

On New Concepts of Weakly Neutrosophic Continuous Functions

Ali H. M. Al-Obaidi¹, Q. Hatem Imran^{2*} and Said Broumi³

¹Department of Mathematics, College of Education for Pure Science, University of Babylon, Hillah, Iraq. ²Department of Mathematics, College of Education for Pure Science, Al-Muthanna University, Samawah, Iraq. ³Laboratory of Information Processing, Faculty of Science Ben M'Sik, University Hassan II, B.P 7955, Morocco.

> E-mails: aalobaidi@uobabylon.edu.iq, qays.imran@mu.edu.iq, broumisaid78@gmail.com *Correspondence: qays.imran@mu.edu.iq

Abstract

In this paper, we intend to utilize the ideas of Neu^{α} -open and $Neu^{S\alpha}$ -open sets to distinguish several novel conceptions of weakly neutrosophic continuous functions, for instance; Neu^{α^*} -continuous, $Neu^{\alpha^{**}}$ -continuous, $Neu^{S\alpha^*}$ -continuous and $Neu^{S\alpha^{**}}$ -continuous functions. Moreover, we will describe the interactions among these thoughts of weakly neutrosophic continuous functions. **Mathematics Subject Classification (2010):** 54A05, 54B05.

Keywords: $Neu^{S\alpha}$ -open set, Neu^{α} -continuous, Neu^{α^*} -continuous, $Neu^{S\alpha^*}$ -continuous, $Neu^{S\alpha}$ -continuous, $Neu^{S\alpha^*}$ -continuous and $Neu^{S\alpha^{**}}$ -continuous functions.

1. Introduction

F. Smarandache [3,4] initially presented the idea of a "neutrosophic set". A. A. Salama et al. [1] introduced the principles of neutrosophic topological space (fleetingly, Neu^{TS}). Q. H. Imran et al. [6] stated that a class of $Neu^{S\alpha}$ -open sets in neutrosophic topological spaces. A. A. Salama et al. [2] submitted the notion of neutrosophic continuous mappings. Q. H. Imran et al. [7] established and examined the sense of continuity in neutrosophic generalized alpha generalized. The concentration of this article is to demonstrate pioneering perceptions of weakly neutrosophic continuous functions, for example; Neu^{α^*} -continuous, $Neu^{\alpha^{**}}$ -continuous, $Neu^{S\alpha^*}$ -continuous and $Neu^{S\alpha^{**}}$ -continuous functions. Additionally, we have in mind to rationalize the associations among these thoughts of weakly neutrosophic continuous functions.

2. Preliminaries

In this article, (\mathcal{M}, τ) , (\mathcal{N}, σ) , and (\mathcal{O}, ρ) (or simply \mathcal{M}, \mathcal{N} , and \mathcal{O}) always mean Neu^{TSs} . A neutrosophic closed set (briefly *Neu*-closed set) in (\mathcal{M}, τ) is a complement of a neutrosophic open set (briefly *Neu*-open set). Let neutrosophic set \mathcal{D} be in a Neu^{TS} (\mathcal{M}, τ), then the neutrosophic closure of \mathcal{D} , the neutrosophic interior of \mathcal{D} , and the neutrosophic complement of \mathcal{D} symbolize by $NeuCl(\mathcal{D})$, $NeuInt(\mathcal{D})$ and \mathcal{D}^c , correspondingly.

Definition 2.1:

Assume \mathcal{D} is a neutrosophic subset of a $Neu^{TS}(\mathcal{M}, \tau)$, then it is named as:

- (1) A neutrosophic α -open set (in brief Neu^{α} -open set) [5] if $\mathcal{D} \subseteq NeuInt(NeuCl(NeuInt(\mathcal{D})))$. The collection of every Neu^{α} -open set of \mathcal{M} is symbolized by $Neu^{\alpha}O(\mathcal{M})$. A neutrosophic α -closed set (in short Neu^{α} -closed set) is a complement of Neu^{α} -open set.
- (2) A neutrosophic semi-α-open set (in short Neu^{Sα}-open set) [6] if for any a Neu^α-open set P in M where P ⊆ D ⊆ NeuCl(P) or equivalently if D ⊆ NeuCl(NeuInt(NeuCl(NeuInt(D)))). The collection of every Neu^{Sα}-open set of M is symbolized by Neu^{Sα}O(M). A neutrosophic semi-α-closed set (in short Neu^{Sα}closed set) is a complement of Neu^{Sα}-open set.

