is open and V is $\alpha - \omega$ -open sets in X.

3. $\omega^* - T_1$ space [3] if U and V are ω -open sets in X.

4. $\alpha - \omega^* - T_1$ space if U is ω -open and V is $\alpha - \omega$ -open sets in X.

5. $\alpha - \omega^{**} - T_1$ space if U and V are $\alpha - \omega$ -open sets in X.

6. pre $-\omega - T_1$ space if U is open and V is pre $-\omega$ -open sets in X.

7. pre $-\omega^* - T_1$ space if U is ω -open and V is pre $-\omega$ -open sets in X.

8. $\alpha - pre - \omega - T_1$ space if U is $\alpha - \omega$ - open and V is pre $-\omega$ - open sets in X.

9. pre $-\omega^{\star\star} - T_1$ space if U and V are pre $-\omega$ -open sets in X.

10. $b - \omega - T_1$ space if U is open and V is $b - \omega$ -open sets in X.

11. $b - \omega^* - T_1$ space if U is ω -open and V is $b - \omega$ -open sets in X.

12. $\alpha - b - \omega - T_1$ space if U is $\alpha - \omega$ -open and V is $b - \omega$ -open sets in X.

13. pre $-b - \omega - T_1$ space if U is pre $-\omega$ -open and V is $b - \omega$ -open sets in X.

14. $b - \omega^{**} - T_1$ space if U and V are $b - \omega$ -open sets in X.

15. $\beta - \omega - T_1$ space if U is open and V is $\beta - \omega$ -open sets in X.

16. $\beta - \omega^* - T_1$ space if U is ω -open and V is $\beta - \omega$ -open sets in X.

17. $\alpha - \beta - \omega - T_1$ space if U is $\alpha - \omega$ -open and V is $\beta - \omega$ -open sets in X.

18. $pre - \beta - \omega - T_1$ space if U is $pre - \omega$ -open and V is $\beta - \omega$ -open sets in X.

19. $\beta - \omega^{**} - T_1$ space if U and V are $\beta - \omega$ -open sets in X.

20. $b - \beta - \omega - T_1$ space if U is $b - \omega$ -open and V is $\beta - \omega$ -open sets in X

Theorem 3.2. Let *X* be a topological space,

1. X is $\omega - T_1$ space if and only if for each $x \neq y \in X$, $\{x\}$ is closed and $\{y\}$ is ω -closed set in X.

2. X is $\alpha - \omega - T_1$ space if and only if for each $x \neq y \in X$, $\{x\}$ is closed and $\{y\}$ is $\alpha - \omega$ -closed set in X.

3. *X* is $\omega^* - T_1$ space if and only if for each $x \in X$, $\{x\}$ is ω -closed set in *X*.

4. X is $\alpha - \omega^* - T_1$ space if and only if for each $x \neq y \in X$, $\{x\}$ is ω -closed and $\{y\}$ is $\alpha - \omega$ -closed set in X.

5. *X* is $\alpha - \omega^{**} - T_1$ space if and only if for each $x \in X$, $\{x\}$ is $\alpha - \omega$ -closed set in *X*.

6. X is $pre - \omega - T_1$ space if and only if for each $x \neq y \in X$, $\{x\}$ is closed and $\{y\}$ is $pre - \omega$ -closed set in X.

7. X is $pre - \omega^* - T_1$ space if and only if for each $x \neq y \in X$, $\{x\}$ is ω -closed and $\{y\}$ is $pre - \omega$ -closed set in X.

8. X is $\alpha - pre - \omega - T_1$ space if and only if for each $x \neq y \in X$, $\{x\}$ is $\alpha - \omega$ -closed and $\{y\}$ is $pre - \omega$ -closed set in X.

9. *X* is $pre - \omega^{**} - T_1$ space if and only if for each $x \in X$, $\{x\}$ is $pre - \omega$ -closed set in *X*.

10. X is $b - \omega - T_1$ space if and only if for each $x \neq y \in X$, $\{x\}$ closed and $\{y\}$ is $b - \omega$ -closed set in X.

11. X is $b - \omega^* - T_1$ space if and only if for each $x \neq y \in X$, $\{x\}$ is ω -closed and $\{y\}$ is $b - \omega$ -closed set in X.

12. *X* is $\alpha - b - \omega - T_1$ space if and only if for each $x \neq y \in X$, $\{x\}$ is $\alpha - \omega$ -closed and $\{y\}$ is $b - \omega$ -closed set in *X*.

13. X is $pre - b - \omega - T_1$ space if and only if for each $x \neq y \in X$, $\{x\}$ is pre -closed and $\{y\}$ is $b - \omega$ -closed set in X.

