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Abstract  

A systematic study of isotope chains in the rare–earth region is presented. The energy 
levels, E2 transition rates, and two–neutron separation energies are described by using the 

most general IBM-1 Hamiltonian for the chains Nd154144-
60 , Sm160-146

62 , Gd162-148
64  and Dy166-150

66 . 

For each isotope chain a general fit is performed in such a way that all parameters but one are 
kept fixed to describe the whole chain.   

In this region nuclei evolve from spherical to deformed shapes and a method based on 
catastrophe theory, in combination with a coherent state analysis to generate the IBM-1-1 
energy surfaces, is used to identify critical phase transition points. 

 
Keywords: quantum phase transitions, catastrophe theory, interacting boson model 
 

  ا�����

 ا�
	���أ���� ����� �	ّ
�  ا��
��� ا�ر�� ا�
�درةدرا���
� �� ــــ %ّ�� $��� و�" �.  ا�� �
'�( ،*��  �?���-,)��نو=�*�ت ا�>;3 �9: )�,%�و)��: �89-67ام ا� 34 ا�آ�1 $�,��) E2( ا�)-��ل ��-,��ت ا�

 Nd154-144���IBM-1 ( 3�D()�,ذج ا�A,زو)�ت ا��->�$�
60،Sm160-146

62 ،Gd162-148
Dy166-150 و 64

66 . ���� 34�
، F�G أن آ3 ا��-��Eات �: �3�D ا��
��� ا������9 ��,�H I��D�  *�6 ا�6را� أ���� $���� 

)parameters (6ا$ �� �َ,ْ�" ا�����ِ ا����4ِ-9�M N�Aْ%َ 6Gوا .   

 ا��
��� ا�ر�� ا�
�درة، ��
� ��ّ,رُ �-%َ  وأ�-����ا�
,ى ِ�ْ: ا��4Hل ا��4و�  إ�N ا��4Hلِ ا�ُ�َ ,Qهِ
 ا���-�6����6 ��,ح =�* ) �9)coherent state analysis�-��زج �catastrophe theory ( T(ة $�N ا���,-�

) IBM-1(ا�ـ ِ��V�ا ِ�G���ل ا,ّV% ِط��( X���-َ�.    

  

  

1. Introduction  
In the last few years, an interest for the study of phase transitions and phase coexistence in 

atomic nuclei has been revived [1, 2, 3, 4].  

A new class of symmetries that applies to systems localized at the critical points has been 
proposed. In particular, the “critical symmetry” E(5) [5] has been suggested to describe 
critical points in the phase transition from spherical to γ-unstable shapes while X(5) [6] is 
designed to describe systems lying at the critical point in the transition from spherical to 
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axially deformed systems. These are based originally on particular solutions of the Bohr-
Mottelson differential equations, but are usually applied in the context of the Interacting 
Boson Model (IBM-1) [7], since the latter provides a simple but detailed framework in which 
first and second order phase transitions can be studied. In the IBM-1 language, the symmetry 
E(5) corresponds to the critical point between the U(5) and O(6) symmetry limits, while the 
X(5) symmetry should describe the phase transition region between the U(5) and the SU(3) 
dynamical symmetries, although the connection is not a rigorous one. The O(6) limit itself has 
also been proposed to correspond to a critical point [8]. 

The IBM-1 analyses of phase transitions have been carried out using schematic 
Hamiltonians in which the transition from one phase to the other is governed by a single 
parameter. It is thus necessary to see how much these predictions vary when a more general 
Hamiltonian is used. The global approach was first used by Castaños et al [9] for the study of 
series of isotopes [10, 11, 12]. An alternative procedure is provided by the use of the 
consistent Q formalism (CQF) [13]. In this case, although the Hamiltonian is simpler than the 
general one, the main ingredients are included. Within this scheme a whole isotope chain is 
described in terms of few parameters that change smoothly from one isotope to the next. 
Because of the possible non-uniqueness of such nucleus by nucleus fits and the restricted 
parameter space, it is important to study under what circumstances the prediction of the 
location of critical points in a phase transition is robust. In this paper we follow Refs. [10, 11, 
12, 14,15] and use a more general one– and two–body IBM-1 Hamiltonian to obtain the 
model parameters from a fit to energy levels of chains of isotopes. In this way a set of fixed 
parameters, with the exception of one that varies from isotope to isotope, is obtained for each 
isotope chain and the transition phase can be studied in the general model space. 