Remark 2.2 [6]:

In a $Neu^{TS}(\mathcal{M},\tau)$, then the succeeding arguments stand, and the opposite of every argument does not hold:

(1) Every *Neu*-open set is a Neu^{α} -open and $Neu^{S\alpha}$ -open.

(2) Every Neu^{α} -open set is a $Neu^{S\alpha}$ -open.

Definition 2.3 [2]:

Assume $h: (\mathcal{M}, \tau) \to (\mathcal{N}, \sigma)$ is a function, then h is stated to be neutrosophic continuous (in short *Neu*-continuous) iff for each \mathcal{D} *Neu*-open set in \mathcal{N} , then $h^{-1}(\mathcal{D})$ is a *Neu*-open set in \mathcal{M} .

Definition 2.4 [5]:

Assume $h: (\mathcal{M}, \tau) \to (\mathcal{N}, \sigma)$ is a function, then h is stated to be neutrosophic α -continuous (in short Neu^{α} continuous) iff for each \mathcal{D} Neu-open set in \mathcal{N} , then $h^{-1}(\mathcal{D})$ is a Neu^{α}-open set in \mathcal{M} .

Theorem 2.5 [2]:

A function $h: (\mathcal{M}, \tau) \to (\mathcal{N}, \sigma)$ is *Neu*-continuous iff $h^{-1}(NeuInt(\mathcal{D})) \subseteq NeuInt(h^{-1}(\mathcal{D}))$ for each $\mathcal{D} \subseteq \mathcal{N}$.

Definition 2.6 [2]:

Let $h: (\mathcal{M}, \tau) \to (\mathcal{N}, \sigma)$ be a function, then h is stated to be neutrosophic open (in short *Neu*-open) iff for each \mathcal{D} *Neu*-open subset in \mathcal{M} , then $h(\mathcal{D})$ is a *Neu*-open subset in \mathcal{N} .

3. Concepts of Weakly Neutrosophic Continuous Functions

Definition 3.1:

Assume $h: (\mathcal{M}, \tau) \to (\mathcal{N}, \sigma)$ is a function, then h is stated to be:

- (1) Neutrosophic α^* -continuous (in short Neu^{α^*} -continuous) iff for each $\mathcal{D} Neu^{\alpha}$ -open subset in \mathcal{N} , then $\hbar^{-1}(\mathcal{D})$ is a Neu^{α} -open subset in \mathcal{M} .
- (2) Neutrosophic α^{**} -continuous (in short $Neu^{\alpha^{**}}$ -continuous) iff for each \mathcal{D} Neu^{α} -open subset in \mathcal{N} , then $\hbar^{-1}(\mathcal{D})$ is a *Neu*-open subset in \mathcal{M} .

Definition 3.2:

Assume $h: (\mathcal{M}, \tau) \to (\mathcal{N}, \sigma)$ is a function, then h is stated to be:

- (1) Neutrosophic semi- α -continuous (in short $Neu^{S\alpha}$ -continuous) iff for each \mathcal{D} Neu-open set in \mathcal{N} , then $\hbar^{-1}(\mathcal{D})$ is a Neu^{S\alpha}-open set in \mathcal{M} .
- (2) Neutrosophic semi- α^* -continuous (in short $Neu^{S\alpha^*}$ -continuous) iff for each \mathcal{D} $Neu^{S\alpha}$ -open set in \mathcal{N} , then $\hbar^{-1}(\mathcal{D})$ is a $Neu^{S\alpha}$ -open set in \mathcal{M} .
- (3) Neutrosophic semi- α^{**} -continuous (in short $Neu^{S\alpha^{**}}$ -continuous) iff for each \mathcal{D} $Neu^{S\alpha}$ -open set in \mathcal{N} , then $\hbar^{-1}(\mathcal{D})$ is a *Neu*-open set in \mathcal{M} .