14. X is $b - \omega^{**} - T_1$ space if and only if for each $x \in X$, $\{x\}$ is $b - \omega$ -closed set in X.

15. *X* is $\beta - \omega - T_1$ space if and only if for each $x \neq y \in X$, {*x*} is closed and {*y*} is $\beta - \omega$ -closed set in *X*.

16. X is $\beta - \omega^* - T_1$ space if and only if for each $x \neq y \in X$, $\{x\}$ is ω -closed and $\{y\}$ is $\beta - \omega$ -closed set in X.

17. X is $\alpha - \beta - \omega - T_1$ space if and only if for each $x \neq y \in X$, $\{x\}$ is $\alpha - \omega$ -closed and $\{y\}$ is $\beta - \omega$ -closed set in X.

18. *X* is $pre - \beta - \omega - T_1$ space if and only if for each $x \neq y \in X$, $\{x\}$ is $pre - \omega$ -closed and $\{y\}$ is $\beta - \omega$ -closed set in *X*.

19. *X* is $\beta - \omega^{**} - T_1$ space if and only if for each $x \in X$, $\{x\}$ is $\beta - \omega$ -closed set in *X*.

20. *X* is $b - \beta - \omega - T_1$ space if and only if for each $x \neq y \in X$, $\{x\}$ is $b - \omega$ -closed and $\{y\}$ is $\beta - \omega$ -closed set in *X*.

Proof of (4):

Let $x \in X$. If $y \in X$, such that $y \neq x$, then there exist an ω -open set U_y containing y but not x, and $\alpha - \omega$ -open set U_x containing x but not y. Hence $y \in U_y \subset \{x\}^c$. Therefore $\{x\}^c = \bigcup_{y \in \{x\}^c} U_y$, which is ω -open set and $\{x\}$ is ω -closed set in X. Also $\{y\}$ is $\alpha - \omega$ - closed set in X. In fact $x \in U_x \subset \{y\}^c$, which implies $\{y\}^c = \bigcup_{x \in \{y\}^c} U_x$. Then because U_x is $\alpha - \omega$ -open set, for each $x \in \{y\}^c$, so $\{y\}^c$ is $\alpha - \omega$ -open set, and $\{y\}$ is $\alpha - \omega$ -closed set

Now for the converse, let $x \neq y \in X$, $U_x = X \setminus \{y\}$ is $\alpha - \omega$ - open set containing x but not y, and $U_y = X \setminus \{x\}$ is ω - open set, containing y but not x. Thus X is $\alpha - \omega^* - T_1$ space.

Х

A similar proof for 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20

Theorem 3.3. For any topological space.

. Any T_1 is $\omega - T_1$ space. . Any $\omega - T_1$ is $\alpha - \omega - T_1$ space. . Any $\omega - T_1$ is $\omega^* - T_1$ space. 4. Any $\omega^* - T_1$ is $\alpha - \omega^* - T_1$ space. . Any $\alpha - \omega^* - T_1$ is $pre - \omega^* - T_1$ space. 6. Any $\alpha - \omega - T_1$ is $\alpha - \omega^* - T_1$ space. 7. Any $\alpha - \omega - T_1$ is $pre - \omega - T_1$ space. . Any *pre* $-\omega - T_1$ is $\beta - \omega - T_1$ space. 9. Any $\alpha - \omega^* - T_1$ is $\alpha - \omega^{**} - T_1$ space. . Any $\alpha - \omega^{\star\star} - T_1$ is $\alpha - pre - \omega - T_1$ space. . Any $\alpha - pre - \omega - T_1$ is $pre - \omega^{\star \star} - T_1$ space. . Any $pre - \omega^{\star\star} - T_1$ is $pre - b - \omega - T_1$ space. . Any $pre - b - \omega - T_1$ is $b - \omega^{**} - T_1$ space. 14. Any $b - \omega^{\star \star} - T_1$ is $b - \beta - \omega - T_1$ space. . Any $b - \beta - \omega - T_1$ is $\beta - \omega^{**} - T_1$ space. . Any $pre - \omega^* - T_1$ is $\alpha - pre - \omega - T_1$ space. . Any $pre - \omega^* - T_1$ is $b - \omega^* - T_1$ space. . Any $\alpha - pre - \omega - T_1$ is $\alpha - b - \omega - T_1$ space. . Any $b - \omega^* - T_1$ is $\alpha - b - \omega - T_1$ space. . Any $pre - \omega - T_1$ is $b - \omega - T_1$ space. . Any $\beta - \omega - T_1$ is $\beta - \omega^* - T_1$ space. **22.** Any $\beta - \omega^* - T_1$ is $\alpha - \beta - \omega - T_1$ space. **23.** Any $\alpha - \beta - \omega - T_1$ is $pre - \beta - \omega - T_1$ space. . Any $pre - \omega - T_1$ is $pre - \omega^* - T_1$ space. **25.** Any $b - \omega - T_1$ is $\beta - \omega - T_1$ space. **26.** Any $b - \omega^* - T_1$ is $\beta - \omega^* - T_1$ space. . Any $\alpha - b - \omega - T_1$ is $\alpha - \beta - \omega - T_1$ space. . Any $\alpha - b - \omega - T_1$ is $pre - b - \omega - T_1$ space. . Any $pre - b - \omega - T_1$ is $pre - \beta - \omega - T_1$ space. . Any $pre - \beta - \omega - T_1$ is $b - \beta - \omega - T_1$ space. . Any $b - \omega - T_1$ is $b - \omega^* - T_1$ space. **Proof:** Easy. By using Lemma 1.3 Х