The fit to a large data set in many nuclei diminishes the uncertainties in the parameter 
determination. A possible problem arising from working with such a general Hamiltonian, 
however, is the difficulty in determining the position of the critical points. Fortunately, the 
methods of catastrophe theory [16] allow the definition of the essential parameters needed to 
classify the shape and stability of the energy surface [14, 15]. 

In this paper we analyze diverse spectroscopic properties of several isotope chains in the 
rare-earth region, in which shape transition from spherical to deformed shapes is observed. 
We combine this study with a coherent-state analysis and with catastrophe theory in order to 
localize the critical points and test the X(5) predictions. Since the introduction of the E(5) and 
X(5) symmetries, only a small number of candidates [17, 18, 19, 20, 21, 22, 23, 24] have been 
proposed as possible realizations of such critical point symmetries. In this paper we show that 
the critical points can be clearly identified by means of a general theoretical approach [14, 
15]. 

The paper is structured as follows. In section 2 we present the IBM-1 Hamiltonian used. In 
section 3 the results of the fits made for the different isotope chains are presented. 
Comparisons of the theoretical results with the experimental data for excitation energies, E2 
transition rates and two-neutron separation energies are shown. In section 4 the intrinsic state 
formalism is used to generate the energy surfaces produced by the parameters obtained in the 
preceding section. In addition, the location of the critical point in the shape transition for each 
isotope chain is identified by using catastrophe theory. Also in this section, the alternative 
description provided by the CQF for the rare-earth region is briefly discussed. Finally, section 
5 is devoted to summarize and to present our conclusions. 
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2. IBM-1 Description  
In this work we use the interacting boson model (IBM-1-1) to study in a systematic way 

the properties of the low-lying nuclear collective states in several even–even isotope chains in 
the rare-earth region. The building blocks of the model are bosons with angular momentum L 
= 0 (s bosons) and L = 2 (d bosons). The dynamical algebra of the model is U(6). Therefore, 
every dynamical operator, such as the Hamiltonian or the transition operators, can be written 
in terms of the generators of the latter algebra. Usually some restrictions are imposed on these 
operators, e.g. the Hamiltonian should be number conserving and rotational invariant, and in 
most cases it only includes up to two-body terms. 

The most general (including up to two–body terms) IBM-1 Hamiltonian, using the 
multipolar form, can be written as  
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The symbol (·) stands for the scalar product, defined as ∑ −−=⋅
M MLM

M
LL TTTT ˆˆ)1(ˆˆ where LMT̂  

corresponds to the M component of the operator LT̂ . The operator m
m

m −−=
ll

γγ )1(~  (where γ 

refers to s and d bosons) is introduced to ensure the correct tensorial character under spatial 
rotations. 

The first two terms in the Hamiltonian do not affect the spectra but only the binding 
energy. Therefore they can be removed from the Hamiltonian if only the excitation spectrum 
of the system is of interest. However, a complete description of both excitation and binding 
energies requires the use of the full Hamiltonian Eq. (1). 

The electromagnetic transitions can also be analyzed in the framework of the IBM-1. In 
particular, in this work we will focus on E2 transitions. The most general E2 transition 
operator including up to one body terms can be written as  

[ ])2(†)2(††2 )
~

()~~
(ˆ

MMeff
E

M ddsddseT ×+×+×= χ ,                                                       (7) 

where eeff is the boson effective charge and χ is a structure parameter.  

Two-neutron separation energies (S2n) are also studied in the present work. This 
observable is defined as the difference in binding energy between an even-even isotope and 
the preceding even-even one, 



 4 

S2n = BE(N) − BE(N − 1),                                                                                     (8) 

where N corresponds to the total number of valence bosons. Note that if only the first two 
terms in Eq. (1) are considered and A

~
 and B

~
 are assumed to be constant along the isotope 

chain, S2n would be given by 

.
~

)
~

2
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(2 BNANBBAS n +=−−−=                                                                        (9) 

