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Abstract

A systematic study of isotope chains in the rarghegegion is presented. The energy
levels, E2 transition rates, and two—neutron séjoeranergies are described by using the
most generalBM-1 Hamiltonian for the chain&*:3!Nd, “**'59Sm, 14#12Gd and ***1% py,
For each isotope chain a general fit is perfornmeslich a way that all parameters but one are
kept fixed to describe the whole chain.

In this region nuclei evolve from spherical to defed shapes and a method based on
catastrophe theory, in combination with a cohegate analysis to generate the IBM-1-1
energy surfaces, is used to identify critical phagesition points.
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1. Introduction

In the last few years, an interest for the studpludse transitions and phase coexistence in
atomic nuclei has been revived [1, 2, 3, 4].

A new class of symmetries that applies to systeroalized at the critical points has been
proposed. In particular, the “critical symmetr(5) [5] has been suggested to describe
critical points in the phase transition from spbakito y-unstable shapes whil(5) [6] is
designed to describe systems lying at the crimaht in the transition from spherical to



axially deformed systems. These are based origirall particular solutions of the Bohr-
Mottelson differential equations, but are usualppléed in the context of the Interacting
Boson Model (IBM-1) [7], since the latter providesimple but detailed framework in which
first and second order phase transitions can lBestuln the IBM-1 language, the symmetry
E(5) corresponds to the critical point between W{) andO(6) symmetry limits, while the
X(5) symmetry should describe the phase transiggmon between th&(5) and theSU(3)
dynamical symmetries, although the connection tsarmigorous one. Th@(6) limit itself has
also been proposed to correspond to a criticaltpd]n

The IBM-1 analyses of phase transitions have beamied out using schematic
Hamiltonians in which the transition from one phasethe other is governed by a single
parameter. It is thus necessary to see how mude heedictions vary when a more general
Hamiltonian is used. The global approach was tisetd by Castaria al [9] for the study of
series of isotopes [10, 11, 12]. An alternativecprure is provided by the use of the
consistent Q formalism (CQF) [13]. In this cas¢éh@ligh the Hamiltonian is simpler than the
general one, the main ingredients are includedhiithis scheme a whole isotope chain is
described in terms of few parameters that changsoily from one isotope to the next.
Because of the possible non-uniqueness of sucleumuddy nucleus fits and the restricted
parameter space, it is important to study undertwaiv@umstances the prediction of the
location of critical points in a phase transitisirobust. In this paper we follow Refs. [10, 11,
12, 14,15] and use a more general one— and two-t®lyl Hamiltonian to obtain the
model parameters from a fit to energy levels ofichaf isotopes. In this way a set of fixed
parameters, with the exception of one that vares fisotope to isotope, is obtained for each
isotope chain and the transition phase can beestudithe general model space.

The fit to a large data set in many nuclei dimiesstihe uncertainties in the parameter
determination. A possible problem arising from wogkwith such a general Hamiltonian,
however, is the difficulty in determining the paait of the critical points. Fortunately, the
methods of catastrophe theory [16] allow the d&tiniof the essential parameters needed to
classify the shape and stability of the energyamef14, 15].

In this paper we analyze diverse spectroscopicepti@s of several isotope chains in the
rare-earth region, in which shape transition frgrhesical to deformed shapes is observed.
We combine this study with a coherent-state aralgad with catastrophe theory in order to
localize the critical points and test théb) predictions. Since the introduction of #Bg) and
X(5) symmetries, only a small number of candidat&s 18, 19, 20, 21, 22, 23, 24] have been
proposed as possible realizations of such cripoait symmetries. In this paper we show that
the critical points can be clearly identified byans of a general theoretical approach [14,
15].

The paper is structured as follows. In section Zovesent the IBM-1 Hamiltonian used. In
section 3 the results of the fits made for the eddht isotope chains are presented.
Comparisons of the theoretical results with theeexpental data for excitation energies, E2
transition rates and two-neutron separation engrgie shown. In section 4 the intrinsic state
formalism is used to generate the energy surfametuped by the parameters obtained in the
preceding section. In addition, the location of ¢hiéical point in the shape transition for each
isotope chain is identified by using catastropheotl. Also in this section, the alternative
description provided by the CQF for the rare-eagtiion is briefly discussed. Finally, section
5 is devoted to summarize and to present our ceiacig.