Remark 3.4. The converse of the theorem above is not satisfied in general. As we see in the following examples.

Example 3.5. Let $X = \{1,2,3\}$ with the topology $T = \{\emptyset, X, \{1\}, \{3\}, \{1,3\}\}$. (X, T) is $\omega - T_1$ space, but not T_1 . To have equivalence between the weak T_1 s spaces, we shall introduce the following theorems:

Theorem 3.6. Let (X, T) be a door space. Then we have: **1.** Every $pre - \omega - T_1$ space is $\omega - T_1$. **2.** Every $pre - \omega^* - T_1$ space is $\omega^* - T_1$. **3.** Every $a - pre - \omega - T_1$ space is $a - \omega^* - T_1$. **4.** Every $pre - b - \omega - T_1$ space is $b - \omega^* - T_1$. **5.** Every $pre - \beta - \omega - T_1$ space is $\beta - \omega^* - T_1$. **6.** Every $pre - \omega^{**} - T_1$ space is $b - \omega^{**} - T_1$. **7.** Every $b - \beta - \omega - T_1$ space is $b - \omega^{**} - T_1$. **8.** Every $\beta - \omega^{**} - T_1$ space is $b - \omega^{**} - T_1$. **9.** Every $pre - \beta - \omega - T_1$ space is $pre - b - \omega - T_1$. **10.** Every $\alpha - \beta - \omega - T_1$ space is $\alpha - b - \omega - T_1$. **11.** Every $\beta - \omega^* - T_1$ space is $b - \omega^* - T_1$. **12.** Every $\beta - \omega - T_1$ space is $b - \omega - T_1$. **13.** Every $\beta - \omega - T_1$ space is $b - \omega - T_1$. **14.** Every $\beta - \omega - T_1$ space is $b - \omega - T_1$. **15.** Every $\beta - \omega - T_1$ space is $b - \omega - T_1$. **16.** Every $\beta - \omega - T_1$ space is $b - \omega - T_1$. **17.** Every $\beta - \omega - T_1$ space is $b - \omega - T_1$. **19.** Every $\beta - \omega - T_1$ space is $b - \omega - T_1$. **11.** Every $\beta - \omega - T_1$ space is $b - \omega - T_1$. **12.** Every $\beta - \omega - T_1$ space is $b - \omega - T_1$.

Directly from Lemma 1.11 and Theorem 1.12 X

Using Definition 1.14 and Lemma 1.15 we can prove the following important theorem

Theorem 3.7. For any topological space (X, T). A. Let (X, T), satisfies the ω –condition. **1**. If (X, T) is $\omega - T_1$, then it is T_1 . **2**. If (X, T) is $\omega^* - T_1$, then it is T_1 . **3.** If (X, T) is $\alpha - \omega^* - T_1$, then it is $\alpha - \omega - T_1$. 4. If (X, T) is $pre - \omega^* - T_1$, then it is $pre - \omega - T_1$. 5. If (X, T) is $b - \omega^* - T_1$, then it is $b - \omega - T_1$. 6. If (X, T) is $\beta - \omega^* - T_1$, then it is $\beta - \omega - T_1$. **B**. Let (X, T), satisfies the $\omega - B_{\alpha}$ -condition. **1**. If (X, T) is is $\alpha - \omega - T_1$, then it is T_1 . **2**. If (X, T) is $\alpha - \omega^* - T_1$, then it is $\omega - T_1$. 3. If (X, T) is $\alpha - \omega^{**} - T_1$, then it is T_1 . **4**. If (X, T) is $\alpha - pre - \omega - T_1$, then it is $pre - \omega - T_1$. 5. If (X, T) is $\alpha - b - \omega - T_1$, then it is $b - \omega - T_1$. 6. If (X, T) is $\alpha - \beta - \omega - T_1$, then it is $\beta - \omega - T_1$. C. Let (X, T), satisfies the $\omega - B$ -condition. **1**. If (X, T) is $pre - \omega - T_1$, then it is T_1 . **2**. If (X, T) is pre $-\omega^* - T_1$, then it is $\omega - T_1$. **3**. If (X, T) is $pre - \omega^{\star \star} - T_1$, then it is T_1 . 4. If (X, T) is $pre - b - \omega - T_1$, then it is $b - \omega - T_1$. **5.** If (X, T) is $pre - \beta - \omega - T_1$, then it is $\beta - \omega - T_1$. 6. If (X, T) is $\alpha - pre - \omega - T_1$, then it is $\alpha - \omega - T_1$.

