European Journal of Scientific Research Volume 46 Issue 2.(2010)

On preparacompactness in bitopological spaces

Luay A. H. AL-Swidi

University of Babylon , College of Education –Ibn Hayan, Department of Mathematics .

Abstract . J. Dieudonne [8], introduced the notions of paracompactness and Martin M. K. [9], introduced the notions of paracompactness in bitopological spaces and K. AL-Zoubi and S. AL-Ghour [10], introduced the notions of P3-paracompactness of topological space in terms of preopen sets .In this paper, we introduce paracompactness in bitopological spaces in terms of ij-preopen sets . We obtain various characterizations, properties of paracompactness and its relationships with other types of spaces.

Key words and phrases: ij-preparacompact, ij-precontinuous, separation axioms.

1. Introduction

The concepts of regular open , regular closed , semiopen , semiclosed , and preopen sets have been introduced by many authors in a topological space (cf. [1-4]). These concepts are extended to bitopological spaces by many authors (cf. [5-7]).

Throughout the present paper (X, τ_1 , τ_2) and (Y, μ_1 , μ_2) (or simple X and Y) denote bitopological spaces . when A is a subset of a space X, we shall denote the closure of A and the interior of A in (X, τ_i) by τ_i -clA and τ_i -intA, respectively, where i=1,2, and i,j=1,2; $i\neq j$.

A subset A of X is said to be ij- preopen (resp. ij-semiopen ,ij-regular open , ij-regular closed and ij-preclosed) if

$$A \subseteq \tau_i - \operatorname{int}(\tau_i - clA)$$
 (resp. $A \subseteq \tau_i - cl(\tau_i - \operatorname{int} A)$, $A = \tau_i - \operatorname{int}(\tau_i - clA)$,

 $A = au_j - cl(au_i - \mathrm{int}\,A)$, and $au_j - cl(au_i - \mathrm{int}\,A) \subseteq A$). The family of all ij-semiopen (resp. ij-regular open and ij- preopen) sets of X is denoted by ij-SO(X) (resp. ij-RO(X) and ij-PO(X)). The intersection of all ij- preclosed sets which contain A is called the ij- preclosure of A and is denoted by ij-PclA. Obviously, ij-PclA is the smallest ij-preclosed set which contains A.

Definition 1.1 .A bitopological space (X, τ_1, τ_2) is called ij-locally indiscrete if every τ_i – open subset of X is τ_i – closed.

Definition 1.2. A collection $\Xi = \{ F_{\lambda} : \lambda \in \Gamma \}$ of subsets of X is called,

(1) locally finite with respect to the topology τ_i (respectively, ij-strongly locally finite), if for each $x \in X$, there exists $U_x \in \tau_i$ (respectively,

- $U_x \in ij RO(X)$) containing x and U_x which intersects at most finitely many members of Ξ ;
- (2) ij-P-locally finite if for each $x \in X$, there exists a ij- preopen set U_x in X containing x and U_x which intersects at most finitely many members of Ξ .

Definition 1.3. A bitopological space (X, τ_1, τ_2) is called $(\tau_i - \tau_j)$ paracompact with respect to the topology τ_i , if every τ_i -open cover of X has τ_j -open refinement which is locally finite with respect to the topology τ_i [9].

We obtain the following lemmas:

Lemma 1.4. For a bitopological space (X, τ_1, τ_2) , the followings are equivalent:

- (a) (X, τ_1, τ_2) is ij-locally indiscrete;
- (b) Every subset of X is ij-preopen;
- (c) Every τ_i closed subset of X is ij-preopen.

Lemma 1.5. If A is a ij-preopen subset of X, then $\tau_i - clA$ is ij-regular closed.

Lemma 1.6. Let A and B be subsets of a space X. Then

- (a) If $A \in ij PO(X)$ and $B \in \tau_i$, then $(A \cap B) \in ij PO(X)$.
- (b) If $A \in ij PO(X)$ and $B \in ij SO(X)$, then $(A \cap B) \in ij PO(B, \tau_{1B}, \tau_{2B})$.
- (c) If $A \in ij PO(B, \tau_{1B}, \tau_{2B})$ and $B \in ij PO(X)$, then $A \in ij PO(X)$.

