Separation Axioms Via

Kernel Set in Topological Spaces

Luay A. Al-Swidi

Mathematics Department, College of Education For Pure Sciences University of Babylon E-mail:drluayha1@yahoo.com

Basim Mohammed M. Mathematics Department, College of Education For Pure Sciences University of Babylon E-mail: Bassm_na73@yahoo.com

Abstract

In this paper deals with the relation between the separation axioms T_i -space , i = 0, 1, ..., 4 and R_i -space i = 0, 1, 2, 3 throughout kernel set associated with the closed set . Then we prove some theorems related to them.

Keywords: separation axioms, Kernel set and weak separation axioms.

1. INTRODUCTION AND PRELIMINARIES

In1943, N.A.Shainin [4] offered a new weak separation axiom called R_0 to the world of the general topology. In 1961, A.S.Davis [1] rediscovered this axiom and he gave several interesting characterizations of it. He defined R_0 , R_1 and R_2 entirely. He did not submit clear definition of R_3 -space but stated it throughout this note: (But the usual definition of "normality" must be modified slightly if R_3 is to be the axiom for normal spaces.)

The present study presents the definition of R₃-spaces as follows:(A topological space is called an R₃-space iff it is normal space and R₁-space). This definition of R₃-space satisfied with: Every R₃ is an R₂-spaces. On the other hand (X, T) is aT₄-space if and only if it is an R₃-space and T_{k-1} -space, k = 0, 1, 2, 3, 4.

We proved R_i-spaces, i = 0,1,2,3, by using kernel set[2,5] associated with the closed set. We prove the topological space is aT_0 -space if and only if either $y \notin ker\{x\}$ or $x \notin ker\{y\}$ for each $x \neq y \in X$ and a topological space (X,T) is a T₁-space if and only if for each $x \neq y \in X$, then $x \notin ker\{y\}$ and $y \notin ker\{x\}$, also (X,T) is a T₁-space iff $ker\{x\} = \{x\}$, and by using kernel set, we states the relation between T_i-spaces i = 0,1,2,3,4 and R_i-spaces i = 0,1,2,3.

Definition 1.1.[2]

The intersection of all open subset of (X,T) containing A is called the kernel of A (briefly ker(A)), this means ker(A)= $\bigcap \{G \in T: A \subseteq G\}$

Definition 1.2.[1,2]

A topological space (X,T) is called an R₀-space if for each open set U and $x \in U$ then $cl\{x\} \subseteq X$.

Definition 1.3.[1,2]

A topological space (X,T) is called an R₁- space if for each two distinct point x, y of X with $cl\{c\} \neq cl\{y\}$, there exist disjoint open sets U,V such that $cl\{c\} \subseteq Uand cl\{c\} \subseteq V$.

Corollary 1.4.[2]

Let (X, T) be a topological space. Then (X,T) is \mathbb{R}_0 -space if and only if, $cl\{x\} = \ker\{x\}$, for each $x \in X$.

41

Definition 1.5 [1]

A topological space (X, T) is called an R₂-space are those which are property regular

space.

Remark 1.6 [1]

The usual definition of "normality" must be modified slightly if $\ R_3$ is to be the axiom for normal spaces

Remark 1.7 [1]

Each separation axiom is defined as the conjunction of two weaker axioms: T_k -space = R_{k-1} -space and T_{k-1} -space = R_{k-1} -space and T_0 -space

Remark 1.8 [1]

Every R_k -space is an R_{k-1} -space.

Theorem 1.9 [3]

Every compact Hausdorf space is aT₃-space (and consequently regular).

Theorem 1.10 [3]

Every compact Hausdorf space is a normal space (T₄-space).

Lemma 1.11 [2]

Let (X, T) be topological space then $x \in cl\{y\}$ if $f y \in ker\{x\}$. for each $x \neq y \in X$

2. R_i -Spaces, i = 0, 1, 2, 3

Theorem 2.1

A topological space (X, T) is an R₀-space if and only if for each F closed set and $x \in F$ then ker $\{x\} \subseteq F$.