Proposition 3.8. Let (X, T) be a topological space with the property that any $b - \omega$ – open subset has empty ω –interior.

1. If (X, T) is $b - \omega - T_1$, then it is $pre - \omega - T_1$. 2. If (X, T) is $b - \omega^* - T_1$, then it is $pre - \omega^* - T_1$. 3. If (X, T) is $\alpha - b - \omega - T_1$, then it is $\alpha - pre - \omega - T_1$. 4. If (X, T) is $pre - b - \omega - T_1$, then it is $pre - \omega^{**} - T_1$. 5. If (X, T) is $b - \omega^{**} - T_1$, then it is $pre - \omega^{**} - T_1$. 6. If (X, T) is $b - \beta - \omega - T_1$, then it is $pre - \beta - \omega - T_1$. Proof: Directly from Lemma 1.16 X

One can summarize the relationships among weak T_1 s spaces by Figure 2.

Definition 3.9. A topological space (X,T) is ω -symmetric if for x and y in the space X, $x \in cl_{\omega}(\{y\})$ implies $y \in cl_{\omega}(\{x\})$.

Proposition 3.10. Let X be a door, ω -symetric topological space. Then for each $x \in X$, the set $\{x\}$ is ω -closed. **Proof:**

Let $x \neq y \in X$, since X is a door space so $\{y\}$ is open or closed set in X. When $\{y\}$ is open, so it is ω -open, let $V_y = \{y\}$. Whenever $\{y\}$ is ω -closed, $x \notin \{y\} = cl_{\omega}(\{y\})$. Since X is ω -symetric we get $y \notin cl_{\omega}(\{x\})$. Put $V_y = X \setminus cl_{\omega}(\{x\})$, then $x \notin V_y$ and $y \in V_y$, and V_y is ω -open set in X. Hence we get for each $y \in X \setminus \{x\}$ there is an ω -open set V_y such that $x \notin V_y$ and $y \in V_y$. Therefore $X \setminus \{x\} = \bigcup_{y \in X \setminus \{x\}} V_y$ is ω -open, and $\{x\}$ is ω -closed X

Proposition 3.11. Let (X,T) be an $\omega - T_1$ (resp. $\omega^* - T_1$, $\alpha - \omega - T_1$, $\alpha - \omega^* - T_1$, $b - \omega - T_1$, $b - \omega^* - T_1$, $pre - \omega - T_1$, $\beta - \omega - T_1$, $\beta - \omega^* - T_1$) topological space, then it is ω -symetric space. **Proof:**

Assume $y \notin cl_{\omega}(\{x\})$, so $x \neq y$, then since X is $\omega - T_1$ there is an open set U containing x but not y, so $x \notin cl_{\omega}(\{y\})$. This completes the proof X

Theorem 3.12. The topological door space is ω – symmetric if and only if it is $\omega^* - T_1$. **Proof:**

Let (X, T) be a door ω – symmetric space. Then using Proposition 3.10 for each $x \in X$, $\{x\}$ is ω –closed set in X. Then by (3) of Theorem 3.2, we get that (X, T) is $\omega^* - T_1$. On the other hand, assume (X, T) is $\omega^* - T_1$, then directly by Proposition 3.11 (X, T) is ω – symmetric space X

4. Weak $\omega - T_2$ spaces

In this article we will define weak types of $\omega - T_2$ spaces and introduce some results about it. **Definition 4.1.** Let *X* be a topological space. And for each $x \neq y \in X$, there exist two disjoint sets *U* and *V* with $x \in U$ and $y \in V$, then *X* is called: 1. $\omega - T_2$ space if *U* is open and *V* is ω – open sets in *X*.

2. $\alpha - \omega - T_2$ space if U is open and V is $\alpha - \omega$ -open sets in X.

3. $\omega^* - T_2$ space if U and V are ω -open sets in X.

4. $\alpha - \omega^* - T_2$ space if U is ω -open and V is $\alpha - \omega$ -open sets in X.