3. Fits 
In this section we analyze several isotope chains belonging to the rare-earth region using 

the most general IBM-1 Hamiltonian, Eq. (1), and E2 transition operator, Eq. (7). As an 
ansazt for each chain of isotopes we will assume a single Hamiltonian, and a single E2 
transition operator. All parameters in these operators are kept fixed for a given isotope chain, 
except for the single particle energy which is allowed to vary slightly from isotope to isotope. 
The way of fixing the best set of parameters in the Hamiltonian is to carry out a least-square 
fit procedure of the excitation energies of selected states ( +

12  , +
14  , +

16  , +
18  , +

20  , +
32  , +

34  , +
22  

, +
13  , and +

24  ) and the two neutron separation energies of all isotopes in each isotopic chain. 
Once the parameters in the Hamiltonian are obtained, the B(E2) transition probabilities     

+
12 → +

10  , +
14  → +

12  , +
22  → +

10  , +
32  → +

10  , +
20  → +

12 , and +
30  → +

12  of the set of isotopes 

are used to fix eeff and χ by carrying out a least-square fit. The experimental data for excitation 
and binding energies and B(E2)’s have been taken from Refs. [26, 27, 28, 29, 30, 31, 32, 33, 
34, 35, 36, 37, 38]. Finally, it is worth noting that in Ref. [25] the Hamiltonian parameters 
were fixed just using the data for excitation energies and then A and B were adjusted to 
reproduce the experimental values of S2n. 

In this paper, since we are particularly interested in accurately describing the 
spectroscopic data associated to shape transitions, both, excitation and binding energies, are 
treated on an equal footing describing the shape transition, to determine the set of 
Hamiltonian parameters in Eq. (1). 

Tables 1 and 2 summarize the parameters obtained for the Hamiltonian and E2 transition 
operator for each isotope chain. 

In figures 1, 2, 3, and 4 the systematics of experimental and calculated energies for the 
states included in the least-square procedure are presented in order to show the goodness of 
the fitting procedure. In figures 5, 6, 7, and 8 the systematics of the experimental and 
calculated B(E2) values are compared. Finally, in figure 9, the experimental and calculated 
S2n values are shown. This is a fundamental magnitude for identifying a phase transition 
since it is directly related to the derivative of the energy surface. First order phase transitions 
are related with the appearance of a kink in the S2n values. As shown in Fig. 9, the calculation 
matches the experimentally observed behavior. 

The analysis of the preceding figures for different observables and for several isotope 
chains shows that the present procedure is appropriate for systematic studies and confirms that 
it provides a simple framework to describe long chains of isotopes and detect possible phase 
transitions. 

4. The CQF Hamiltonian  
An alternative approach to describe long chains of rare-earth nuclei is to use the CQF. The 

CQF Hamiltonian is given as [38]: 
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with  
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For each nucleus the parameters ε, k and χ are determined in order to fit the excitation 
energies and B(E2)’s. In particular in Ref. [39] the parameters of the Hamiltonian are 
calculated within the CQF framework where the strength of the quadrupole term (Q-Q 
interaction term concerning the SU(3) limit) of the Hamiltonian remains constant along awide 
region of the mass table. As in the present paper they compare experimental data and 
theoretical values for excitation energies and B(E2) transition rates. Both methods provide a 
consistent description of the rare-earth region with a similar number of parameters as can be 
observed in Fig. 10 and in table 3 where the case of 152Sm is analyzed. 

After getting the best set of parameters from the least square fit method, the Hamiltonian Eq. 
(1) is calculated by using the modified version of the computer code PHINT originally written 
by O. Scholten [40] which is called (PCIBAXW) [41], where the boson energy matrix are 
constructed using Fractional Parentage Coefficient (FPC) is diagonalized to get the excitation 
energies for each isotope in each isotopic chain, while the probability of transition B(E2) 
values are calculated using the computer code (PCIBAEM) [42].   