Proof

Let a topological space (X,T) be a R₀-space and F be a closed set and $x \in F$. Then for each $y \notin F$ implies $y \in F^c$ is open set ,then $cl\{y\} \subseteq F^c$ [since (X,T) is R₀-space], so $x \notin cl\{y\}$. Hence by theorem 1.11, $y \notin ker\{x\}$. Thus ker $\{x\} \subseteq F$

Conversely

Let for each F closed set and $x \in F$ then $ker \{x\} \subseteq F$ and let $U \in T$, $x \in U$ then for each $y \notin U$ implies $y \in U^c$ is a closed set implies $ker\{y\} \subseteq U^c$. Therefore $x \notin ker\{y\}$ and $y \notin cl\{x\}$ [By theorem 1.11]. So $cl\{x\} \subseteq U$. Thus (X, T) is an R₀-space.

Corollary 2.2

A topological space (X, T) is an R₀-space if and only if for each U open set and $x \in U$ then $cl(ker\{x\}) \subseteq U$.

Theorem 2.3

A topological space (X, T) is an R₁-space if and only if for each $x \neq y \in X$ with $ker\{x\} \neq ker\{y\}$ then there exist closed sets F₁, F₂ such that $ker\{x\} \subseteq F_1$, $ker\{x\} \cap F_2 = \emptyset$ and $ker\{y\} \subseteq F_2$, $ker\{y\} \cap F_1 = \emptyset$ and $F_1 \cup F_2 = X$

Proof

Let a topological space (X, T) be an R₁-space. Then for each $x \neq y \in X$ with $ker\{x\} \neq ker\{y\}$. Since every $R_1 - space$ is an R_o_space [by remark 1.8, hence by theorem 1.4, $cl\{x\} \neq cl\{y\}$, then there exist open sets G_1, G_2 such that $cl\{x\} \subseteq G_1$ and $cl\{y\} \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ [Since (X, T) is R₁-space], then G_1^c and G_2^c are closed sets such that $G_1^c \cup G_2^c = X$. Put $F_1 = G_1^c$ and $F_2 = G_2^c$ Thus $x \in G_1 \subseteq F_2$ and $y \in G_2 \subseteq F_1$ so that ker $\{x\} \subseteq G_1 \subseteq F_2$ and ker $\{y\} \subseteq G_2 \subseteq F_1$.

Conversely

Let for each $x \neq y \in X$ with $ker\{x\} \neq ker\{y\}$, there exist closed sets F_1 , F_2 such that $ker\{x\} \subseteq F_1$, $ker\{x\} \cap F_2 = \emptyset$ and $ker\{y\} \subseteq F_2$, $ker\{y\} \cap F_1 = \emptyset$ and $F_1 \cup F_2 = X$, then F_1^c and F_2^c are

open sets such that $F_1^c \cap F_2^c = \emptyset$. Put $F_1^c = G_2$ and $F_2^c = G_1$. Thus ker $\{x\} \subseteq G_1$ and ker $\{y\} \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$, so that $x \in G_1$ and $y \in G_2$ implies $x \notin cl\{y\}$ and $y \notin cl\{x\}$, then $cl\{x\} \subseteq G_1$ and $cl\{y\} \subseteq G_2$. Thus (X, T) is an R₁-space.

Corollary 2.4

A topological space (X, T) is an R₁-space if and only if for each $x \neq y \in X$ with $cl\{x\} \neq cl\{y\}$ then there exist disjoint open sets U, V such that $cl(ker\{x\}) \subseteq U$ and $cl(ker\{y\}) \subseteq V$

Proof

Let (X, T) be an R₁-space and let $x \neq y \in X$ with $cl\{x\} \neq cl\{y\}$, then there exist disjoint open sets U, V such that $cl\{x\} \subseteq U$ and $cl\{y\} \subseteq V$.