Theorem 1.7 . Let $\Xi = \{F_{\lambda} : \lambda \in \Gamma \}$ be a collection of ij-semiopen subsets of a bitopological space (X, τ_1, τ_2) , then Ξ is ij-P-locally finite if and only if it ij-strongly locally finite.

Proof . (Necessity) . Since every ij- regular open subset of X is ij-preopen , so Ξ is ij-P-locally finite.

(Sufficiency). Let $x \in X$ and W_x be a ij-preopen subset of X such that $x \in W_x$ and $W_x \cap F_{\lambda i} \neq \Phi$ for each i=1,2,...,n. Put $R_x = \tau_i - \mathrm{int}(\tau_j - clW_x)$, then R_x is a ij-regular open which contains x . We show for every $\lambda \in \Gamma/\{\lambda_1,\lambda_2,....,\lambda_n\}$, $F_\lambda \cap R_x = \Phi$. For each $\lambda \in \Gamma$, choose $U_\lambda \in \tau_j$ such that $U_\lambda \subseteq P_\lambda \subseteq \tau_i - clU_\lambda$. Now, if $F_\lambda \cap R_x \neq \Phi$, then $\tau_i - clU_\lambda \cap R_x \neq \Phi$ and so $\tau_i - clU_\lambda \cap \tau_i - \mathrm{int}(\tau_j - clW_x) \neq \Phi$, which implies that there exist $p \in \tau_i - clU_\lambda$ and $p \in \tau_i - \mathrm{int}(\tau_j - clW_x)$. So for each $\tau_i - open$ set V_p containing p such that $V_p \cap U_\lambda \neq \Phi$, but $\tau_i - \mathrm{int}(\tau_j - clW_x)$ is a $\tau_i - open$ containing p , which implies that $U_\lambda \cap \tau_i - \mathrm{int}(\tau_j - clW_x) \neq \Phi$, since $\tau_i - \mathrm{int}(\tau_j - clW_x) \subseteq \tau_j - clW_x$, so we get that $U_\lambda \cap \tau_j - clW_x \neq \Phi$, then there exists $q \in U_\lambda$ and $q \in \tau_j - clW_x$. Therefore for each $\tau_j - open$ sets H_q containing q, $H_q \cap W_x \neq \Phi$, but U_λ is $\tau_j - open$ containing q, so $U_\lambda \cap W_x \neq \Phi$, which implies that

 $\Phi \neq U_{\lambda} \cap W_x \subseteq P_{\lambda} \cap W_x$, which contradict the hypothesis . Thus $\lambda \in \Gamma / \{\lambda_1, \lambda_2,, \lambda_n\}$.

Now using the above theorem and the fact that every ij-regular open is τ_i -open and every τ_j -open, ij-regular closed set is ij-semiopen set, we obtain the following corollaries:

Corollary 1.8. Let $\Xi = \{ F_{\lambda} : \lambda \in \Gamma \}$ be a collection of τ_j – open (ij-regular closed) subset of a bitopological space (X, τ_1, τ_2) . If Ξ is ij-P-locally finite, then Ξ is locally finite with respect to the topology τ_i .

Now by using the above theorem , corollary $1.8\,$ and the definition $1.3\,$, we obtain the following corollary :

Corollary 1.9. A bitopological space (X, τ_1, τ_2) is $(\tau_i - \tau_j)$ paracompact with respect to the topology τ_i if and only if every τ_i -open cover of X has a τ_j -open refinement which is ij-p-locally finite.

Theorem 1.10 . Let $\Xi = \{ F_{\lambda} : \lambda \in \Gamma \}$ be a collection of subsets of a bitopological space (X, τ_1, τ_2) . Then

(a) Ξ is ij-P-locally finite if and only if $\{ij - pclF_{\lambda} : \lambda \in \Gamma \}$ is ij-P-locally finite;

(b) If
$$\Xi$$
 is ij-P-locally finite, then
$$\bigcup_{\lambda \in \Gamma} ij - pclF_{\lambda} = ij - pcl(\bigcup_{\lambda \in \Gamma} P_{\lambda});$$

(c) Ξ is locally finite with respect to the topology τ_i if and only if the collection $\{ij - pclF_{\lambda} : \lambda \in \Gamma\}$ is locally finite with respect to the topology τ_i .