2. IBM-1 Description

In this work we use the interacting boson modeMiB-1) to study in a systematic way
the properties of the low-lying nuclear collectstates in several even—even isotope chains in
the rare-earth region. The building blocks of theded are bosons with angular momentum
= 0 (sbosons) and. = 2 d bosons). The dynamical algebra of the modé&l(8). Therefore,
every dynamical operator, such as the Hamiltoniathe transition operators, can be written
in terms of the generators of the latter algebisaudlly some restrictions are imposed on these
operatorse.g. the Hamiltonian should be number conserving artdtional invariant, and in
most cases it only includes up to two-body terms.

The most general (including up to two—body termBM4{l1 Hamiltonian, using the
multipolar form, can be written as

~~  =N(N-1)

H=AN+B +&,i, +k PP

(1)
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where N , and n, are the total boson number operator, anddtf®son number operator,

respectively and

If)T:%(dT W' — s 3, 2)
L =+10(d" xd)®, (3)
Q=(s'xd +d'x5)® —g(d*xa)@, 4)

T,=(d"xd)®, )(5
T, =(d"xd)®. ) (6

The symbol (-) stands for the scalar product, «%elfias‘lcL EI:L = ZM (—1)M'I:M'I:L_M Where'I:LM

corresponds to thil component of the operatdt . The operatory,, = (-)"y,_, (wherey

refers tos andd bosons) is introduced to ensure the correct t@iscnaracter under spatial
rotations.

The first two terms in the Hamiltonian do not afféke spectra but only the binding
energy. Therefore they can be removed from the Hamnmn if only the excitation spectrum
of the system is of interest. However, a complatscdption of both excitation and binding
energies requires the use of the full Hamiltonian &).

The electromagnetic transitions can also be andlyzehe framework of the IBM-1. In
particular, in this work we will focus oi2 transitions. The most gener@® transition
operator including up to one body terms can betarias

T2 =g, [(s'xd +d"x5)@ + y(d'xd)?, ©
whereeg: is the boson effective charge gnis a structure parameter.

Two-neutron separation energie$y,| are also studied in the present work. This
observable is defined as the difference in bindingrgy between an even-even isotope and
the preceding even-even one,



Sn = BE(N) - BE(N - 1), (8)
where N corresponds to the total number of valdsasons. Note that if only the first two

terms in Eq. (1) are considered aAdand B are assumed to be constant along the isotope
chain,S;, would be given by

%n:—(z\—%l§)—§N:A+ BN. ©9)

3. Fits

In this section we analyze several isotope chag@lsnging to the rare-earth region using
the most general IBM-1 Hamiltonian, Eqg. (1), and tE&nsition operator, Eq. (7). As an
ansazt for each chain of isotopes we will assume a siridgeniltonian, and a single E2
transition operator. All parameters in these omesatre kept fixed for a given isotope chain,
except for the single particle energy which is\akd to vary slightly from isotope to isotope.
The way of fixing the best set of parameters inkaeniltonian is to carry out a least-square

+

fit procedure of the excitation energies of selectates 2; , 4, ,6, ,8 ,0, ,2; ,4; ,2,

, 3/ , and4; ) and the two neutron separation energies aalbpes in each isotopic chain.
Once the parameters in the Hamiltonian are obtaitleel B(E2) transition probabilities
21— 0 ,4 —>2,2,—->0 ,2,—> 0,0, > 2,and0; — 2; of the set of isotopes
are used to fixegs andy by carrying out a least-square fit. The experirakdata for excitation
and binding energies ar{E2)'s have been taken from Refs. [26, 27, 28, 29,330 32, 33,
34, 35, 36, 37, 38]. Finally, it is worth notingathin Ref. [25] the Hamiltonian parameters
were fixed just using the data for excitation eresgand themA and B were adjusted to
reproduce the experimental valuesSgf

In this paper, since we are particularly interested accurately describing the
spectroscopic data associated to shape transitiatis, excitation and binding energies, are
treated on an equal footing describing the shapasition, to determine the set of
Hamiltonian parameters in Eq. (1).