Also (X, T) is \mathbb{R}_0 -spece [by remark 1.8] implies for each $x \in X$, then $cl\{x\} = ker\{x\}$ [By theorem 1.4], but $cl\{x\} = cl(cl\{x\}) = cl(ker\{x\})$. Thus $cl(ker\{x\}) \subseteq U$ and $cl(ker\{y\}) \subseteq V$

Conversely

Let for each $x \neq y \in X$ with $cl\{x\} \neq cl\{y\}$ then there exist disjoint open sets U, V such that $cl(ker\{x\}) \subseteq U$ and $cl(ker\{y\}) \subseteq V$. Since $\{x\} \subseteq ker\{x\}$ then $cl\{x\} \subseteq cl(ker\{x\})$ for each $x \in X$ So we get $cl\{x\} \subseteq U$ and $cl\{x\}$

Theorem 2.5

A topological space (X,T) is a regular space(R₂-space) if and only if for each closed subset G of X and $x \notin G$ with ker $\mathcal{G}G \neq ker\{x\}$ then there exist closed sets F₁, F₂ such that ker(G) \subseteq F₁, ker(G) \cap F₂ = \emptyset and ker{x} \subseteq F₂, ker{x} \cap F₁ = \emptyset and F₁ \cup F₂ = X

Proof

Let a topological space (X,T) be a regular space (R₂-space) and let G be a closed set, $x \notin G$, then there exist open sets U, V such that $G \subseteq U$, $x \in V$ and $U \cap V = \emptyset$, then U^c and V^c are closed sets such that $U^c \cup V^c = X$. Put $F_2 = U^c$ and $F_{1=}V^c$, so we get ker(G) $\subseteq U \subseteq$ F_1 , ker(G) $\cap F_2 = \emptyset$ and ker{x} $\subseteq V \subseteq F_2$, ker{x} $\cap F_1 = \emptyset$ and $F_1 \cup F_2 = X$.

Conversely

Let for each closed subset G of X and $x \notin G$ with ker $(G) \neq ker\{x\}$ then there exist closed sets F_1 , F_2 such that ker $(G) \subseteq F_1$, ker $(G) \cap F_2 = \emptyset$ and ker $(x) \subseteq F_2$, ker $\{x\} \cap F_1 = \emptyset$ and $F_1 \cup F_2 = X$. Then F_1^c and F_2^c are open sets such that $F_1^c \cap F_2^c = \emptyset$ and ker $(G) \cap F_1^c = \emptyset$, ker $(x) \cap F_2^c = \emptyset$, so that $G \subseteq F_2^c$ and $x \in F_1^c$. Thus (X, T) is a regular space (R₂-space).

Lemma 2.6

Let (X, T) be a regular space and F be a closed set. Then ker(F) = cl(F) = F.

Proof

Let (X,T) be a regular space and *F* be a closed set. Then for each $x \notin F$, there exist disjoint open sets *U*, *V* such that $F \subseteq U$ and $x \in V$. Since ker(F) $\subseteq U$, implies ker(F) $\cap V = \emptyset$, thus $x \notin cl(\text{ker}(F))$. We showing that if $x \notin F$ implies $x \notin cl(\text{ker}(F))$, therefore $cl(\text{ker}(F) \subseteq cl(F) =$ *F*. As $cl(F) = F \subseteq \text{ker}(F)$ [By definition 1.1]. Thus ker(F) = cl(F) = F.

Theorem 2.7

A topological space (X,T) is a regular space (R₂-space) if and only if for each closed subset F of X and $x \notin F$ with $cl(ker(F)) \neq cl(ker\{x\})$ then there exist disjoint open sets U, V such that $cl(ker(F)) \subseteq U$ and $cl(ker\{x\}) \subseteq V$.

Proof

Let a topological space (X,T) be a regular space (R₂-space) and let F be a closed set, $x \notin F$. . Then there exist disjoint open set U, V such that $F \subseteq U$ and $x \in V$. By lemma 2.6, cl(ker(F)) = cl(F) = F in the other hand (X,T) is an R₀-space [By remark 1.8]. Hence, by theorem 1.4, $cl\{x\} = ker\{x\}$ for each $x \in X$. Thus $cl(ker(F)) \subseteq U$ and $cl(ker\{x\}) \subseteq V$.

Conversely

Let for each closed set F and $x \notin F$ with $cl(ker(F)) \neq cl(ker\{x\})$ then there exist disjoint open sets U, V such that $cl(ker(F)) \subseteq U$ and $cl(ker\{x\}) \subseteq V$. Then $F \subseteq U$ and $x \in V$. Thus (X, T) a regular space(\mathbb{R}_2 -space).