Proof . (a) Suppose that , Ξ is ij-P-locally finite . For each $x \in X$, there exists ij-preopen U_x containing x which meets only finitely many of the sets F_λ , say $F_{\lambda 1}$,....., $F_{\lambda n}$. Since $F_{\lambda k} \subseteq ij - pclF_{\lambda k}$ for each $k=1,2,\ldots$, n, thus U_x meets $ij - pclF_{\lambda 1}$,...., $ij - pclF_{\lambda n}$. Therefore $\{ij - pclF_{\lambda} : \lambda \in \Gamma \}$ is ij-P-locally finite .

Conversely. Let $x \in X$, there exists ij-preopen U_x containing x which meets only finitely many of the sets $ij - pclF_\lambda$. Say $ij - pclF_{\lambda 1},......,ij - pclF_{\lambda n}$, we get that $U_x \cap ij - pclF_{\lambda k} \neq \Phi$ for each k =1,..., n . Let $q \in U_x$ and $q \in ij - pclF_{\lambda k}$, which implies that , for every ij-preopen set V_q such that $V_q \cap F_{\lambda k} \neq \Phi$, but U_x be ij-preopen containing q , so $U_x \cap F_{\lambda k} \neq \Phi$ for each k=1,..., n . Thus Ξ is ij-P-locally finite.

(b) Suppose, Ξ is ij-P-locally finite, which can be easily got $\bigcup_{\lambda \in \Gamma} ij - pclF_{\lambda} \subseteq ij - pcl(\bigcup_{\lambda \in \Gamma} P_{\lambda})$. On the other hand, let $q \in ij - pcl(\bigcup_{\lambda \in \Gamma} F_{\lambda})$, then

every ij-preopen V_q such that $V_q \cap (\bigcup_{\lambda \in \Gamma} F_{\lambda}) \neq \Phi$. By hypothesis, there exists ij-

preopen U_q which meets only finitely many of the sets F_λ , say $F_{\lambda 1}$,....., $F_{\lambda n}$. Thus for each ij-preopen set V_q containing q, $V_q \cap (\bigcup_{k=1}^n F_{\lambda k}) \neq \Phi$, which implies that

 $q \in ij - pcl(\bigcup_{k=1}^{n} F_{\lambda k}) = \bigcup_{k=1}^{n} ij - pclF_{\lambda k}$, there exists h such that $q \in ij - pclF_{\lambda h}$. Therefore

 $\text{we get that } q \in \bigcup_{\lambda \in \Gamma} ij - pclF_{\lambda} \text{ and hence} \quad \bigcup_{\lambda \in \Gamma} ij - pclF_{\lambda} = ij - pcl(\bigcup_{\lambda \in \Gamma} P_{\lambda}) \ .$

(c) Suppose, Ξ is locally finite with respect to the topology τ_i , which implies that for each $x \in X$, there exists τ_i -open set U_x which meets only finitely many of the sets F_λ , say $F_{\lambda 1},...,F_{\lambda n}$, but $F_{\lambda k} \subseteq ij-pclF_{\lambda k}$, we get that U_x which meets $ij-pclF_{\lambda 1},...,ij-pclF_{\lambda n}$. Thus $\{ij-pclF_{\lambda}:\lambda\in\Gamma\}$ is locally finite with respect to the topology τ_i .

Conversely, let $x \in X$, then there exists τ_i -open set U_x which meets only finitely many of the sets $ij - pclF_{\lambda}$'s, say $ij - pclF_{\lambda 1}$,....., $ij - pclF_{\lambda n}$. Now choose a point $q \in U_x$

and $q \in ij-pclF_{\lambda k}$. For each k=1,2,...,n, therefore for each ij-preopen set V_q containing q such that $V_q \cap F_{\lambda k} \neq \Phi$, but $q \in U_x$, then we get U_x which meets only finitely many of the sets F_{λ} 's. Hence Ξ is locally finite with respect to the topology τ_i .