5. $\alpha - \omega^{**} - T_2$ space if U and V are $\alpha - \omega$ -open sets in X.

6. pre $-\omega - T_2$ space if U is open and V is pre $-\omega$ -open sets in X.

7. pre $-\omega^* - T_2$ space if U is ω -open and V is pre $-\omega$ -open sets in X.

8. $\alpha - pre - \omega - T_2$ space if U is α - open and V is $pre - \omega$ - open sets in X.

9. pre $-\omega^{**} - T_2$ space if U and V are pre $-\omega$ -open sets in X.

10. $b - \omega - T_2$ space if U is open and V is $b - \omega$ -open sets in X.

11. $b - \omega^* - T_2$ space if U is ω -open and V is $b - \omega$ -open sets in X.

12. $\alpha - b - \omega - T_2$ space if U is $\alpha - \omega$ -open and V is $b - \omega$ -open sets in X.

13. $pre - b - \omega - T_2$ space if U is $pre - \omega$ -open and V is $b - \omega$ -open sets in X.

14. $b - \omega^{**} - T_2$ space if U and V are $b - \omega$ -open sets in X.

15. $\beta - \omega - T_2$ space if U is open and V is $\beta - \omega$ -open sets in X.

16. $\beta - \omega^* - T_2$ space if U is ω -open and V is $\beta - \omega$ -open sets in X.

17. $\alpha - \beta - \omega - T_2$ space if U is $\alpha - \omega$ -open and V is $\beta - \omega$ -open sets in X.

18. $pre-\beta - \omega - T_2$ space if U is $pre - \omega$ -open and V is $\beta - \omega$ -open sets in X.

19. $\beta - \omega^{**} - T_2$ space if U and V are $\beta - \omega$ -open sets in X.

20. $b - \beta - \omega - T_2$ space if U is $b - \omega$ -open and V is $\beta - \omega$ -open sets in X.

Remark 4.2. We can restate Theorem 3.3 for the weak T_2 s spaces.

Theorem 4.3. For any door topological space we have:

1. Every $pre - \omega - T_2$ space is $\omega - T_2$. 2. Every $pre - \omega^* - T_2$ space is $\omega^* - T_2$. 3. Every $\alpha - pre - \omega - T_2$ space is $\alpha - \omega^* - T_2$. 4. Every $pre - b - \omega - T_2$ space is $b - \omega^* - T_2$. 5. Every $pre - \beta - \omega - T_2$ space is $\beta - \omega^* - T_2$. 6. Every $pre - \omega^{**} - T_2$ space is $\omega^* - T_2$. 7. Every $b - \beta - \omega - T_2$ space is $b - \omega^{**} - T_2$. 8. Every $\beta - \omega^{**} - T_2$ space is $b - \omega^{**} - T_2$. 9. Every $pre - \beta - \omega - T_2$ space is $pre - b - \omega - T_2$. 10. Every $\alpha - \beta - \omega - T_2$ space is $\alpha - b - \omega - T_2$. 11. Every $\beta - \omega^* - T_2$ space is $b - \omega^* - T_2$. 12. Every $\beta - \omega - T_2$ space is $b - \omega^* - T_2$. 13. Every $\beta - \omega - T_2$ space is $b - \omega^* - T_2$. 14. Every $\beta - \omega - T_2$ space is $b - \omega - T_2$. 15. Every $\beta - \omega - T_2$ space is $b - \omega^* - T_2$. 16. Every $\beta - \omega - T_2$ space is $b - \omega^* - T_2$. 17. Every $\beta - \omega - T_2$ space is $b - \omega^* - T_2$. 18. Every $\beta - \omega - T_2$ space is $b - \omega^* - T_2$. 19. Every $\beta - \omega - T_2$ space is $b - \omega^* - T_2$. 10. Every $\beta - \omega - T_2$ space is $b - \omega^* - T_2$. 10. Every $\beta - \omega - T_2$ space is $b - \omega^* - T_2$. 11. Every $\beta - \omega - T_2$ space is $b - \omega - T_2$. 12. Every $\beta - \omega - T_2$ space is $b - \omega - T_2$.