Theorem 3.3:

Assume $h: (\mathcal{M}, \tau) \to (\mathcal{N}, \sigma)$ is a function. Then the succeeding arguments are the same:

(1) \hbar is a *Neu*^{Sa}-continuous.

- (2) The reverse image of each *Neu*-closed subset in \mathcal{N} is *Neu*^{S\alpha}-closed subset in \mathcal{M} .
- (3) $h(NeuInt(NeuCl(NeuInt(NeuCl(C))))) \subseteq NeuCl(h(C))$, for each $C \in \mathcal{M}$.
- (4) $NeuInt(NeuCl(NeuInt(NeuCl(\hbar^{-1}(\mathcal{D}))))) \subseteq \hbar^{-1}(NeuCl(\mathcal{D})), \text{ for every } \mathcal{D} \in \mathcal{N}.$

DOI: <u>https://doi.org/10.54216/JNFS.040101</u> Received: April 12, 2022 Accepted: August 11, 2022

Proof:

(1) \Rightarrow (2). Assume \mathcal{D} is a *Neu*-closed set in \mathcal{N} . It indicates that \mathcal{D}^c is a *Neu*-open set. Consequently, $\hbar^{-1}(\mathcal{D}^c)$ is a *Neu*^{S\alpha}-open set in \mathcal{M} . It means $(\hbar^{-1}(\mathcal{D}))^c$ is a *Neu*^{S\alpha}-open set in \mathcal{M} . So, $\hbar^{-1}(\mathcal{D})$ is a *Neu*^{S\alpha}-closed set in \mathcal{M} . (2) \Rightarrow (3). Assume $\mathcal{C} \in \mathcal{M}$, and we have *NeuCl*($\hbar(\mathcal{C})$) is a *Neu*-closed subset in \mathcal{N} . Hence, $\hbar^{-1}(NeuCl(\hbar(\mathcal{C})))$ is *Neu*^{S\alpha}-closed set in \mathcal{M} .

Consequently, we have $\hbar^{-1}(NeuCl(\hbar(\mathcal{C}))) \supseteq NeuInt(NeuCl(NeuInt(NeuCl(\hbar^{-1}(NeuCl(\hbar(\mathcal{C}))))))) \supseteq$ NeuInt(NeuCl(NeuInt(NeuCl(\mathcal{C})))). Or NeuCl(\hbar(\mathcal{C}))) \supseteq \hbar(NeuInt(NeuCl(NeuInt(NeuCl(\mathcal{C}))))). (3) \Rightarrow (4). Assume $\mathcal{D} \in \mathcal{N}$, $\hbar^{-1}(\mathcal{D}) \in \mathcal{M}$. Therefore, by the hypothesis, we obtain

 $NeuInt(NeuCl(NeuInt(NeuCl(\hbar^{-1}(\mathcal{D}))))) \subseteq NeuCl(\hbar(\hbar^{-1}(\mathcal{D}))) \subseteq NeuCl(\mathcal{D})$, that is

 $NeuInt(NeuCl(NeuInt(NeuCl(\hbar^{-1}(\mathcal{D}))))) \subseteq \hbar^{-1}(NeuCl(\mathcal{D})).$

 $(4) \Rightarrow (1)$. Assume C is a Neu-open subset of \mathcal{N} . Suppose $\mathcal{D} = C^c$ and $C = \hbar^{-1}(\mathcal{D})$; so by (iii), we have NeuInt(NeuCl(NeuInt(NeuCl($\hbar^{-1}(\mathcal{D})$)))) \subseteq NeuCl(\mathcal{D}) = \mathcal{D} . It means that the following fact holds NeuInt(NeuCl(NeuInt(NeuCl($\hbar^{-1}(C^c)$)))) $\subseteq \hbar^{-1}(C^c)$. Or NeuInt(NeuCl(NeuInt(NeuCl($\hbar^{-1}(C)$)))) $\supseteq \hbar^{-1}(C)$. Consequently, $\hbar^{-1}(C)$ is a Neu^{Sa}-open set in \mathcal{M} and therefore \hbar is a Neu^{Sa}-continuous.