Definition 1.11 .A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\mu_1,\mu_2)$ is called:

- (1) ij-precontinuous if for each $V \in ij PO(Y)$, $f^{-1}(V) \in ij PO(X)$;
- (2) ij-strongly precontinuous if for each $V \in ij PO(Y)$, $f^{-1}(V) \in \tau_i$;
- (3) ij-preclosed if for each $V \in ij PC(X)$, $f(V) \in ij PC(Y)$;
- (4) ij-strongly preclosed if for each $V \in \tau_i C(X)$, $f(V) \in ij PC(Y)$;
- (5) ij-preopen if for each $V \in ij PO(X)$, $f(V) \in ij PO(Y)$;
- (6) $(\tau_i \mu_i)$ continuous $((\tau_i \mu_i)$ open and $(\tau_i \mu_i)$ closed) if $f:(X,\tau_i) \to (Y,\mu_i)$ for i =1,2 are $(\tau_1 \mu_1)$ continuous and $(\tau_2 \mu_2)$ continuous $((\tau_1 \mu_1)$ open, $(\tau_2 \mu_2)$ open and $(\tau_1 \mu_1)$ closed, $(\tau_2 \mu_2)$ closed).

Lemma 1.12 . Let $f:(X,\tau_1,\tau_2) \to (Y,\mu_1,\mu_2)$ be a function . Then

- (1) f is ij-preclosed if and only if for every $y \in Y$ and $P \in ij PO(X)$ such that $f^{-1}(y) \subset P$, there is $V \in ij PO(Y)$ such that $y \in V$ and $f^{-1}(V) \subset P$.
- (2) f ij-strongly preclosed if and only if for every $y \in Y$ and $P \in \tau_i$ which contains $f^{-1}(y)$, there is $V \in ij PO(Y)$ such that $y \in V$ and $f^{-1}(V) \subset P$.
- (3) If f be $(\tau_i \mu_i)$ -continuous, $(\tau_i \mu_i)$ -open function, then f is ij-preopen function.

Proposition 1.13 .Let $f:(X,\tau_1,\tau_2) \to (Y,\mu_1,\mu_2)$ be a ij-precontinuous function . If $\Xi = \{F_\lambda : \lambda \in \Gamma \}$ is a ij-P-locally finite collection in Y, then $f^{-1}(\Xi) = \{f^{-1}(F_\lambda) : \lambda \in \Gamma \}$ is a ij-P-locally finite collection in X.

Proposition 1.14. Let $f:(X,\tau_1,\tau_2)\to (Y,\mu_1,\mu_2)$ be a ij-strongly precontinuous function . If $\Xi=\{F_\lambda:\lambda\in\Gamma\}$ is a ij-P-locally finite collection in Y, then $f^{-1}(\Xi)=\{f^{-1}(F_\lambda):\lambda\in\Gamma\}$ is a locally finite collection with respect to the topology τ_i .

Definition 1.15 .A subset A of a bitopological space (X, τ_1, τ_2) is called ij-strongly compact if for every cover of A by ij-preopen subsets of X has a finite subcover.

Proposition 1.16. Let $f:(X,\tau_1,\tau_2)\to (Y,\mu_1,\mu_2)$ be a ij-strongly closed function such that $f^{-1}(y)$ is compact relative to the topology τ_i for every $y\in Y$. If $\Xi=\{F_\lambda:\lambda\in\Gamma\}$ is a locally finite collection with respect to the topology τ_i , then $f(\Xi)=\{f(F_\lambda):\lambda\in\Gamma\}$ is a ij-P-locally finite collection in Y.

Proposition 1.17. Let $f:(X,\tau_1,\tau_2)\to (Y,\mu_1,\mu_2)$ be a ij-preclosed function such that $f^{-1}(y)$ is ij-strongly compact relative to X for every $y\in Y$. If $\Xi=\{F_\lambda:\lambda\in\Gamma\}$ is a ij-P-locally finite collection in X, then $f(\Xi)=\{f(F_\lambda):\lambda\in\Gamma\}$ is a ij-P-locally finite collection in Y.

2. ij-preparacompact spaces

In this section, we introduce the generalized paracompact and separation axioms using the notions of ij-preopen sets in bitopoogical spaces, and give some characterization of these types of spaces and study the relationships between them and other well known spaces .

Definition 2.1 . A bitopological space (X, τ_1, τ_2) is called ij-preparacompact if every τ_i -open cover of X has a ij-P-locally finite ij-preopen refinement.