5. Energy surfaces and phase transitions 
The study of phase transitions in the IBM-1 requires the use of the so called intrinsic-state 

formalism [43, 44, 45], although other approaches can be used [3, 46]. This formalism is very 
useful to discuss phase transitions in finite systems because it provides a description of the 
behavior of a macroscopic system up to 1/N effects. To define the intrinsic, or coherent, state 
it is assumed that the dynamical behavior of the system can be described in terms of 
independent bosons (“dressed bosons”) moving in an average field [47]. The ground state of 
the system is a condensate, c , of bosons occupying the lowest–energy phonon state, †

cΓ , 

0)(
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1 † N
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N
c Γ=                                                                                              (12) 

where 

 






 +++
+

=Γ − )(d γsin
2

1
γcos

1

1 †
2

†
2

†
0

†

2

†
c dds ββ

β
                                     (13) 

and β and γ are variational parameters related with the shape variables in the geometrical 
collective model. The expectation value of the Hamiltonian in the intrinsic state Eq. (12) 

provides the energy surface of the system, cHcNE ˆγ),,( =β . The energy surface in terms 

of the parameters of the Hamiltonian Eq. (1) and the shape variables can be readily obtained 
[48], 
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where the terms which do not depend on β and/or γ (corresponding to A
~

 and B
~

 in Eq. (1)) 
have not been included. 

The equilibrium values of the variational parameters β and γ are obtained by minimization 

of the ground state energy cHc ˆ . As mentioned above these parameters are related to the 

parameters of the Geometrical Collective Model and provide an image of the nuclear shape 
for a given IBM-1 Hamiltonian. A spherical nucleus has a minimum in the energy surface at     
β = 0, while for a deformed one the energy surface has a minimum at a finite value of β and     
γ = 0 (prolate nucleus) or γ = π/3 (oblate nucleus). Finally, a γ-unstable nucleus corresponds 
to the case in which the energy surface has a minimum at a particular value of β and is 
independent of the value of γ. The equilibrium values of β and γ are the order parameters to 
study the phase transition of the system, although in the case under consideration (IBM-1) 
only β has to be taken into account, since the minima in γ are well defined. 

In Fig. 11, the energy surfaces for the isotopes of the different isotope chains studied in 
this paper are plotted as a function of β. The figure on the right is a zoom of the region close 
to      β = 0. 

The classification of phase transitions that we follow in this paper and that is followed 
traditionally in the IBM-1 is the Ehrenfest classification [49]. In this context, the origin of a 
phase transition resides in the way the energy surface (their minima positions) is changing as 
a function of the control parameter that, in this work, is a combination of parameters of the 
Hamiltonian (see Eq. (21)). First order phase transitions appear when there exists a 
discontinuity in the first derivative of the energy with respect to the control parameter. This 
discontinuity appears when two degenerate minima exist in the energy surface for two values 
of the order parameter β. Second order phase transitions appear when the second derivative of 
the energy with respect to the control parameter displays a discontinuity. This happens when 
the energy surface presents a single minimum for β = 0 and the surface satisfies the 
condition( ) 00

22 ==ββdEd . 

With the introduction of the E(5) and X(5) symmetries to describe phase transitional 
behavior, diverse attempts to identify nuclei that could be located at the critical points have 
been made. The theoretical approaches have been mainly performed with restricted IBM-1 
Hamiltonians. In particular, within the CQF, or other restricted Hamiltonians, the location of 
the critical point is obtained by imposing ( ) 022 =βdEd at β = 0, where E is the energy 
surface [2]. This condition leads to a flat surface in a region of small values of β, with a single 
minimum in the limit χ = 0 and two almost degenerate minima (one of them in β = 0) in the 
other cases. In the CQF approximation it can be said that ( ) 00

22 ==ββdEd  corresponds 

approximately to a “very flat energy surface” as happens for the E(5) and X(5) critical point 
models. Following this approach both 150Nd and 152Sm have been found to be close to critical. 
However, when studying a transitional region in which the lighter nuclei are spherical and the 
heavier are well deformed, the a priori restriction of the parameter space could play a crucial 
role in the identification of a particular isotope as critical. It is thus important to perform a 
general analysis in order to check whether the predictions obtained within the CQF for those 
nuclei close to a critical point are robust. We present below such an analysis in the region of 
the rare-earths. We follow closely the approach introduced in Ref. [14, 15] using catastrophe 
theory. In the next subsection the main ingredients of the theory are summarized and the 
relevant equations are particularized for the IBM-1 Hamiltonian written in multipolar form,   
Eq. (1). 
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A. The separatrix plane 
For the study of phase transitions in the IBM-1 within the framework of catastrophe theory 