Proposition 3.4:

- (1) Every *Neu*-continuous is a Neu^{α} -continuous; as a result, it is $Neu^{S\alpha}$ -continuous. Nonetheless, the reverse does not stand.
- (2) Every Neu^{α} -continuous is a $Neu^{S\alpha}$ -continuous. Nevertheless, the contrary does not stand.

Proof:

- (1) Let $\hbar: (\mathcal{M}, \tau) \to (\mathcal{N}, \sigma)$ be a *Neu*-continuous function and a *Neu*-open subset \mathcal{D} be in \mathcal{N} . Then $\hbar^{-1}(\mathcal{D})$ is a *Neu*-open subset in \mathcal{M} . Since any *Neu*-open set is Neu^{α} -open ($Neu^{S\alpha}$ -open), $\hbar^{-1}(\mathcal{D})$ is a Neu^{α} -open ($Neu^{S\alpha}$ -open) set in \mathcal{M} . Thus \hbar is a Neu^{α} -continuous ($Neu^{S\alpha}$ -continuous).
- (2) Let h: (M, τ) → (N, σ) be a Neu^α-continuous function and a Neu-open set D be in N. Then h⁻¹(D) is a Neu^α-open set in M. Since any Neu^α-open set is Neu^{Sα}-open, h⁻¹(D) is a Neu^{Sα}-open set in M. Thus h is a Neu^{Sα}-continuous.

Example 3.5:

Let $\mathcal{M} = \{p, q\}$. Describe the neutrosophic subsets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, and \mathcal{D} in \mathcal{M} in this manner: $\mathcal{A} = \langle m, \left(\frac{p}{0.5}, \frac{q}{0.3}\right), \left(\frac{p}{0.5}, \frac{q}{0.3}\right), \left(\frac{p}{0.5}, \frac{q}{0.7}\right) \rangle, \mathcal{B} = \langle m, \left(\frac{p}{0.5}, \frac{q}{0.6}\right), \left(\frac{p}{0.5}, \frac{q}{0.6}\right), \left(\frac{p}{0.5}, \frac{q}{0.4}\right) \rangle,$ $\mathcal{C} = \langle m, \left(\frac{p}{0.6}, \frac{q}{0.3}\right), \left(\frac{p}{0.6}, \frac{q}{0.3}\right), \left(\frac{p}{0.4}, \frac{q}{0.7}\right) \rangle$ and $\mathcal{D} = \langle m, \left(\frac{p}{0.6}, \frac{q}{0.7}\right), \left(\frac{p}{0.6}, \frac{q}{0.7}\right), \left(\frac{p}{0.4}, \frac{q}{0.3}\right) \rangle.$

Then the families $\tau = \{0_N, \mathcal{A}, 1_N\}$ and $\sigma = \{0_N, \mathcal{D}, 1_N\}$ are neutrosophic topologies on \mathcal{M} . Thus, (\mathcal{M}, τ) and (\mathcal{M}, σ) are Neu^{TSs} . Define $\hbar: (\mathcal{M}, \tau) \to (\mathcal{M}, \sigma)$ as $\hbar(p) = p$, $\hbar(q) = q$. Then \mathcal{D} is a *Neu*-open in (\mathcal{M}, σ) . But, $\hbar^{-1}(\mathcal{D})$ is not a *Neu*-open subset in (\mathcal{M}, τ) for $\mathcal{D} \in \sigma$. Hence, \hbar is Neu^{α} -continuous ($Neu^{S\alpha}$ -continuous); however, it is not a *Neu*-continuous.