Tables 1 and 2 summarize the parameters obtaimedediamiltonian an@?2 transition
operator for each isotope chain.

In figures 1, 2, 3, and 4 the systematics of expental and calculated energies for the
states included in the least-square procedure rasepted in order to show the goodness of
the fitting procedure. In figures 5, 6, 7, and & thystematics of the experimental and
calculatedB(E2) values are compared. Finally, in figure 9, tkpezimental and calculated
S2n values are shown. This is a fundamental magmifar identifying a phase transition
since it is directly related to the derivative bétenergy surface. First order phase transitions
are related with the appearance of a kink in the\&ues. As shown in Fig. 9, the calculation
matches the experimentally observed behavior.

The analysis of the preceding figures for differebservables and for several isotope
chains shows that the present procedure is apptegdar systematic studies and confirms that
it provides a simple framework to describe longihaf isotopes and detect possible phase
transitions.

4. The CQF Hamiltonian

An alternative approach to describe long chainsud-earth nuclei is to use the CQF. The
CQF Hamiltonian is given as [38]:



= e, +kQ @), (10)
with
Q' =(s"xd +d"x3)@ + y(d"xd)®. (11)

For each nucleus the parameterk andy are determined in order to fit the excitation
energies andB(E2)’'s. In particular in Ref. [39] the parameters tbe Hamiltonian are
calculated within the CQF framework where the gtenof the quadrupole term (Q-Q
interaction term concerning the SU(3) limit) of tHamiltonian remains constant along awide
region of the mass table. As in the present papey ttompare experimental data and
theoretical values for excitation energies &{H#2) transition rates. Both methods provide a
consistent description of the rare-earth regiorhwsitsimilar number of parameters as can be
observed in Fig. 10 and in table 3 where the c&s¥®m is analyzed.

After getting the best set of parameters from #ast square fit method, the Hamiltonian Eq.
(1) is calculated by using the modified versiorthe computer code PHINT originally written
by O. Scholten [40] which is called (PCIBAXW) [42here the boson energy matrix are
constructed using Fractional Parentage CoeffiieRC) is diagonalized to get the excitation
energies for each isotope in each isotopic chaimlewthe probability of transitioB(E2)
values are calculated using the computer code (REN) [42].

5. Energy surfaces and phasetransitions

The study of phase transitions in the IBM-1 requittee use of the so called intrinsic-state
formalism [43, 44, 45], although other approachess loe used [3, 46]. This formalism is very
useful to discuss phase transitions in finite systdecause it provides a description of the
behavior of a macroscopic system up to 1/N effebdsdefine the intrinsic, or coherent, state
it is assumed that the dynamical behavior of thstesy can be described in terms of
independent bosons (“dressed bosons”) moving iavanage field [47]. The ground state of

the system is a condensdt@,, of bosons occupying the lowest—energy phonoe Stat,

|c) = \/_ rH"o) (12)
where
rr=__1 (s* + Beosyd] +—= Bsiny (d} +d! )j (13)
c W 0 \/E 2 2

and f andy are variational parameters related with the shap@&bles in the geometrical
collective model. The expectation value of the Hamian in the intrinsic state Eq. (12)

provides the energy surface of the syst&(iN, 5,v) =<C‘HA‘C>. The energy surface in terms

of the parameters of the Hamiltonian Eq. (1) andstiegpe variables can be readily obtained
[48],

(47l = g gy ok~ o 3

l(\ll(JrN,B )1){k0 B ( Ko 4 ax J+2\/_,8 k, cos@y) (14)
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where the terms which do not dependfoand/ory (corresponding toA and B in Eq. (1)
have not been included.

The equilibrium values of the variational paramgteandy are obtained by minimization
of the ground state ener. H

c>. As mentioned above these parameters are relatduet

parameters of the Geometrical Collective Model pravide an image of the nuclear shape
for a given IBM-1 Hamiltonian. A spherical nucleligs a minimum in the energy surface at
S = 0, while for a deformed one the energy surfacedainimum at a finite value gfand

v = 0 (prolate nucleus) or = n/3 (oblate nucleus). Finally,wunstable nucleus corresponds
to the case in which the energy surface has a mimimat a particular value ¢gf and is
independent of the value @f The equilibrium values gf andy are the order parameters to
study the phase transition of the system, althaogtihe case under consideration (IBM-1)
only S has to be taken into account, since the minimaaire well defined.