Definition 2.2. Let (X, τ_1, τ_2) be a bitopological space. The space X is said to be:

- (1) pair wise Hausdorff space if and only if for each distinct two points x , y in X , there exists two disjoint τ_i open U and τ_j open V such that $x \in U$ and $y \in V$ [11];
- (2) pair wise regular if and only if for each τ_i closed set F and $x \in X$, $x \notin F$, there are two disjoint τ_i open U and τ_i open V such that $F \subset U$, $x \in V$ [11];
- (3) pair wise P-regular if and only if for each τ_i closed set F and $x \in X$, $x \notin F$, there are two disjoint ij-preopen sets U and V, such that $x \in U$ and $F \subseteq V$;

- (4) pair wise P-normal if and only if whenever A and B are disjoint τ_i closed sets in X, there are disjoint ij-preopen sets U and V with $A \subseteq U$ and $B \subseteq V$;
- (5) pairwise $P-T_1-space$ if for each two distincts points x and y in X, there are ij-preopen sets U and V in X such that $x \in U$ and $y \in V$;
- (6) pairwise T_1 space if for each two distincts points x and y in X, there are τ_i open U and τ_i open V in X such that $x \in U$ and $y \in V$ [11];
- (7) pairwise $P-T_3$ space if it's pairwise P-regular $P-T_1$ space;
- (8) pairwise $P-T_4$ space if it's pairwsise P-normal $P-T_1$ space.

Lemma 2.3 .A bitopological space (X, τ_1, τ_2) is pairwise p-regular if and only if for each τ_i -open set U and $x \in U$, then there exists $P \in ij - PO(X)$ such that $x \in P \subseteq ij - pclP \subseteq U$.

Theorem 2.4 . Every ij-preparacompact pairwise Hausdorff bitopological space (X, τ_1, τ_2) is pair wise p-regular .

Proof: Let A be a τ_i – closed and let $x \notin A$. For each $y \in A$, choose an τ_i – open U_y and τ_i – open H_x such that $y \in U_y$, $x \in H_x$ and $U_y \cap H_x = \Phi$, so we get that $x \notin ij$ – $pclU_y$. Therefore the family $U = \{U_y \colon y \in A\} \cup \{X - A\}$ is an τ_i – open cover of x and so it has a ij-P-locally finite ij-preopen refinement Π . Put $V = \{H \in \Pi \colon H \cap A \neq \Phi\}$, then V is a ij-preopen set containing A and ij – $pclV = \bigcup \{ij - pclH : H \in \Pi \text{ and } H \cap A \neq \Phi\}$ (Theorem 1.10 (b)). Therefore U = X - ij - pclV is a ij-preopen set containing x such that $x \in A$ and $x \in A$ and $x \in A$ is a ij-preopen set containing x such that $x \in A$ and $x \in A$ and $x \in A$ is a ij-preopen set containing x such that $x \in A$ and $x \in A$ is a ij-preopen set containing x such that $x \in A$ and $x \in A$ is a ij-preopen set containing x such that $x \in A$ and $x \in A$ is an $x \in A$ and $x \in A$ is a ij-preopen set containing x such that $x \in A$ and $x \in A$ is an $x \in A$ in the interval $x \in A$ is an $x \in A$ and $x \in A$ is an $x \in A$ and $x \in A$ in the interval $x \in A$ is an $x \in A$ and $x \in A$ in the interval $x \in A$ is an $x \in A$ in the interval $x \in A$ in the interval $x \in A$ in the interval $x \in A$ is an $x \in A$ in the interval $x \in A$ interval $x \in A$ in the interval $x \in A$ in the interval $x \in A$ in the interval

From the above theorem, the following corollaries are obtained:

Corollary 2.5 .Every ij-preparacompact pairwise Hausdorff bitopological space (X, τ_1, τ_2) is pair wise p-normal .

Corollary 2.6 .Every ij-preparacompact paiwise Hausdorff bitopological space (X, τ_1, τ_2) is

- (a) paiwise $p-T_3$ space;
- (b) pairwise $p-T_4$ space.

Theorem 2.7. Let (X, τ_1) and (X, τ_2) are regular spaces. Then (X, τ_1, τ_2) is ij-preparacompact if and only if every τ_i -open cover Ξ of X has a ij-P-locally finite ij-preclosed refinement Σ .