Example 3.6:

Let
$$\mathcal{M} = \{q, r^*\}$$
. Describe the neutrosophic subsets $\mathcal{A}, \mathcal{B}, \mathcal{C}$, and \mathcal{D} in \mathcal{M} in this manner:
 $\mathcal{A} = \langle m, \left(\frac{q}{0.5}, \frac{r}{0.3}\right), \left(\frac{q}{0.5}, \frac{r}{0.3}\right), \left(\frac{q}{0.5}, \frac{r}{0.7}\right) \rangle, \mathcal{B} = \langle m, \left(\frac{q}{0.5}, \frac{r}{0.6}\right), \left(\frac{q}{0.5}, \frac{r}{0.6}\right), \left(\frac{q}{0.5}, \frac{r}{0.4}\right) \rangle,$
 $\mathcal{C} = \langle m, \left(\frac{q}{0.6}, \frac{r}{0.3}\right), \left(\frac{q}{0.6}, \frac{r}{0.3}\right), \left(\frac{q}{0.4}, \frac{r}{0.7}\right) \rangle$ and $\mathcal{D} = \langle m, \left(\frac{q}{0.6}, \frac{r}{0.7}\right), \left(\frac{q}{0.6}, \frac{r}{0.7}\right), \left(\frac{q}{0.4}, \frac{r}{0.3}\right) \rangle.$
Then the families $\tau = \langle 0, -q, 1 \rangle$ and $\sigma = \langle 0, -R, 1 \rangle$ are neutrosophic topologies on \mathcal{A}

Then the families $\tau = \{0_N, \mathcal{A}, 1_N\}$ and $\sigma = \{0_N, \mathcal{B}, 1_N\}$ are neutrosophic topologies on \mathcal{M} . Thus, (\mathcal{M}, τ) and (\mathcal{M}, σ) are Neu^{TSs} . Define $\hbar: (\mathcal{M}, \tau) \to (\mathcal{M}, \sigma)$ as $\hbar(q) = q$, $\hbar(r) = r$. Then \mathcal{B} is a *Neu*-open in (\mathcal{M}, σ) . But, $\hbar^{-1}(\mathcal{B})$ is not a Neu^{α} -continuous; however, it is not a Neu^{α} -continuous.

Remark 3.7:

The ideas of *Neu*-continuous and Neu^{α^*} -continuous are independent.

Theorem 3.8:

- (1) If a function $h: (\mathcal{M}, \tau) \to (\mathcal{N}, \sigma)$ is Neu-open, Neu-continuous, and bijective, then h is a Neu^{α^*}continuous.
- (2) A function $h: (\mathcal{M}, \tau) \to (\mathcal{N}, \sigma)$ is Neu^{α^*} -continuous iff $h: (\mathcal{M}, Neu^{\alpha}O(\mathcal{M})) \to (\mathcal{N}, Neu^{\alpha}O(\mathcal{N}))$ is a Neucontinuous.

Proof:

(1) Assume that $\mathcal{D} \in Neu^{\alpha}O(\mathcal{N})$. To show that $\hbar^{-1}(\mathcal{D}) \in Neu^{\alpha}O(\mathcal{M})$ we have to prove that $\hbar^{-1}(\mathcal{D}) \subseteq$ NeuInt(NeuCl(NeuInt($\hbar^{-1}(\mathcal{D})$))).

Assume $r \in h^{-1}(\mathcal{D}) \Longrightarrow h(r) \in \mathcal{D}$. Therefore, $h(r) \in NeuInt(NeuCl(NeuInt(\mathcal{D})))$ (because $\mathcal{D} \in \mathcal{D}$) $Neu^{\alpha}O(\mathcal{N})$). Consequently, for any Neu-open set \mathcal{H} in \mathcal{N} where $h(r) \in \mathcal{H} \subseteq NeuCl(NeuInt(\mathcal{D}))$. Then $r \in h^{-1}(\mathcal{H}) \subseteq h^{-1}(NeuCl(NeuInt(\mathcal{D}))), \text{ but } h^{-1}(NeuCl(NeuInt(\mathcal{D}))) \subseteq NeuCl(h^{-1}(NeuInt(\mathcal{D})))$ (because \hbar^{-1} is a Neu-continuous, corresponding to \hbar is a Neu-open and bijective). Next, $r \in \hbar^{-1}(\mathcal{H}) \subseteq$ $NeuCl(h^{-1}(NeuInt(\mathcal{D}))).$