In Fig. 11, the energy surfaces for the isotopethefdifferent isotope chains studied in
this paper are plotted as a functiongofThe figure on the right is a zoom of the regitose
to p=0.

The classification of phase transitions that wéofelin this paper and that is followed
traditionally in the IBM-1 is the Ehrenfest clagsdtion [49]. In this context, the origin of a
phase transition resides in the way the energyaserftheir minima positions) is changing as
a function of the control parameter that, in thisrky is a combination of parameters of the
Hamiltonian (see Eq. (21)). First order phase items appear when there exists a
discontinuity in the first derivative of the energyth respect to the control parameter. This
discontinuity appears when two degenerate mininist @xthe energy surface for two values
of the order paramet@ Second order phase transitions appear when toadelerivative of
the energy with respect to the control parametgpldys a discontinuity. This happens when
the energy surface presents a single minimumpgfor 0 and the surface satisfies the

condition(d®E/d?),., =0.

With the introduction of theE(5) and X(5) symmetries to describe phase transitional
behavior, diverse attempts to identify nuclei tbatild be located at the critical points have
been made. The theoretical approaches have beenynpairformed with restricted IBM-1
Hamiltonians. In particular, within the CQF, or ethrestricted Hamiltonians, the location of

the critical point is obtained by imposin(tgle/d,BZ)=Oatﬁ = 0, where E is the energy
surface [2]. This condition leads to a flat surfate region of small values @f with a single
minimum in the limity = 0 and two almost degenerate minima (one of thefh= 0) in the

other cases. In the CQF approximation it can bd Haat (dZE/d,BZ)ﬁ:0 =0 corresponds

approximately to a “very flat energy surface” appens for thee(5) andX(5) critical point
models. Following this approach boffiNd and*>’Sm have been found to be close to critical.
However, when studying a transitional region in ebhihe lighter nuclei are spherical and the
heavier are well deformed, the a priori restrictairthe parameter space could play a crucial
role in the identification of a particular isotops critical. It is thus important to perform a
general analysis in order to check whether theigtieds obtained within the CQF for those
nuclei close to a critical point are robust. Wesgrg below such an analysis in the region of
the rare-earths. We follow closely the approachothiced in Ref. [14, 15] using catastrophe
theory. In the next subsection the main ingredie@itshe theory are summarized and the
relevant equations are particularized for the IBMidmiltonian written in multipolar form,

Eq. (1).



A. Theseparatrix plane

For the study of phase transitions in the IBM-1hivitthe framework of catastrophe theory
we already have the basic ingredients: the Hamdtoof the system, Eq. (1), and the intrinsic
state, Eq. (12). With them, we have generated ¢hneesponding energy surface, Eq. (14), in
terms of the Hamiltonian parameters and the shap@bles. It is our purpose to find the
values of the parameters of the Hamiltonian thatesponds to critical points. In principle
this analysis involves the 6 parameters of the Haman, but a first simplification occurs
since the energy surface only depends on 5 parenete

A

(g

_ NEB* N(N-I . . » U
=g s gor (o e+ ) (15)

where

F=¢, +6k1—%k2 +£k3 +§k4
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a:l. 4k0 2 2 35 4
a, = 22Kk, (16)
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u, =—~
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Fortunately, it is possible to reduce the numbeetdvant (or essential) parameters to just
two and study all phase transitions by using caipke theory [16]. We refer the reader to
Refs. [14, 15] for details of the application ofstltheory to the IBM-1 case. The idea is to
analyze the energy surface and obtain all equilibrconfigurations, i.e. to find all the critical
points of Eq. (15). First, the critical point of rimum degeneracy has to be identified. In our
case, it corresponds b= 0. Next, the bifurcation and Maxwell sets arestcucted [14, 16].
Finally, the separatrix of the IBM-1 is obtained ity union of Maxwell and bifurcation sets.
In general a bifurcation set, corresponding to mailimits an area where two minima in the
energy surface coexist. A second order phase titamsievelops when these minima become
the same. The crossing of a Maxwell set correspantti minima leads to a first order phase
transition.