Proof: To prove necessity, let Ξ be τ_i -open cover of X. For each $x \in X$, we choose a member $U_x \in \Xi$ and by the regularity of (X, τ_1) and (X, τ_2) , an τ_i -open subsets V_x containing x such that τ_i - $clV_x \subset U_x$. Therefore $\Psi = \{V_x : x \in X \}$ is an

 $\begin{array}{lll} \tau_i-open & {\rm cover} & {\rm of} & {\rm X} & {\rm and} & {\rm so} & {\rm by} & {\rm hypothesis} & {\rm it} & {\rm has} & {\rm a} & {\rm ij\text{-P-locally}} & {\rm finite} & {\rm ij\text{-preopen}} \\ {\rm refinement,} & {\rm say} & \Omega=\{W_{\scriptscriptstyle\lambda}:\lambda\in\Gamma\}.{\rm Now,} & {\rm consider} & {\rm the} & {\rm collection} \\ ij-pcl\Omega=\{ij-pclW_{\scriptscriptstyle\lambda}:\lambda\in\Gamma\} & {\rm as} & {\rm ij\text{-P-locally}} & {\rm finite} & ({\rm\ Theorem}\ 1.10 & ({\rm a})) & {\rm of} & {\rm ij\text{-preclosed}} \\ {\rm subsets} & {\rm of} & (X\ ,\ \tau_1\ ,\tau_2\) & {\rm\ .Since} & {\rm\ for} & {\rm\ every} & \lambda\in\Gamma\ , \\ ij-pclW_{\scriptscriptstyle\lambda}\subseteq ij-pclV_{\scriptscriptstyle\chi}\subseteq\tau_i-clV_{\scriptscriptstyle\chi}\subseteq U_{\scriptscriptstyle\chi} & {\rm\ for} & {\rm\ some}\ U_{\scriptscriptstyle\chi}\in\Xi\ , & {\rm\ therefore}\ ij-pcl\Omega\ \ {\rm\ is}\ \ {\rm\ a} \\ {\rm\ refinement} & {\rm\ of}\ \Xi\ . \end{array}$

Conversely, let Ξ be an τ_i -open cover of X and Ψ be a ij-P-locally finite ij-preclosed refinement of Ξ . For each $x \in X$, choose $W_x \in ij-PO(X)$ such that $x \in W_x$ and W_x intersect at most finitely many members of Ψ . Let Σ be a ij-preclosed ij-P-locally finite refinement of $\Omega = \{W_x : x \in X\}$. For each $V \in \Psi$, let V' = X/H, where $H \in \Sigma$ and $H \cap V = \Phi$. Then $\{V' : V \in \Psi\}$ is a ij-preopen cover of X. Now, for each $V \in \Psi$, choose $U_V \in \Xi$ such that $V \subseteq U_V$, therefore the collection $\{U_V \cap V' : V \in \Psi\}$ is a ij-P-locally finite ij-preopen (Lemma 1.6 (a)) refinement of Ξ and thus (X, τ_1, τ_2) is ij-preparacompact.

Theorem 2.8 Let A be a ij-regular closed subset of a ij-preparacompact bitopological space (X, τ_1, τ_2) . Then $(A, \tau_{1A}, \tau_{2A})$ is ij-preparacompact.

Proof: Let $\Psi = \{V_{\lambda} : \lambda \in \Gamma\}$ be an τ_i -open cover of A in $(A, \tau_{1A}, \tau_{2A})$. For each $\lambda \in \Gamma$, choose $U_{\lambda} \in \tau_i$ such that $V_{\lambda} = A \cap U_{\lambda}$, then the collection $\Xi = \{U_{\lambda} : \lambda \in \Gamma\} \cup \{X - A\}$ is an τ_i -open cover of the ij-preparacompact space X and so it has a ij-P-locally finite ij-preopen refinement. Say $\Psi = \{W_{\delta} : \delta \in \Delta\}$, then by Lemma 1.6(b) and since $ij - RO(X) \subseteq ij - SO(X)$, the collection $\{A \cap W_{\delta} : \delta \in \Delta\}$ is a ij-P-locally finite ij-preopen refinement of Ψ in $(A, \tau_{1A}, \tau_{2A})$. This completes the proof.