Therefore, $r \in h^{-1}(\mathcal{H}) \subseteq NeuCl(h^{-1}(NeuInt(\mathcal{D}))) \subseteq NeuCl(NeuInt(h^{-1}(\mathcal{D})))$ (because h is a Neucontinuous). Consequently, $r \in h^{-1}(\mathcal{H}) \subseteq NeuCl(NeuInt(h^{-1}(\mathcal{D})))$, but $h^{-1}(\mathcal{H})$ is a Neu-open set in \mathcal{M} (since h is a Neu-continuous). Therefore, $r \in NeuInt(NeuCl(NeuInt(h^{-1}(\mathcal{D}))))$. Therefore, $h^{-1}(\mathcal{D}) \subseteq$ $NeuInt(NeuCl(NeuInt(\hbar^{-1}(\mathcal{D})))) \Rightarrow \hbar^{-1}(\mathcal{D}) \in Neu^{\alpha}O(\mathcal{M}) \Rightarrow \hbar \text{ is a } Neu^{\alpha^*}$ -continuous.

(2) The proof of (2) is evident.

Theorem 3.9:

A function $h: (\mathcal{M}, \tau) \to (\mathcal{N}, \sigma)$ is a $Neu^{S\alpha^*}$ -continuous iff $h: (\mathcal{M}, Neu^{S\alpha}O(\mathcal{M})) \to (\mathcal{N}, Neu^{S\alpha}O(\mathcal{N}))$ is a Neucontinuous.

Proof: Comprehensible.

Remark 3.10:

The ideas of *Neu*-continuous and *Neu*^{S α^*}-continuous are autonomous.

Remark 3.11:

Every Neu^{α^*} -continuous is a Neu^{α} -continuous and $Neu^{S\alpha}$ -continuous. Nevertheless, the contrary does not hold.

Remark 3.12:

The concepts of Neu^{α^*} -continuous and $Neu^{S\alpha^*}$ -continuous are autonomous.

Theorem 3.13:

If a function $h: (\mathcal{M}, \tau) \to (\mathcal{N}, \sigma)$ is Neu^{α^*} -continuous, Neu-open, and bijective, then it is $Neu^{S\alpha^*}$ -continuous. **Proof:**

Assume that $h: (\mathcal{M}, \tau) \to (\mathcal{N}, \sigma)$ is a Neu^{*a**}-continuous, Neu-open, and bijective. Let \mathcal{D} be a Neu^{*Sa*}-open set in $\mathcal{N}.$ Then any Neu^{α}-open set say \mathcal{P} where $\mathcal{P} \subseteq \mathcal{D} \subseteq NeuCl(\mathcal{P}).$ Consequently, $h^{-1}(\mathcal{P}) \subseteq h^{-1}(\mathcal{D}) \subseteq h^{-1}(NeuCl(\mathcal{P})) \subseteq NeuCl(h^{-1}(\mathcal{P}))$ (because h is a Neu-open), but $h^{-1}(\mathcal{P}) \in Neu^{\alpha}O(\mathcal{M})$ (since h is a Neu^{α^*} -continuous). Later, $h^{-1}(\mathcal{P}) \subseteq h^{-1}(\mathcal{D}) \subseteq NeuCl(h^{-1}(\mathcal{P}))$. Therefore, $h^{-1}(\mathcal{D}) \in \mathcal{P}$ Neu^{Sa} $O(\mathcal{M})$. Thus, h is a Neu^{Sa*}-continuous.