we already have the basic ingredients: the Hamiltonian of the system, Eq. (1), and the intrinsic 
state, Eq. (12). With them, we have generated the corresponding energy surface, Eq. (14), in 
terms of the Hamiltonian parameters and the shape variables. It is our purpose to find the 
values of the parameters of the Hamiltonian that corresponds to critical points. In principle 
this analysis involves the 6 parameters of the Hamiltonian, but a first simplification occurs 
since the energy surface only depends on 5 parameters: 
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Fortunately, it is possible to reduce the number of relevant (or essential) parameters to just 
two and study all phase transitions by using catastrophe theory [16]. We refer the reader to 
Refs. [14, 15] for details of the application of this theory to the IBM-1 case. The idea is to 
analyze the energy surface and obtain all equilibrium configurations, i.e. to find all the critical 
points of Eq. (15). First, the critical point of maximum degeneracy has to be identified. In our 
case, it corresponds to β = 0. Next, the bifurcation and Maxwell sets are constructed [14, 16]. 
Finally, the separatrix of the IBM-1 is obtained by the union of Maxwell and bifurcation sets. 
In general a bifurcation set, corresponding to minima, limits an area where two minima in the 
energy surface coexist. A second order phase transition develops when these minima become 
the same. The crossing of a Maxwell set corresponding to minima leads to a first order phase 
transition. 

In order to follow this scheme, one has to identify the catastrophe germ of the IBM-1, 
which is the first term in the expansion of the energy surface around the critical point of 
maximum degeneracy that cannot be canceled by an arbitrary selection of parameters. In our 
case, one finds that the first derivative in β = 0 is always 0 because of the critical character of 
the point for any value of the parameters. The second and third derivatives can also be 
canceled with an appropriate selection of parameters. However, if one imposes the 
cancellation of the fourth derivative, the energy becomes a constant for any value of β. This 
means that the catastrophe germ is 4β  and the number of essential parameters is equal to two, 
which can be defined, following reference [14, 15], as  

,
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where ε~ , a1, a2, and a3 are defined in Eq. (16). The denominator in both expressions fixes the 
energy scale, which means that when it becomes negative, the energy surfaces are inverted. 
The essential parameters r1 and r2 can also be written in terms of the parameters appearing in 
Eq.  (1) as, 
 

,
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A property of the parameterization used in this work is that the different chains of isotopes 
are located on a straight line that crosses the point corresponding to the U(5) limit. The 
equation of this line is given by 

1
24

72
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2

435
36

20
1 +
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= r

k

kkk
r                                                                                   (21) 

It should be remarked that the derivation of the essential parameters has nothing to do with 
catastrophe theory. The application of this theory begins once those parameters are obtained. 
The basic point is to translate every set of Hamiltonian parameters to the plane formed by the 
essential parameters r1 and r2. This plane is divided into several sectors by the bifurcation set, 
that form the geometrical place in the parameter space where ( ) 022 =βdEd  for a critical 
value of β, and the Maxwell sets, the geometrical place in the space of parameters where two 
or more critical points are degenerate [16]. Both sets form the separatrix of the system, in this 
case of the IBM-1. In Ref. [14, 15] the IBM-1 bifurcation (r2 axis, r2 = 0 and r1 < 0 semi-axis, 
r11, and r12) and Maxwell (negative r1 semi-axis,  +

13r and −
13r ) sets were obtained. They are all 

indicated in Fig. 12. In this representation it is required that the denominator in Eq. (17) and 
Eq. (18) is positive. The separatrix for r1 > 0 is associated to minima while for r1 < 0 is 
associated to maxima (except the negative r1 semi-axis). In order to clarify the figure on the 
separatrix, the energy surfaces corresponding to each set are plotted as insets. The half plane 
with r2 > 0 corresponds to prolate nuclei, while the one with r2 < 0 corresponds to oblate 
nuclei. Note that expressions in Eq. (19) and Eq. (20) are only valid for prolate nuclei, but can 
be readily obtained for the oblate case. On this figure the symmetry limits and the 
correspondence with Casten’s triangle [7] are also represented. For completeness one should 
consider the case where the denominator of (17) and (18) is negative. It implies that the 
energy scale becomes negative and the energy surface should be inverted. The separatrix for 
this case is plotted in figure 13 and corresponds to the inversion of figure 12. Again the 
schematic energy surfaces corresponding to each branch of the separatrix are shown as insets. 
Note that in this case the symmetry limits do not appear in the figure because they correspond 
to positive denominators for r1 and r2. In our analysis only prolate nuclei are considered, 
because of that a new figure, Fig. 14, is included. In this figure, the right panel corresponds to 
positive denominators for r1 and r2 while the left panel shows the case of negative 
denominator for r1 and r2. In the following we will follow the convention presented in this 
figure. 