Definition 2.8

A topological space (X,T) is an R_3 -space if and only if (X, T) is a normal and R_1 -space.

Theorem 2.9

Every R_3 -space is a regular space(R_2 -space).

Proof

Let F be a closed and $x \notin F$. Then $x \in F^c$ is an open set implies for each $y \in F$, $y \notin \ker\{x\}$, therefore $\ker\{x\} \neq \ker\{y\}$. Then there exist closed sets G_y , H_y such that $\ker\{y\} \subseteq Gy$, $\ker\{y\} \cap Hy = \emptyset$ and $\ker\{x\} \subseteq Hy$, $\ker\{x\} \cap Gy = \emptyset$ [Since(X,T) is R₁-space by assumption and by theorem 2.3], let $\beta = \bigcap\{H_y : x \in H_y\}$, is a closed set such that $\beta \cap F = \emptyset$. Hence (X, T) is a normal space then there exist disjoint open sets U, V such that $F \subseteq U$ and $\beta \subseteq V$, so that $x \in V$. Thus (X, T) is a regular space.

3. T_i -Spaces, i = 0, 1, ..., 4

Theorem 3.1

A topological space (X,T) is a T₀-space if and only if either $y \notin ker\{x\}$ or $x \notin ker\{y\}$, for each $x \neq y \in X$.

Proof

Let (X, T) is a T₀-space then for each $x \neq y \in X$, there exists an open set G such that $x \in G, y \notin G$ or $x \notin G, y \in G$. Thus either $x \in G, y \notin G$ implies $y \notin ker\{x\}$ or $x \notin G, y \in G$ implies $x \notin ker\{y\}$.

Conversely

Let either $y \notin ker\{x\}$ or $x \notin ker\{y\}$, for each $x \neq y \in X$. Then there exists an open set G such that $x \in G$, $y \notin G$ or $x \notin G$, $y \in G$. Thus (X, T) is a T₀ space.

Theorem 3.2

A topological space (X, T) is a T₁-space if and only if for each $x \neq y \in X$. $y \notin ker\{x\}$ and $x \notin ker\{y\}$

Proof

Let (X, T) is a T₁-space then for each $x \neq y \in X$, there exists an open sets U, V such that $x \in U, y \notin U$ or $y \in V, x \notin V$. Implies $y \notin ker\{x\}$ and $x \notin ker\{y\}$.

Conversely

Let $y \notin ker\{x\}$ and $x \notin ker\{y\}$, for each $x \neq y \in X$. Then there exists an open sets U, V such that $x \in U, y \notin U$ and $y \in V, x \notin V$. Thus (X, T) is a T₁- space.

Theorem 3.3

A topological space (X, T) is a T₁-space if and only if for each $x \in X$ then $ker\{x\} = \{x\}$.

Proof

Let (X, T) is aT₁-space and let $ker\{x\} \neq \{x\}$, then $ker\{x\}$ contains anther point distinct from x say y. So $y \in ker\{x\}$. Hence by theorem 3.2, (X, T) is not a T₁-space this is contradiction. Thus $ker\{x\} = \{x\}$

Conversely

Let $ker\{x\} = \{x\}$, for each $x \in X$ and let (X, T) is not a T₁-space. Then $y \in ker\{x\}$ (say)[By theorem 3.2], implies $ker\{x\} \neq \{x\}$, this is contradiction. Thus (X, T) is a T₁-space.

Theorem 3.4

A topological space (X, T) is a T₁-space if and only if for each $x \neq y \in X$ implies ker{x} \cap ker{y} = \emptyset .

Proof

Let a topological space (X, T) be a T₁-space.Then $ker\{x\} = \{x\}$ and $ker\{y\} = \{y\}$ [By theorem 3.3]. Thus $ker\{x\} \cap ker\{y\} = \emptyset$.

Conversely

Let for each $x \neq y \in X$ implies ker{x} \cap ker{y} = \emptyset and let (X,T) is not T₁-space Then for each $x \neq y \in X$ implies $y \in ker\{x\}$ or $x \in ker\{y\}$, The ker{x} \cap ker{y} $\neq \emptyset$. This is contradiction. Thus (X, T) is a T₁-space.