Remark 3.14:

Let $h_1: (\mathcal{M}, \tau) \to (\mathcal{N}, \sigma)$ and $h_2: (\mathcal{N}, \sigma) \to (\mathcal{O}, \rho)$ be two functions, then: (1) If h_1 and h_2 are Neu^{α} -continuous, then $h_2 \circ h_1: (\mathcal{M}, \tau) \to (\mathcal{O}, \rho)$ need not to be a Neu^{α} -continuous. (2) If h_1 and h_2 are $Neu^{S\alpha}$ -continuous, then $\bar{h}_2 \circ \bar{h}_1: (\mathcal{M}, \tau) \to (\mathcal{O}, \rho)$ need not to be a $Neu^{S\alpha}$ -continuous.

Theorem 3.15:

Assume $h_1: (\mathcal{M}, \tau) \to (\mathcal{N}, \sigma)$ and $h_2: (\mathcal{N}, \sigma) \to (\mathcal{O}, \rho)$ are two functions, then $h_2 \circ h_1: (\mathcal{M}, \tau) \to (\mathcal{O}, \rho)$ is (1) a Neu^{α}-continuous if h_1 is Neu^{α}-continuous and h_2 is Neu-continuous.

(2) a Neu^{α} -continuous if h_1 is Neu^{α^*} -continuous and h_2 is Neu^{α} -continuous.

- (3) a Neu^{α^*} -continuous if h_1 and h_2 are Neu^{α^*} -continuous.
- (4) a $Neu^{S\alpha^*}$ -continuous if \hbar_1 and \hbar_2 are $Neu^{S\alpha^*}$ -continuous.
- (5) a $Neu^{\alpha^{**}}$ -continuous if h_1 and h_2 are $Neu^{\alpha^{**}}$ -continuous.
- (6) a $Neu^{S\alpha^{**}}$ -continuous if h_1 and h_2 are $Neu^{S\alpha^{**}}$ -continuous.
- (7) a $Neu^{\alpha^{**}}$ -continuous if h_1 is $Neu^{\alpha^{**}}$ -continuous and h_2 is $Neu^{\alpha^{*}}$ -continuous.
- (8) a *Neu*-continuous if h_1 is $Neu^{\alpha^{**}}$ -continuous and h_2 is Neu^{α} -continuous.
- (9) a Neu^{α^*} -continuous if \hbar_1 is Neu^{α} -continuous and \hbar_2 is $Neu^{\alpha^{**}}$ -continuous.
- (10) a $Neu^{\alpha^{**}}$ -continuous if \hbar_1 is *Neu*-continuous and \hbar_2 is $Neu^{\alpha^{**}}$ -continuous.

Proof:

- (1) Assume \mathcal{F} is a *Neu*-open subset in \mathcal{O} . Subsequently, \hbar_2 is a *Neu*-continuous, $\hbar_2^{-1}(\mathcal{F})$ is a *Neu*-open subset in \mathcal{N} . Later, \hbar_1 is a *Neu*^{α}-continuous, $\hbar_1^{-1}(\hbar_2^{-1}(\mathcal{F})) = (\hbar_2 \circ \hbar_1)^{-1}(\mathcal{F})$ is a *Neu*^{α}-open subset in \mathcal{M} . Therefore, $\hbar_2 \circ \hbar_1: (\mathcal{M}, \tau) \to (\mathcal{O}, \rho)$ is a *Neu*^{α}-continuous.
- (2) Assume \mathcal{F} is a *Neu*-open subset in \mathcal{O} . Subsequently, \hbar_2 is a *Neu*^{α}-continuous, $\hbar_2^{-1}(\mathcal{F})$ is a *Neu*^{α}-open subset in \mathcal{N} . Later, \hbar_1 is a *Neu*^{α^*}-continuous, $\hbar_1^{-1}(\hbar_2^{-1}(\mathcal{F})) = (\hbar_2 \circ \hbar_1)^{-1}(\mathcal{F})$ is a *Neu*^{α}-open subset in \mathcal{M} . Therefore, $\hbar_2 \circ \hbar_1: (\mathcal{M}, \tau) \to (\mathcal{O}, \rho)$ is a *Neu*^{α}-continuous.
- (3) Assume \mathcal{F} is a Neu^{α} -open subset in \mathcal{O} . Subsequently, h_2 is a Neu^{α^*} -continuous, $h_2^{-1}(\mathcal{F})$ is a Neu^{α} -open subset in \mathcal{N} . Later, h_1 is a Neu^{α^*} -continuous, $h_1^{-1}(h_2^{-1}(\mathcal{F})) = (h_2 \circ h_1)^{-1}(\mathcal{F})$ is a Neu^{α} -open subset in \mathcal{M} . Therefore, $h_2 \circ h_1: (\mathcal{M}, \tau) \to (\mathcal{O}, \rho)$ is a Neu^{α^*} -continuous.
- (4) Assume \mathcal{F} be a $Neu^{S\alpha}$ -open subset in \mathcal{O} . Since h_2 is a $Neu^{S\alpha^*}$ -continuous, $h_2^{-1}(\mathcal{F})$ is a $Neu^{S\alpha}$ -open subset in \mathcal{N} . Later, h_1 is a $Neu^{S\alpha^*}$ -continuous, $h_1^{-1}(h_2^{-1}(\mathcal{F})) = (h_2 \circ h_1)^{-1}(\mathcal{F})$ is a $Neu^{S\alpha}$ -open subset in \mathcal{N} . Therefore, $h_2 \circ h_1: (\mathcal{M}, \tau) \to (\mathcal{O}, \rho)$ is a $Neu^{S\alpha^*}$ -continuous.
- (5) Assume F be a Neu^α-open subset in O. Subsequently, h₂ is a Neu^{α**}-continuous, h₂⁻¹(F) is a Neu-open subset in N. Later, any Neu-open subset is a Neu^α-open, h₂⁻¹(F) is a Neu^α-open subset in N. Since h₁ is a Neu^{α**}-continuous, h₁⁻¹(h₂⁻¹(F)) = (h₂ ∘ h₁)⁻¹(F) is a Neu-open subset in M. Therefore, h₂ ∘ h₁: (M, τ) → (O, ρ) is a Neu^{α**}-continuous. The proof is evident to others.

Remark 3.16:

The later illustration clarifies the connection among various thoughts of weakly *Neu*-continuous functions:

Fig. 1: The later

4. Conclusion

We intend to exercise the notions of Neu^{α} -open and $Neu^{S\alpha}$ -open sets to outline some novel concepts of weakly *Neu*-continuous functions, for example; Neu^{α^*} -continuous, $Neu^{\alpha^{**}}$ -continuous, $Neu^{S\alpha}$ -continuous, $Neu^{S\alpha^*}$ -continuous and $Neu^{S\alpha^{**}}$ -continuous functions. The Neu^{α} -open and $Neu^{S\alpha}$ -open sets can be employed to arise some novel notions of weakly *Neu*-closed) functions and *Neu*-separation axioms.

References

- A. A. Salama and S. A. Alblowi, Neutrosophic Set and Neutrosophic Topological Spaces, IOSR Journal of Mathematics, Volume 3, Issue 4 (Sep-Oct. 2012), 31-35.
- [2] A. A. Salama and F. Smarandache, Neutrosophic Crisp Set Theory, Educational Publisher, Columbus, USA, 2015, ISBN 978-1-59973-323-4.
- [3] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Rehoboth, NM, (1999).

- [4] F. Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics, University of New Mexico, Gallup, NM 87301, USA (2002).
- [5] I. Arokiarani, R. Dhavaseelan, S. Jafari and M. Parimala, On Some New Notions and Functions in Neutrosophic Topological Spaces. Neutrosophic Sets and Systems, 16(2017), 16-19.
- [6] Q. H. Imran, F. Smarandache, R. K. Al-Hamido and R. Dhavaseelan, On Neutrosophic Semi-α-Open Sets. Neutrosophic Sets and Systems, 18(2017), 37-42.
- [7] Q. H. Imran, R. Dhavaseelan, A. H. M. Al-Obaidi and M. H. Page, On neutrosophic generalized alpha generalized continuity. Neutrosophic Sets and Systems, 35(2020), 511-521.