A set of parameters in the Hamiltonian corresponds to a point in the separatrix plane. The 
location of the point in that plane provides the required information on its transitional phase 
character. As mentioned above, it follows that points located on a separatrix line correspond 
to critical points. Note that the dynamical behavior of the system is controlled by the lowest 
minimum in the energy surface. In this sense we are adopting the Maxwell convention in the 
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catastrophe theory language [16] and the only relevant branches of the separatrix are +
13r  and 

r2 = 0 with r1 ≤ 0. All these branches correspond to first order phase transitions except for the 
single point (r1 = 0, r2 = 0) that corresponds to a second order phase transition. The rest of 
Maxwell lines do not correspond to a phase transition because they are related to maxima. 
The interest of the bifurcation set, corresponding to minima, arises from the fact that it defines 
regions where two minima exits. In the following subsection the transitional isotope chains 
studied in this paper are analyzed in the separatrix plane. 

B. Rare-earth region on the separatrix plane 
The fits presented in Sect. III provide the parameter sets given in Tables I and II for the 

four isotope chains studied in this paper. In this section we plot the corresponding sequences 
of points representing the isotopes in each chain on the separatrix plane. As can be observed 
in the previous tables all the parameters for each chain are fixed except the value of εd that 
changes along the chain. 

In figure 15 the positions of the different isotopes in the chains studied are plotted in the 
separatrix plane. The interpretation of these lines is given in Fig. 14. As mentioned above, all 
isotopes in a chain lie on a straight line. The lighter ones are close to the U(5) point (spherical 
shapes) while as the number of neutrons is increased the corresponding points get increasingly 
away. For the heavier isotopes of Gd, and Dy the denominator of r1 and r2 becomes negative, 
which means that the left panel in Fig. 14 has to be used. 

The main feature we find is that some nuclei are close to the Maxwell set +13r : the closest 

are 148Nd (boson number N = 8) and 150Sm (boson number N = 9) and not far away 152Gd 
(boson number N = 10). This can be complemented with the image of the energy surfaces 
plotted in Fig. 11. The energy surface for 148Nd and 150Sm are rather flat around β = 0. For 
152Gd the situation is not so clear. For Dy there is no isotope close to the critical point. 
According to our calculations, the transition from spherical to deformed occurs between N = 
11 and N = 12. The isotope 162Dy is close to the Maxwell set but in the left panel. In this 
situation there should be two degenerate maxima. This can be observed in the corresponding 
energy surface (boson number N = 15) in Fig. 11. The isotopes 150Nd (N = 9) and 152Sm (N = 
10) (also can be included in this situation 154Gd (N = 11) and 158Dy (N = 13)) are close to the 
bifurcation set r2 axis. Again inspection of Fig. 11 shows that the energy surfaces for these 
isotopes has a minimum for β > 0 and a maximum at β = 0. In figure 16 we show an 
amplification of the critical area. 

In conclusion, from this global analysis we find that 148Nd, 150Sm, and (less clearly) 152Gd, 
are close to criticality. These isotopes are quite close but do not exactly coincide with 
previously proposed critical nuclei 150Nd and 152Sm [20, 24], where the quite basic criterion 
was the closeness of their low-lying excitation spectra and transition intensities with the X(5) 
values. 

C. Prediction of critical points within CQF 
The CQF uses a simplified Hamiltonian with only three parameters. For the description of 

transitional nuclei from the U(5) to the SU(3) limits the parameters are allowed to vary 
nucleus by nucleus. The representation of such calculations in the separatrix plane shows that 
all isotopes in a chain are basically on top of the straight line connecting the U(5) point, (r1, 
r2) = (1, 0), and the SU(3) point, (r1, r2) = (−4/3, 4√2/3). Note that this point corresponds 
strictly to the SU(3) Casimir operator. However, a more general CQF SU(3) Hamiltonian still 
lies very close to the latter point. In general, the same happens in the U(5) and O(6) points. 
This means that within this framework the exploration of only a limited area in the separatrix 
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plane is allowed. If all isotopes in an isotopic chain are forced to be located on the line 
connecting the U(5) and SU(3) points, it follows that one will more often find an isotope close 
to the (unique) critical point. In the calculations presented here we have seen that within the 
general formalism this is not always the case. For example, for Dy we did not find an isotope 
close to a critical point. 