In order to follow this scheme, one has to identiig catastrophe germ of the IBM-1,
which is the first term in the expansion of the rgyesurface around the critical point of
maximum degeneracy that cannot be canceled bylatnaay selection of parameters. In our
case, one finds that the first derivativesin= O is always O because of the critical charadter o
the point for any value of the parameters. The rs@cand third derivatives can also be
canceled with an appropriate selection of pararsetétowever, if one imposes the
cancellation of the fourth derivative, the energgdmes a constant for any valuesofThis
means that the catastrophe gerngisand the number of essential parameters is equaioto

which can be defined, following reference [14, HY,

=Tt (N-D (17)
2a, +&/(N-1)-a,

__ 28,
" 28 +E/(N-D-a, (18)



where £, a;, a, andaz are defined in Eq. (16). The denominator in botpressions fixes the
energy scale, which means that when it becomestimegthe energy surfaces are inverted.
The essential parameters rl and r2 can also beewiit terms of the parameters appearing in
Eq. (1) as,

- E— (N _1)(k0 _4k2) (19)
OEH(N-D(k, — 3k, + 2k,)
. 22K, (N -1) (20)

27 F+ (N -1)(k, - 3k, + Zk,)’

A property of the parameterization used in thisknerthat the different chains of isotopes
are located on a straight line that crosses thatpmrresponding to th&(5) limit. The
equation of this line is given by

[ = 2k0_7k2+%k4r
' M2k, °

It should be remarked that the derivation of treeatial parameters has nothing to do with
catastrophe theory. The application of this theagits once those parameters are obtained.
The basic point is to translate every set of Hamiéio parameters to the plane formed by the
essential parametergandr,. This plane is divided into several sectors byltifiercation set,

that form the geometrical place in the parametalcspNhere(dzE/ dﬁz):o for a critical

value off, and the Maxwell sets, the geometrical place engpace of parameters where two
or more critical points are degenerate [16]. Bats $orm the separatrix of the system, in this
case of the IBM-1. In Ref. [14, 15] the IBM-1 biéation ¢, axis,r, = 0 andr; < 0 semi-axis,

ri1, andri) and Maxwell (negative; semi-axis, r;and r;) sets were obtained. They are all

indicated in Fig. 12. In this representation iteguired that the denominator in Eg. (17) and
Eq. (18) is positive. The separatrix for > 0 is associated to minima while for < 0 is
associated to maxima (except the negativeemi-axis). In order to clarify the figure on the
separatrix, the energy surfaces correspondingdb set are plotted as insets. The half plane
with r, > 0 corresponds to prolate nuclei, while the onthw, < O corresponds to oblate
nuclei. Note that expressions in Eq. (19) and Eq) é26 only valid for prolate nuclei, but can
be readily obtained for the oblate case. On thguré the symmetry limits and the
correspondence with Casten’s triangle [7] are edgwesented. For completeness one should
consider the case where the denominator of (17)(&aB8Y is negative. It implies that the
energy scale becomes negative and the energy swsfeuld be inverted. The separatrix for
this case is plotted in figure 13 and correspordshe inversion of figure 12. Again the
schematic energy surfaces corresponding to eacitlbia the separatrix are shown as insets.
Note that in this case the symmetry limits do myear in the figure because they correspond
to positive denominators for rl amegl In our analysis only prolate nuclei are considere
because of that a new figure, Fig. 14, is includedhis figure, the right panel corresponds to
positive denominators for r1 and r2 while the lpfinel shows the case of negative
denominator forr; andr,. In the following we will follow the convention esented in this
figure.