Directly from Lemma 1.11 and Theorem 1.12 X

Theorem 4.4. For any topological space (X, T). **A.** Let (X, T), satisfies the ω -condition. **1.** If (X, T) is $\omega - T_2$, then it is T_2 . **2.** If (X, T) is $\omega^* - T_2$, then it is T_2 . **3.** If (X, T) is $\alpha - \omega^* - T_2$, then it is $\alpha - \omega - T_2$. **4.** If (X, T) is $pre - \omega^* - T_2$, then it is $pre - \omega - T_2$. **5.** If (X, T) is $\beta - \omega^* - T_2$, then it is $\beta - \omega - T_2$. **6.** If (X, T) is $\beta - \omega^* - T_2$, then it is $\beta - \omega - T_2$. **7.** B. Let (X, T), satisfies the $\omega - B_\alpha$ -condition. **1.** If (X, T) is $\alpha - \omega^* - T_2$, then it is T_2 . **2.** If (X, T) is $\alpha - \omega^* - T_2$, then it is $\omega - T_2$. **3.** If (X, T) is $\alpha - \omega^{**} - T_2$, then it is T_2 . **4.** If (X, T) is $\alpha - pre - \omega - T_2$, then it is $pre - \omega - T_2$. 5. If (X, T) is $\alpha - b - \omega - T_2$, then it is $b - \omega - T_2$. 6. If (X, T) is $\alpha - \beta - \omega - \overline{T_2}$, then it is $\beta - \omega - \overline{T_2}$. C. Let (X, T), satisfies the $\omega - B$ –condition. **1**. If (X, T) is $pre - \omega - T_2$, then it is T_2 . 2. If (X, T) is $pre -\omega^* - T_2$, then it is $\omega - T_2$. 3. If (X, T) is $pre -\omega^{**} - T_2$, then it is T_2 . 4. If (X, T) is $pre - b - \omega - T_2$, then it is $b - \omega - T_2$. 5. If (X, T) is $pre - \beta - \omega - T_2$, then it is $\beta - \omega - T_2$. 6. If (X, T) is $\alpha - pre - \omega - T_2$, then it is $\alpha - \omega - T_2$. **Proof:** Using Definition 4.1 Definition 1.14 and Lemma 1.15

Proposition 4.5. Let (X,T) be a topological space with the property that any $b - \omega$ – open subset has empty ω –interior.

Х

1. If (X, T) is $b - \omega - T_2$, then it is $pre - \omega - T_2$. **2**. If (X, T) is $b - \omega^* - T_2$, then it is $pre - \omega^* - T_2$. **3**. If (X, T) is $\alpha - b - \omega - T_2$, then it is $\alpha - pre - \omega - T_2$. **4.** If (X, T) is $pre - b - \omega - T_2$, then it is $pre - \omega^{**} - T_2$. **5**. If (X, T) is $b - \omega^{**} - T_2$, then it is $pre - \omega^{**} - T_2$. **6**. If (X, T) is $b - \beta - \omega - T_2$, then it is $pre - \beta - \omega - T_2$. **Proof:** Directly from Lemma 1.16 Х

One can summarize the relationships among weak T_2 s spaces by a figure coincide with Figure 2.

Theorem 4.6. Let (X, τ) and (Y, σ) be two topological spaces, and $f: (X, \tau) \to (Y, \sigma)$ be injective map.

1. If f is ω -continuous, and Y is $\omega^* - T_2$, then X is also $\omega^* - T_2$.

2. If f is $\alpha - \omega$ -continuous, and Y is $\alpha - \omega^{**} - T_2$, then X is also $\alpha - \omega^{**} - T_2$. 3. If f is $pre - \omega$ -continuous, and Y is $pre - \omega^{**} - T_2$, then X is also $pre - \omega^{**} - T_2$.

4. If f is $b - \omega$ -continuous, and Y $b - \omega^{**} - T_2$, then \bar{X} is also $b - \omega^{**} - T_2$.

5. If f is $\beta - \omega$ -continuous, and Y is $\beta - \omega^{**} - T_2$, then X is also $\beta - \omega^{**} - T_2$.

Proof of (2):

Let us prove one case and the others are similar. Let Y be $\alpha - \omega^{**} - T_2$ space, to prove X is $\alpha - \omega^{**} - T_2$, let $x, y \in X$ with $x \neq y$, Since f is injective, so $f(x) \neq f(y)$. And since Y is $\alpha - \omega^{**} - T_2$, there exist $\alpha - \omega$ -open sets V and U such that $f(x) \in U$ and $f(y) \in V$ with $U \cap V = \emptyset$. Let $G = f^{-1}(U)$ and $H = f^{-1}(V)$. Since \hat{f} is $\alpha - i$ ω - continuous, so G and H are $\alpha - \omega$ - open sets in X, with $x \in G$, and $y \in H$. Also $G \cap H = f^{-1}(U) \cap f^{-1}(V)$ $= f^{-1}(U \cap V) = f^{-1}(\emptyset) = \emptyset$. Hence X is $\alpha - \omega - T_2$ space Х

Theorem 4.7. Let (X, τ) and (Y, σ) be two topological spaces, and $f: (X, \tau) \to (Y, \sigma)$ be injective map.