In previous systematic studies in the rare-earth region using the CQF formalism, Ref. [39] 
and [25], the corresponding energy surfaces were not presented. We have constructed them 
from the parameters given in those references and the results obtained are consistent with 
those given in the present work. In particular, 148Nd and 150Sm seem to be closest to a critical 
point. 

6. Conclusions 
In this paper we have analyzed chains of isotopes in the rare-earth region. In these chains 

nuclei evolve from spherical to deformed shapes. We have performed an analysis of the 
corresponding shape transitions to look for possible nuclei at or close to a critical point. We 
have used the more general one- and two- body IBM-1 Hamiltonian and generated energy 
surfaces using the coherent state formalism. We have then used catastrophe theory to classify 
phase transitions and to decide if a nucleus is close to criticality. 

The approach used to fix the Hamiltonian parameters leads to a very good global 
agreement with the experimental data corresponding to excitation energies, B(E2)’s and S2n 
values. In particular, an excellent agreement with the measured S2n values is obtained, which 
is considered a key observable to locate phase transitional regions. The analysis presented 
here is consistent with previous CQF studies in the same region. As a result we find that 
148Nd and 150Sm are the best candidates to be critical, but we should remark that 150Nd and 
152Sm are not far away from it. 

A possible new way of defining critical nuclei is based on the “critical symmetries” E(5) 
or X(5) [5, 6]. The properties associated with these solutions allow the identification of critical 
points by comparing the experimental data with characteristic energy and transition rate 
ratios. Thus, it may be possible to decide whether a nucleus is critical by analyzing its 
spectrum and decay properties. A trickier question is whether a flat energy surface can be 
truly associated to a given nucleus with energy ratios close to X(5). A clear example is 
152Sm: in section IVB we have shown that according to our study the IBM-1 energy surface 
of this nucleus is not so flat as expected from previous analyses, i.e. in our work it does not 
correspond to a critical point as suggested earlier. However, if the spectrum and transition 
rates are analyzed (see figure 10 and table 3), this nucleus reproduces reasonably well the 
main X(5) features. We note that in the general IBM-1 framework there is no unique spectrum 
associated to a given potential energy surface, as implied by equations (17) an (18). 
Catastrophe theory constitutes a definite criterion regarding this issue, but does not provide a 
measurable signature in itself.  

It seems clear that further work is required to find experimentally identifiable features 
which signal criticality in an unequivocal way. 
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Table 1: Values of εd in the Hamiltonian (in KeV) for each of isotopic chain as           
a function of the neutron number. 

A
~

 B
~

 0k  1k  2k  3k  4k  
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Fig.1: Excitation energies of Nd isotopes. Fig.2: Excitation energies of Sm isotopes. 

Fig.3: Excitation energies of Gd isotopes. Fig.4: Excitation energies of Dy isotopes. 
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Fig.5: B(E2) transition rates for Nd isotopes. Fig.6: B(E2) transition rates for Sm isotopes. 

Fig.8: B(E2) transition rates for Dy isotopes. Fig.7: B(E2) transition rates for Gd isotopes. 
A 
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Fig.9: S2n values for Nd, Sm, Gd, and Dy isotopes. 

Fig.10: Spectrum of 152Sm: (a) experimental, (b) X(5) symmetry, (c) this work, 
and (d) using CQF [2]. 
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Fig.11: Energy surfaces for the different chain of isotopes. 

Fig.12: Separatrix plane with a positive energy scale. Fig.13: Separatrix plane with a negative energy scale. 
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Fig.14: Separatrix plane for prolate nuclei (χ < 0). Fig.15: Representation of isotopes in the separatrix 
plane (with χ < 0).The numbers on the isotopes 
correspond to the number of bosons. 

Fig.16: Representation of isotopes in the separatrix plane in a closest view. 