Theorem 2.9 .Let A and B be subsets of a bitopological space (X, τ_1, τ_2) such that $A \subseteq B$.

- (1) If $B \in ij PO(X)$ and A is ij-preparacompact relative to $(B, \tau_{1B}, \tau_{2B})$, then A is ij-preparacompact relative to (X, τ_1, τ_2) .
- (2) If $B \in ij SO(X)$ and A is ij-preparacompact relative to (X, τ_1, τ_2) , then A is ij-preparacompact relative to $(B, \tau_{1B}, \tau_{2B})$.

Proof: (1) Let $\Xi = \{U_{\lambda} : \lambda \in \Gamma \}$ be an τ_i -open cover of A in X. Then the collection $\Xi_B = \{B \cap U_{\lambda} : \lambda \in \Gamma \}$ is an τ_{iB} -open cover of A in $(B, \tau_{1B}, \tau_{2B})$. Since A is ij-preparacompact relative to $(B, \tau_{1B}, \tau_{2B})$. Hence Ξ_B has a ij-P-locally finite ij-preopen refinement Ω_B in $(B, \tau_{1B}, \tau_{2B})$. Since $B \in ij - PO(X)$ and $U_{\lambda} \in \tau_i$, $\forall \lambda \in \Gamma$, so by lemma 1.6 (a), $B \cap U_{\lambda} \in ij - PO(X)$, $\forall \lambda \in \Gamma$. Then the

collection Ω_B is a ij-P-locally finite ij-preopen refinement of Ξ in (X, τ_1, τ_2) . Therefore A is a ij-preparacompact relative to (X, τ_1, τ_2) .

(2) Let $\Psi = \{V_{\lambda} : \lambda \in \Gamma\}$ be an τ_{iB} – open cover of A in $(B, \tau_{1B}, \tau_{2B})$. For every $\lambda \in \Gamma$, choose $U_{\lambda} \in \tau_i$ such that $V_{\lambda} = B \cap U_{\lambda}$. Then the collection $\Xi = \{U_{\lambda} : \lambda \in \Gamma\}$ is an τ_i – open cover of A relative to (X, τ_1, τ_2) and so it has a ij-P-locally finite ij-preopen refinement of Ξ in (X, τ_1, τ_2) , say Σ . Thus, by lemma 1.6 (b), the collection $\Sigma_B = \{P \cap B : P \in \Sigma\}$ is a ij-P-locally ij-preopen refinement of Ξ in $(B, \tau_{1B}, \tau_{2B})$.

Corollary 2.10 . Let A be a subset of a bitopological space (X, τ_1, τ_2) .

- (1) If $A \in ij PO(X)$ and the subspace $(A, \tau_{1A}, \tau_{2A})$ is ij-preparacompact, then A is ij-preparacompact relative to (X, τ_1, τ_2) .
- (2) If $A \in ij SO(X)$ and A ij-preparacompact relative to (X, τ_1, τ_2) , then the subspace $(A, \tau_{1A}, \tau_{2A})$ is ij-preparacompact.

Theorem 2.11 If $f:(X,\tau_1,\tau_2) \to (Y,\mu_1,\mu_2)$ be $(\tau_i-\mu_i)$ – continuous , $(\tau_i-\mu_i)$ – open , ij-strongly ij-preopen and surjective function such that $f^{-1}(y)$ is ij-strongly compact relative to (X,τ_1,τ_2) for every $y \in Y$. If (X,τ_1,τ_2) is ij-preparacompact , then so is (Y,μ_1,μ_2) .

Proof: Let $\Psi = \{V_{\lambda} : \lambda \in \Gamma\}$ be an $\mu_i - open$ cover of (Y, μ_1, μ_2) . Since f is $(\tau_i - \mu_i)$ -continuous, the collection $\Xi = f^{-1}(\Psi) = \{f^{-1}(V_{\lambda}) : \lambda \in \Gamma\}$ is an $\tau_i - open$ cover of the ij-preparacompact (X, τ_1, τ_2) space and so it has a ij-P-locally finite ij-preopen refinement, say Ω . Since f is $(\tau_i - \mu_i)$ -continuous and $(\tau_i - \mu_i)$ -open, then by lemma 1.12 (3), f is ij-preopen function and so by Proposition 1.17, the collection $f(\Omega)$ is a ij-P-locally finite ij-preopen refinement of Ψ . The result is proved.