Corollary 3.5

A topological an T₀-space is a T₂-space if and only if for each $x \neq y \in X$ with $ker\{x\} \neq ker\{y\}$ then there exist closed sets F₁, F₂ such that $ker\{x\} \subseteq F_1$, $ker\{x\} \cap F_2 = \emptyset$ and $ker\{y\} \subseteq F_2$, $ker\{y\} \cap F_1 = \emptyset$ and $F_1 \cup F_2 = X$

Proof

By theorem 2.3 and remark 1.7.

Corollary 3.6

A topological T₁-space is a T₂-space if and only if one of the following conditions holds:

1) For each $x \neq y \in X$ with $cl\{x\} \neq cl\{y\}$ then there exist open sets U, V such

that $cl(ker{x}) \subseteq U$ and $cl(ker{y}) \subseteq V$

2) for each $x \neq y \in X$ with $ker\{x\} \neq ker\{y\}$ then there exist closed sets F_1 , F_2 such that $ker\{x\} \subseteq F_1$, $ker\{x\} \cap F_2 = \emptyset$ and $ker\{y\} \subseteq F_2$, $ker\{y\} \cap F_1 = \emptyset$ and $F_1 \cup F_2 = X$.

Proof(1)

By corollary 2.4 and remark 1.7.

Proof (2)

By theorem 2.3 and remark 1.7.

Theorem 3.7

A topological R₁-space is a T₂-space if and only if one of the following conditions holds:

```
1) For each x \in X, ker\{x\} = \{x\}.
```

2) For each $x \neq y \in X$, ker $\{x\} \neq ker \{y\}$ implies $ker\{x\} \cap ker\{y\} = \emptyset$.

3) For each for each $x \neq y \in X$, either $x \notin \ker\{y\}$ or $y \notin \ker\{x\}$

4) For each for each $x \neq y \in X$ then $x \notin \ker\{y\}$ and $y \notin \ker\{x\}$.

Proof (1)

Let (X, T) be a T₂-space .Then (X, T) is a T₁-space and R₁-space [By remark 1.7]. Hence by theorem 3.3, ker{x} ={x} for each $x \in X$.

Conversely

Let for each $x \in X$, ker{x} ={x}, then by theorem 3.3, (X, T) is a T₁-space. Also (X, T) is an R₁-space by assumption. Hence by remark1.7, (X, T) is aT₂-space.

Proof(2)

Let (X, T) be a T₂-space .Then (X, T) is a T₁-space. Hence by theorem 3.4, $ker\{x\} \cap ker\{y\} = \emptyset$ for each $x \neq y \in X$.

Conversely

Assume that for each $x \neq y \in X$, ker $\{x\} \neq ker \{y\}$ implies ker $\{x\} \cap ker\{y\} = \emptyset$, so by theorem 3.4, the topological space (X, T) is a T₁-space, also (X, T) is an R₁-space by assumption. Hence by remark 1.7, (X, T) is a T₂-space.

Proof(3)

Let (X, T) be a T₂-space .Then (X, T) is a T₀-space. Hence by theorem 23.1, *either* $x \notin ker\{y\} or y \notin ker\{x\}$ for each $x \neq y \in X$.

Conversely

Assume that for each $x \neq y \in X$, *either* $x \notin \ker\{y\}$ *or* $y \notin \ker\{x\}$ for each $x \neq y \in X$.

, so by theorem 3.1, (X, T) is a T_0 -space also (X, T) is an R_1 -space by assumption. Thus (X, T) is a T_2 -space [By remark 1.7].

Proof (4)

Let (X, T) be a T₂-space.Then (X,T) is a T₁-space and an R₁-space [By remark 1.7]. Hence by theorem 3.2, $x \notin \ker\{y\}$ and $y \notin \ker\{x\}$.

Conversely

Let for each $x \neq y \in X$ then $x \notin \ker\{y\}$ and $y \notin \ker\{x\}$. Then by theorem 3.2, (X, T) is a T₁-space. Also (X, T) is an R₁-space by assumption. Hence by remark 1.7, (X, T) is a T₂-space.