1. If X satisfies ω -condition, f is ω -continuous, and Y is ω - T₂, then X is also ω - T₂.

2. If X satisfies $\omega - B_{\alpha}$ -condition, f is $\alpha - \omega$ -continuous, and Y is $\alpha - \omega - T_2$, then X is also $\alpha - \omega - T_2$.

3. If X satisfies $\omega - B_{\alpha}$ -condition, f is $\alpha - \omega$ -continuous, and Y is $\alpha - \omega^* - T_2$, then X is also $\alpha - \omega^* - T_2$.

4. If X satisfies, $\omega - B$ -condition, f is $pre - \omega$ -continuous, and Y is $pre - \omega - T_2$, then X is also $pre - \omega - T_2$.

5. If X is a door space or satisfies $\omega - B$ -condition, f is $pre - \omega$ -continuous, and Y is $pre - \omega^* - T_2$, then X is also $pre - \omega^* - T_2$.

6. If X is a door space or satisfies $\omega - B$ -condition, f is $pre - \omega$ -continuous, and Y is $\alpha - pre - \omega - T_2$, then X is also $\alpha - pre - \omega - T_2$.

7. If X is a door space, f is $\beta - \omega$ -continuous, and Y is $b - \beta - \omega - T_2$, then X is also $b - \beta - \omega - T_2$. **Proof of (7):**

Let Y be $b - \beta - \omega - T_2$, and let $x, y \in X$ with $x \neq y$, Since f is injective, so $f(x) \neq f(y)$. And since Y is $b - \beta - \omega - T_2$ there exist $b - \omega$ -open set U and $\beta - \omega$ -open set V such that $f(x) \in U$ and $f(y) \in V$ with $U \cap V = U$ \emptyset . Let $G = f^{-1}(U)$ and $H = f^{-1}(V)$. $\beta - \omega$ -continuity implies G and H are $\beta - \omega$ -open sets in X. When X is a door space we can consider one of the two $\beta - \omega$ -open sets as a $b - \omega$ -open with $x \in G$, and $y \in H$. Also $G \cap H =$ $f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = f^{-1}(\emptyset) = \emptyset$. Hence X is $b - \beta - \omega - T_2$ space X

Proposition 4.8. Let (X, T) be a topological space.

1. If X is an $\omega - T_2$ space, $x \notin Y$ and Y is ω -compact subset of X. Then there exist disjoint sets U is open and V is ω – open in X such that U containing x and V containing Y.

2. If X is an $\omega^* - T_2$ space, $x \notin Y$ and Y is ω -compact subset of X. Then there exist disjoint sets U and V are ω -open in X such that U containing x and V containing Y.

3. If X is an $\alpha - \omega - T_2$ space, $x \notin Y$ and Y is $\alpha - \omega$ -compact subset of X. Then there exist disjoint sets U is open and V is $\alpha - \omega$ –open in X such that U containing x and V containing Y.

4. If X is an $\alpha - \omega^* - T_2$, space, $x \notin Y$ and Y is $\alpha - \omega$ -compact subset of X. Then there exist disjoint sets U is ω – open and V is $\alpha - \omega$ – open in X such that U containing x and V containing Y.

5. If X is a pre $-\omega - T_2$ space, $x \notin Y$ and Y is pre $-\omega$ -compact subset of X. Then there exist disjoint sets U is open and V is $pre - \omega$ -open in X such that U containing x and V containing Y.

6. If X is a pre $-\omega^* - T_2$ space, $x \notin Y$ and Y is pre $-\omega$ -compact subset of X. Then there exist disjoint sets U is ω - open and V is pre - ω - open in X such that U containing x and V containing Y.

7. If X is a $b-\omega-T_2$ space, $x \notin Y$ and Y is $b-\omega$ -compact subset of X. Then there exist disjoint sets U is open and V is $b - \omega$ -open in X such that U containing x and V containing Y.

8. If X is a $b - \omega^* - T_2$ space, $x \notin Y$ and Y is $b - \omega$ -compact subset of X. Then there exist disjoint sets U is ω -open and V is $b - \omega$ – open in X such that U containing x and V containing Y.

9. If X is a $\beta - \omega - T_2$ space, $x \notin Y$ and Y is $\beta - \omega$ -compact subset of X. Then there exist disjoint sets U is open and V is $\beta - \omega$ –open in X such that U containing x and V containing Y.

10. If X is a $\beta - \omega^* - T_2$ space, $x \notin Y$ and Y is $\beta - \omega$ - compact subset of X. Then there exist disjoint sets U is ω – open and V is $\beta - \omega$ – open in X such that U containing x and V containing Y.