Theorem 2.12 . Let $f:(X,\tau_1,\tau_2) \to (Y,\mu_1,\mu_2)$ be a $(\tau_i - \mu_i)$ -closed ipprecontinuous surjective function such that $f^{-1}(y)$ is τ_i -compact in (X,τ_i) for every $y \in Y$. If (Y,μ_1,μ_2) is ij-preparacompact, then so is (X,τ_1,τ_2) .

Proof: Let $\Xi = \{U_{\lambda} : \lambda \in \Gamma \}$ be an τ_i -open cover of a bitopological space $(X \ , \tau_1 \ , \tau_2 \)$. For each $y \in Y \ , \ \Xi$ is an τ_i -open cover of the τ_i -compact subspace $f^{-1}(y)$ and so there exists a finite subcover Γ_y of Γ such that $f^{-1}(y) \subseteq \bigcup_{\lambda \in \Xi_y} U_{\lambda}$. Put $U_y = \bigcup_{\lambda \in \Gamma_y} U_{\lambda}$ is τ_i -open in $(X \ , \tau_i)$. As f is a $(\tau_i - \mu_i)$ -closed function, for each $y \in Y$, there exists μ_i -open subset V_y of Y such that $y \in V_y$ and $f^{-1}(V_y) \subseteq U_y$. Then the collection $\Psi = \{V_y : y \in Y \}$ is an μ_i -open cover of the ij-preparacompact

space (Y,μ_1,μ_2) and so it has a ij-P-locally finite ij-preopen refinement, say $\Omega = \{W_\gamma \colon \gamma \in \Delta\}$. Since f is ij-precontinuous , the collection $f^{-1}(\Omega) = \{f^{-1}(W_\gamma) \colon \gamma \in \Delta\}$ is a ij-preopen ij-P-locally finite cover of (X,τ_1,τ_2) such that for each $\gamma \in \Delta$, $f^{-1}(W_\gamma) \subseteq U_\gamma$ for some $y \in Y$. Finally , the collection $\{f^{-1}(W_\gamma) \cap U_\lambda : \gamma \in \Delta, \lambda \in \Gamma_\gamma\}$ is a ij-P-locally finite ij-preopen refinement of Ξ . Thus (X,τ_1,τ_2) is ij-preparacompact .

References

- [1] M. H. Stone, "Applications of the theory of Boolen rings to general topology", Trans. Amer. Math. Soc., 41 (1937), 375-381.
- [2] N. Levine, "Semi open sets and continuity in topological spaces", Amer. Math. Monthly, 70, (1963), 36-41.
- [3] S. G. Crossley and S.K. Hildebrand," Semi closure ", Texas J. Sci., 22 (1971), 99-112.
- [4] A. S. Mashhour, M.E. Abd EL-Monsef and S.N. EL-Deeb, "On precontinuous and weak precontinuous mappings", Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [5] A. R. Singal and S. P. Arya, "On Pairwise Almost Regular spaces", Glasnik Math., 6 (1971), 335-343.
- [6] B. Shanta, "Semi open sets, semi continuity and semi open mappings in bitopological spaces", Bull. Calcatta Math. Sco., 73(1981), 237-246.
- [7] S. Sampath Kumar, "On a Decomposition of pairwise continuity ", Bull. Cal. Math. Soc., 28(1997), pp. 441-446.
- [8] J. Dieudonne, "Une generalization des spaces compacts", J. Math. Pures. Appl. 23(1944), 65-76.
- [9] Martin M. K., "A note on Raghavan Reilly's Pair wise paracompactness", Internat. J. Math. And Math. Sci. Vol. 24, No. 2(2001), 139-143.
- [10] K. AL-Zoubi and S. AL-Ghour," On P3- paracompact spaces ", Int. J. Math. And Math. Sci. Vol. 2007 (2007), Art. ID 80697, PP. 1-16.
- [11] J.C. Kelly, "Bitopological Spaces", Proc. London Math. Soc., 3 (1963), PP. 17-89.