Theorem 3.8

A topological space (X,T) is a normal space if and only if for each disjoint closed sets G, H with $ker(G) \neq ker(H)$ then there exist closed sets F_1 , F_2 such that $ker(G) \subseteq F_1$, $ker(G) \cap F_2 = \emptyset$ and $ker(H) \subseteq F_2$, $ker(H) \cap F_1 = \emptyset$ and $F_1 \cup F_2 = X$.

Proof

Let (X,T) be a normal topological space and let for each disjoint closed sets G, H with $cl(G) \neq cl(H)$ then there exist disjoint open sets U, V such that $G \subseteq U$, $H \subseteq V$ and $U \cap V = \emptyset$, then U^c and V^c are closed sets such that $U^c \cup V^c = X$ and $ker(G) \cap U^c = \emptyset$, $ker(H) \cap V^c = \emptyset$. Put $F_2 = U^c$ and $F_{1=}V^c$. Thus $ker(G) \subseteq U \subseteq F_1$, $ker(G) \cap F_2 = \emptyset$ and $ker(H) \subseteq V \subseteq F_2$, $ker(H) \cap F_1 = \emptyset$ and $F_1 \cup F_2 = X$.

Conversely

Let for each disjoint closed sets G, H with $ker(G) \neq ker(H)$, there exist closed sets F_1 , F_2 such that $ker(G) \subseteq F_1$, $ker(G) \cap F_2 = \emptyset$ and $ker(H) \subseteq F_2$, $ker(H) \cap F_1 = \emptyset$ and $F_1 \cup F_2 = X$, implies F_1^c and F_2^c are open sets such that $F_1^c \cap F_2^c = \emptyset$ and $ker(G) \cap F_1^c = \emptyset$, $ker(H) \cap F_2^c = \emptyset$, so that $G \subseteq F_2^c$ and $H \subseteq F_1^c$. Thus (X,T) is a normal space.

Theorem 3.9

A topological compact an $R_1\mbox{-space}$ is a $T_3\mbox{-space}$ if and only if one of the following conditions holds:

1) for each $x \in X$, ker{x} = {x}

2) for each $x \neq y \in X$, ker{x} \cap ker{y} = \emptyset .

3) for each $x \neq y \in X$ then $x \notin \ker\{y\}$ and $y \notin \ker\{x\}$

4) for each $x \neq y \in X$ either $x \notin \ker\{y\}$ or $y \notin \ker\{x\}$

Proof (1)

Let (X, T) be a T₃-space . Then (X,T) is a T₁-space , by theorem 3.3, for each $x \in X$, ker {x} = {x}

Conversely

Let for each $x \in X$, $ker\{x\} = \{x\}$, then by theorem 3.3. (X, T) is a T₁-space. Also (X, T) is a compact R₁-space by assumption. So by remark1.7, we get (X, T) is a compact T₂- space .Hence by theorem 1.9, (X, T) is a T₃-space

Proof (2)

Let (X, T) be a T₃-space . Then (X, T) is a T₁-space. Hence by theorem 3.4, for each $x \neq y \in X$, ker{x} \cap ker{y} = \emptyset

Conversely

Assume that for each $x \neq y \in X$, ker{x} \cap ker{y} = \emptyset , so by theorem 3.4, the topological space (X, T) is a T₁- space, also (X,T) is a compact R₁-space by assumption. So by remark1.7, (X,T) is a compact T₂-space. Hence by theorem 1.9, (X, T) is a T₃- space.

Proof(3)

Let (X, T) be a T₃-space .Then (X, T) is a T₁-space. Hence by theorem 3.3, then for each $x \neq y \in X$ then $x \notin ker\{y\}$ and $y \notin ker\{x\}$

Conversely

Assume that for each $x \neq y \in X$ then $x \notin \ker\{y\}$ and $y \notin \ker\{x\}$, then by theorem 3.3, (X, T) is a T₁-space also(X, T) is a Compact R₁-space by assumption. Thus (X, T) is a compact T₂-space [By remark 1.7]. Hence by theorem 1.9, (X, T) is a T₃-space.