Proof of (3):

Let $x \notin Y$. Assume $y \in Y$, since X is an $\alpha - \omega - T_2$ space, so there exist two disjoint sets U_y open and V_y $\alpha - \omega$ -open in X with $x \in U_y$, and $y \in V_y$, so $Y \subset \bigcup_{y \in Y} V_y$. Since Y is an $\alpha - \omega$ -compact so there exist y_1, y_2, \dots, y_n , such that $Y \subset \bigcup_{i=1}^{n} V_{y_i}$. Let $V = \bigcup_{i=1}^{n} V_{y_i}$, V is $\alpha - \omega$ -open set containing Y, and $U = \bigcap_{i=1}^{n} U_{y_i}$ is open set containing x. *U* and *V* are disjoint because if there is $z \in U \cap V$, then $z \in V_{y_i}$ for some *i* and $z \in U_{y_i}$ for each *i*. This contradicts U_{y_i} and V_{y_i} are disjoint. Similarly we can prove the other cases X and V_{y_i} are disjoint. Similarly we can prove the other cases

As a consequence of the proof of the theorem above one can get the following corollary.

Corollary 4.9. Let (X, T) be a topological space. If X is an $\omega - T_2$ space, $x \in X$ and Y is compact set not containing x. Then there exist disjoint sets U open containing Y and V ω –open containing x.

Theorem 4.10. For any topological space.

1. Every ω –compact subset of $\omega - T_2$ space is closed.

2. Every $\alpha - \omega$ -compact subset of $\alpha - \omega - T_2$ space is closed.

3. Every ω –compact subset of $\omega^* - T_2$ space is ω –closed.

4. Every $\alpha - \omega$ -compact subset of $\alpha - \omega^* - T_2$ space is ω - closed.

5. Every $pre - \omega$ -compact subset of $pre - \omega - T_2$ space is closed. 6. Every $pre - \omega$ -compact subset of $pre - \omega^* - T_2$ space is ω - closed. 7. Every $b - \omega$ -compact subset of $b - \omega - T_2$ space is closed.

8. Every $b-\omega$ -compact subset of $b-\omega^*-T_2$ space is ω - closed.

9. Every $\beta - \omega$ -compact subset of $\beta - \omega - \overline{T}_2$ space is closed.

10. Every $\beta - \omega$ -compact subset of $\beta - \omega^* - T_2$ space is ω -closed. **Proof of (2):**

Let Y be an $\alpha - \omega$ -compact subset of the $\alpha - \omega - T_2$ space X. To prove Y is closed, we shall prove X Y is open. Let $x_0 \in X \setminus Y$, but X is $\alpha - \omega - T_2$, so for each $y \in Y$ there are disjoint sets U_y and V_y such that U_y is open set containing x_0 and V_y is $\alpha - \omega$ -open set containing y. The collection $\{V_y, y \in Y\}$ is a cover for Y consists of α - ω -open sets in X. Since Y is $\alpha - \omega$ -compact so we can find a finite subcover V for Y, $V = \bigcup_{i=1}^{n} V_{y_i}$. Let $U = \bigcup_{i=1}^{n} V_{y_i}$. $\bigcap_{i=1}^{n} U_{y_i}$. Note that U is open set and V is $\alpha - \omega$ -open set in X, also they are disjoint. If $z \in V$ then there is i, such that $z \in V_{y_i}$ and $z \notin U$, therefore U is an open set containing x_0 disjoint from Y. Hence X Y is open and Y is closed. Similarly we can prove the other statements Х

References

[1]. Al-Omari, A. and Noorani, M. S. M. (2007). Regular generalized w-closed sets, I nternat. J. Math. Math. Sci., vo. 2007. Article ID 16292, 11 pages, doi: 10.1155/2007/16292

[2].Al-Omari, A. and Noorani, M. S. M. (2007). Contra- w-continuous and almost contra- w-continuous, I nternat. J. Math. Math. Sci., vo. 2007. Article ID40469,13 pages. doi: 10.1155/2007/16292.

[3]. Hdeib, H. Z. (1982). ω-closed mappings, Rev. Colomb. Mat. 16 (3-4), 65-78.

[4]. Hdeib, H. Z. (1989). ω-continuous functions, Dirasat 16, (2), 136-142.

[5]. Noiri, T., Al-Omari, A. and Noorani, M. S. M. (2009). Weak forms of ω -open sets and decomposition of continuity, E.J.P.A.M.2(1), 73-84.

[6]. Noiri, T., Al-Omari, A. and Noorani, M. S. M. (2009). *Slightly ω-continuous functions*, Fasciculi Mathematica 41, 97-106.

Figure 1 Weak T_0 spaces

Figure 2 Weak T₁ spaces