+1 (21)

A set of parameters in the Hamiltonian correspdods point in the separatrix plane. The
location of the point in that plane provides thgquieed information on its transitional phase
character. As mentioned above, it follows that poinocated on a separatrix line correspond
to critical points. Note that the dynamical behawbthe system is controlled by the lowest
minimum in the energy surface. In this sense weadmpting the Maxwell convention in the



catastrophe theory language [16] and the only egiebranches of the separatrix ajeand

r, = 0 withr; < 0. All these branches correspond to first ordexrsghtransitions except for the
single point (; = 0,r, = 0) that corresponds to a second order phassitican The rest of
Maxwell lines do not correspond to a phase tramsibecause they are related to maxima.
The interest of the bifurcation set, correspondmminima, arises from the fact that it defines
regions where two minima exits. In the followingosaction the transitional isotope chains
studied in this paper are analyzed in the sepanalane.

B. Rare-earth region on the separatrix plane

The fits presented in Sect. Il provide the paraneets given in Tables | and Il for the
four isotope chains studied in this paper. In Hastion we plot the corresponding sequences
of points representing the isotopes in each chaithe separatrix plane. As can be observed
in the previous tables all the parameters for edzhin are fixed except the value gfthat
changes along the chain.

In figure 15 the positions of the different isotepa the chains studied are plotted in the
separatrix plane. The interpretation of these lisegven in Fig. 14. As mentioned above, all
isotopes in a chain lie on a straight line. Thatky ones are close to thk¥5) point (spherical
shapes) while as the number of neutrons is incdelgecorresponding points get increasingly
away. For the heavier isotopes of Gd, and Dy theaenator of r1 and r2 becomes negative,
which means that the left panel in Fig. 14 hasetased.

The main feature we find is that some nuclei aoselto the Maxwell set;: the closest

are **\d (boson numbeN = 8) and™°Sm (boson numbeX = 9) and not far away’*Gd
(boson numbeN = 10). This can be complemented with the imagéhefenergy surfaces
plotted in Fig. 11. The energy surface t8iINd and**°Sm are rather flat arourgi= 0. For
152Gd the situation is not so clear. For Dy there dsisotope close to the critical point.
According to our calculations, the transition fr@pherical to deformed occurs betwderr
11 andN = 12. The isotopé®Dy is close to the Maxwell set but in the left parle this
situation there should be two degenerate maxime ddn be observed in the corresponding
energy surface (boson numiBé¢r 15) in Fig. 11. The isotopédNd (N = 9) and™®’Sm (N =
10) (also can be included in this situatifGd (N = 11) and*>®Dy (N = 13)) are close to the
bifurcation setr, axis. Again inspection of Fig. 11 shows that thergy surfaces for these
isotopes has a minimum fgt > 0 and a maximum & = 0. In figure 16 we show an
amplification of the critical area.

In conclusion, from this global analysis we finatHNd, **°Sm, and (less clearly§*Gd,
are close to criticality. These isotopes are quitesse but do not exactly coincide with
previously proposed critical nucl&®Nd and**’Sm [20, 24], where the quite basic criterion
was the closeness of their low-lying excitationct@eand transition intensities with tX¢5)
values.

C. Prediction of critical pointswithin CQF

The CQF uses a simplified Hamiltonian with onlyemparameters. For the description of
transitional nuclei from th&J(5) to the SU(3) limits the parameters are allowed to vary
nucleus by nucleus. The representation of suchuledions in the separatrix plane shows that
all isotopes in a chain are basically on top of gtraight line connecting thg(5) point, €1,
r2) = (1, 0), and thé&U(3) point, €1, r2) = (—4/3, 4/2/3). Note that this point corresponds
strictly to theSU(3) Casimir operator. However, a more general GQR) Hamiltonian still
lies very close to the latter point. In generaé #ame happens in th&5) andO(6) points.
This means that within this framework the explamatof only a limited area in the separatrix



plane is allowed. If all isotopes in an isotopicaichare forced to be located on the line
connecting th&J(5) andSU(3) points, it follows that one will more often firan isotope close

to the (unique) critical point. In the calculatiopesented here we have seen that within the
general formalism this is not always the case.dxample, for Dy we did not find an isotope
close to a critical point.

In previous systematic studies in the rare-eargioreusing the CQF formalism, Ref. [39]
and [25], the corresponding energy surfaces weteresented. We have constructed them
from the parameters given in those references haddsults obtained are consistent with
those given in the present work. In particutdiNd and*>°Sm seem to be closest to a critical
point.