Proof (4)

Let (X, T) be a T₃-space. Then (X,T) is a T₀-space. So by theorem 3.1, *either* $x \notin ker\{y\}$ or $y \notin ker\{x\}$, for each $x \neq y \in X$

Conversely

Let for each $x \neq y \in X$ either $x \notin \ker\{y\}$ or $y \notin \ker\{x\}$. Then by theorem 3.1, (X, T) is a T₁-space. Also (X, T) is a compact R₁-space by assumption . Hence by remark 1.7, (X, T) is a compact T₂-space. Henceby theorem 1.9, (X, T) is a T₃-space.

Theorem 3.11

A topological compact an $R_1\mbox{-space}$ is a $T_4\mbox{-space}$ if and only if one of the following conditions holds:

a) for each $x \in X$, ker{x} = {x}

b) for each $x \neq y \in X$, ker{x} $\cap ker{y} = \emptyset$

c) for each $x \neq y \in X$ then $x \notin \ker\{y\}$ and $y \notin \ker\{x\}$

d) for each $x \neq y \in X$ either $x \notin \ker\{y\}$ or $y \notin \ker\{x\}$

Proof (1)

Let (X, T) be a T₄-space .Then (X, T) is a T₁-space, by theorem 3.3, $ker{x} = {x}$ for each $x \in X$.

Conversely

Let for each $x \in X$, $ker\{x\} = \{x\}$, then by theorem 3.3. (X, T) is a T₁-space. Also (X, T) is a compact R₁-space by assumption. So by remark1.7, we get (X, T) is a compact T₂-space. Hence by theorem 1.10, (X, T) is a T₄-space

Proof (2)

Let (X, T) be a T₄-space . Then (X,T) is a T₁-space. Hence by theorem 3.4, for each $x \neq y \in X$, ker{x} $\cap ker\{y\} = \emptyset$

Conversely

Assume that for each $x \neq y \in X$, ker{x} $\cap ker\{y\} = \emptyset$ so by theorem 3.4, the topological space (X, T) is a T₁-space, also (X, T) is a compact R₁-space by assumption. So by remark1.7, (X, T) is a compact T₂-space. Hence by theorem 1.10, (X, T) is a T₄-space.

Proof(3)

Let (X, T) be a T₄-space .Then (X, T) is a T₁-space. Hence by theorem 3.2, then for each $x \neq y \in X$ then $x \notin ker\{y\}$ and $y \notin ker\{x\}$

Conversely

Assume that for each $x \neq y \in X$ then $x \notin \ker\{y\}$ and $y \notin \ker\{x\}$, then by theorem 3.2, (X, T) is a T₁-space also(X, T) is a compact R₁-space by assumption. Thus (X,T) is a compact T₂-space [By remark 1.7]. Hence by theorem 1.10, (X,T) is a T₄-space

Proof (4)

Let (X, T) be a T₄-space. Then (X, T) is a T₀-space. So by theorem 3.1, for each $x \neq y \in X$ either $x \notin \ker\{y\}$ or $y \notin \ker\{x\}$

Conversely

Let for each $x \neq y \in X$ either $x \notin \ker\{y\}$ or $y \notin \ker\{x\}$ Then by Theorem 3.1, (X, T) is a T₀-space. Also (X, T) is a compact R₁-space by assumption. Hence by remark 1.7, (X, T) is a compact T₂-space. Hence by theorem 1.9,(X,T) is a T₄-space.

REFERENCES

[1] A.S.Davis.(1961). Indexed system of Neighborhood for general Topology Amer. Math. Soc. (9)68, 886-893, http://www.jstor.org/stable/2311686

[2] Bishwambhar Roy and M.N.Mukherjee. (2010). A unified theory for R₀, R₁. Bol. Soc. Paran. Mat. (3s) v.28.2, *http://www.spm.uem.br/bspm/pdf/vol28-2/Art2.pdf*

[3] J.N.Sharma. (1977). "general topology" Krishna Prakashan, Meerut(U.P).

[4] N. A. Shanin.(1943), On separation in topological spaces, Dokl. Akad. Nauk SSSR, 38, 110-113.