6. Conclusions

In this paper we have analyzed chains of isotopdlé rare-earth region. In these chains
nuclei evolve from spherical to deformed shapes. Wadee performed an analysis of the
corresponding shape transitions to look for possitclei at or close to a critical point. We
have used the more general one- and two- body IBiN&filtonian and generated energy
surfaces using the coherent state formalism. We kiaan used catastrophe theory to classify
phase transitions and to decide if a nucleus seclo criticality.

The approach used to fix the Hamiltonian parameteegls to a very good global
agreement with the experimental data corresponttingxcitation energie8(E2)’'s and$,,
values. In particular, an excellent agreement Withmeasure&, values is obtained, which
is considered a key observable to locate phassaiti@ml regions. The analysis presented
here is consistent with previous CQF studies indame region. As a result we find that
148Nd and"’Sm are the best candidates to be critical, buttveells remark that®°Nd and
152Sm are not far away from it.

A possible new way of defining critical nuclei iaded on the “critical symmetrie&(5)
or X(5) [5, 6]. The properties associated with thesetgms allow the identification of critical
points by comparing the experimental data with abt@ristic energy and transition rate
ratios. Thus, it may be possible to decide whetharucleus is critical by analyzing its
spectrum and decay properties. A trickier quesisowhether a flat energy surface can be
truly associated to a given nucleus with energyosatlose toX(5). A clear example is
152Sm: in section IVB we have shown that accordingur study the IBM-1 energy surface
of this nucleus is not so flat as expected fronvipres analyses, i.e. in our work it does not
correspond to a critical point as suggested eatiewever, if the spectrum and transition
rates are analyzed (see figure 10 and table 3),nhcleus reproduces reasonably well the
main X(5) features. We note that in the general IBM-Irfeavork there is no unique spectrum
associated to a given potential energy surfacejmgdied by equations (17) an (18).
Catastrophe theory constitutes a definite criteregarding this issue, but does not provide a
measurable signature in itself.

It seems clear that further work is required tadfiexperimentally identifiable features
which signal criticality in an unequivocal way.
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Table 1: Values ofy in the Hamiltonian (in KeV) for each of isotopikain as
a function of the neutron number.

Element

Neutron Number

84 86 88 90 92 94 96 98 100

G291
64 Gd

66Dy

1686.3 1606.7 1645.4 1602.9 1536.1 1595.9

1427.3 1393.5 1289.3 1210.8 1158.6 1192.5 1312.2 1452.0
1479.3 1508.7 1409.0 1300.4 1221.5 1174.4 1162.0 1176.5
1558.8 1607.6 1562.4 1503.9 1461.0 1427.7 1413.4 1409.2 1443.1

Table 2: Rest of the parameters in the Hamiltonian and in the E2 transition operator.

Isotopes Z(MeV) B (MeV) k,(keV) Kk (keV) ky(keV) Kk;(keV) K,(keV) ecrp (e-b) x
M-19ANd| 1675 -0.51  83.753 -13.928 -17.151 -101.27 -187.57  0.119 -1.43
M6-1%0Gm | 18.05  -0.46  53.209 -11.267 -14.674 -31.760 -131.24  0.119 -1.69
148-102Gd| 2255  -0.76 45207 -7.932 -13.1290 -35.224 -156.24  0.110 -1.77
BO-180Dy| 25.06  -0.80  38.651 -6.416 -13.638 -59.165 -163.05  0.103  -1.60

Table 3: Relevant transition rates for 1°2Sm (in w.u.).

Exp. X(5) This work CQF@

T—0f) 144 144 128 144

(F2:2 )
B(E2:4f —2f) 209 228 193 216
( 67 —4) 245 285 215 242
( 8T —67) 285 327 218 248
1: i 4

B(E2:10f —8]) 320 376 210 242

B(E2:05 -2} 383 491 53 57
B(E2:2f —4f) 19 52 14 20
B(E2:2f —2f) 6 13 5 11
B(E2:27 —0f) 1 3 0 0.1
B(E2:4f —6f) 4 40 7 14
B(E2:43 —4f) 5 9 2 8
B(E2:4f —2f) 1 13 0 0.1

(@) Following Ref. [2].
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