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Abstract. In this paper, we examine time-fractional Boussinesq-like B(m,n)
equations that model some real-life systems, where the Caputo sense of fractional
derivative has been used. The examined equations are characterized by a set of ini-
tial and boundary conditions. We will apply the homotopy perturbation method for
analytical treatment of these equations. A comparison between our solutions and other
existing solution in the literature, shows accuracy of the employed analysis. Proper
graphs are used to illustrate the obtained results.
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1. INTRODUCTION

Semi-analytical methods are powerful tools to solve nonlinear partial differen-
tial equations (NLPDEs). Several techniques, such as the variational iteration method
(VIM) [1–3], homotopy perturbation method (HPM) [4–6], Adomian decomposition
method (ADM) [7, 8], homotopy analysis method (HAM) [9, 10], parameter expan-
sion method (PEM) [11], weighted residual method, Adomian-Laplace method, and
other methods have been implemented independently to handle NLPDEs, numeri-
cally and analytically.

Many researchers applied different methods to solve fractional problems, for
example you can see [12–26]. A substantial amount of research work has been in-
vested for the study of the time-fractional equations in the literature. Recently, there
has been considerable attention from the scientific community devoted to the analy-
tical and numerical studies of fractional differential equations (FDEs). This follows
from the advantages of using derivatives of arbitrary orders in the modelling of dif-
ferent phenomena in physics, engineering, finance, chemistry, and the life sciences.
Fractional calculus (differential and integral operators of non-integer orders) is often
used to model real-life systems. Fractional differentiation has been found to be effec-
tive to describe many phenomena in biology, fluid flow, chemistry, finance, control
theory, psychology, and other areas of science and engineering. That is because of
the fact that a reasonable modelling of a physical phenomenon has dependence not
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only on the time instant, but also on the prior time history, which can be fruitfully
achieved by using fractional calculus. This returns to the non-local property of frac-
tional derivatives. Therefore, FDEs are powerful models to describe real world phe-
nomena more accurately than integer-order differential equations. Many real world
problems are modelled by FDEs, and finding the solutions of these equations have
been recently the subject of many research works. As a matter of fact, in recent
two decades, FDEs received much more attention because of their applications in
different areas of applied mathematics and physics.

Although the basic mathematical ideas of fractional calculus were developed
about three-hundred years ago by Leibniz, Liouville, Riemann, and others, but for
two reasons they have not been applied in real-life problems. This is due to the ex-
istence of non-equivalent definitions for fractional differentiation such as the Caputo
and the Riemann-Liouville definitions. The second reason is that fractional differen-
tiation has no evident geometrical interpretation. However, in spite of these reasons,
as different applications can be gracefully modelled by the use of fractional calculus,
recently fractional calculus starts too much attention for mathematicians, engineers,
and physicists.

We aim in this paper to obtain semi-analytical solutions for the time-fractional
B(m,n) equation. The Boussinesq-like B(m,n) or B(m,n) equation is the gene-
ralized form of the standard Boussinesq equation with generalized evolution term.
We aim also to obtain a variety of solutions of distinct physical structures such as
compactons, solitons, and traveling wave solutions. The study of Boussinesq-like
equations in variable water depth began to appear in 1967. The Boussinesq equa-
tion is a very famous nonlinear evolution equation developed to describe the motion
of water with small amplitude and long wave. One may find some applications of
Boussinesq-like equations in the study of the dynamics of the thin inviscid layers
with free surface, the study of nonlinear string, the shape-memory alloys, the propa-
gation of waves in elastic rods, and in the continuum limit of lattice dynamics or cou-
pled electrical circuits [27–31]. The integer-order Boussinesq-like B(m,n) equation
with generalized evolution term has the following form [32]

(ul)tt+a(um)xx− b(un)xxxx = 0, (1)

where the first term in (1) is the generalized evolution term, the second and the third
terms, respectively, show the nonlinear and the dispersion terms. The constants a and
b have real values, while l,m, and n are integers. Equation (1) changes to Boussinesq
equation for l=m= n=1. This equation is not integrable for general values of l,m,
and n. In this paper, we focus on the time-fractional case of equation (1) which reads

Dα
t u

l+a(um)xx− b(un)xxxx = 0, (2)
where 1 < α ≤ 2, with suitable initial conditions. To obtain approximate solutions
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for (2) we apply homotopy perturbation method.
The fractional differentiations are considered in the Caputo sense, because it

permits boundary and initial conditions to be included in the formulation of the pro-
blem (for more details see [33]). The organization of this paper is as follows. In Sec.
2 we give some preliminary definitions of the fractional calculus. A brief review on
homotopy perturbation method is presented in Sec. 3. Section 4 applies the method
and consists of two subsections devoted to different values of m and n. In that Sec-
tion, we consider the value of l as l= 1. We have similar application for the problem
in Sec. 5 for l = 2. Finally, some discussions are given in Sec. 6.

2. PRELIMINARIES

In this Section we present some basic concepts, definitions, and properties of
the fractional calculus theory that will be useful in the sequel. These basic definitions
are presented in [33, 34].

Definition 1. A real function f(x),x > 0, is said to be in the space Cv,v ∈R if
there exists a real number q > v, such that f(x) = xqf1(x), where f1(x) ∈ C[0,∞],
and it is in the space Cm

v if and only if fm ∈ Cv,m ∈ N.
Definition 2. For α > 0, the Caputo fractional derivative of order α, denoted

by Dα, is defined by

Dαf(x) = Jm−αDmf(x) =
1

Γ(m−α)

∫ x

0
(x− τ)m−α−1fm(τ)dτ,

for m−1< α≤m,m ∈ N,x > 0, and f ∈ Cm
−1.

Definition 3. For α> 0, the Caputo fractional derivative of order α denoted by
Dα

+ is defined as:

cDα
+u(x) =

1

Γ(n−α)

∫ x

−∞
(x− τ)n−α−1Dnu(τ)dτ.

Definition 4. For n to be the smallest integer that exceeds α, the Caputo time
fractional derivative operator of order α > 0 is defined as

Dα
t u(x)=

∂αu(x,t)

∂tα
=


1

Γ(n−α)

∫ t
0 (t− τ)(n−α−1) ∂

nu(x,τ)
∂τn dτ, for n−1< α < n,

∂nu(x,t)
∂tn dt, for α= n ∈ N.

Definition 5. The Riemann-Liouville fractional integral operator of order α⩾ 0
of a function u ∈ Cv,v ⩾−1, is defined by

Jα
0+u(x) =

1

Γ(α)

∫ x

0
(x− τ)α−1u(τ)dτ, α > 0, x > 0, J0u(x) = u(x).
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Further, we need the following properties of the operator J :

tJ
α
a+

(
tβ

Γ(β+1)

)
=

tα+β

Γ(α+β+1)
, JαJβu(x)= Jα+βu(x), JαJβu(x)= JβJαu(x).

3. THE HOMOTOPY PERTURBATION METHOD

In this Section we give a brief review of the homotopy perturbation method
(HPM). We refer the interested reader for more details to [35, 36]. For the first time
HPM was presented by Ji-Huan He in 1999, which introduced a homotopy parameter
p and the value of the parameter p changes from 0 to 1. If p = 0, the system of
equations reduces to a simple form that admits a simple solution, when p = 1, the
equation takes the original form of the equation and gives the desired solution. To
have a basic idea of HPM, we consider the following nonlinear fractional differential
equation:

Dα
t u(x,t) = v(x,t)−Lu(x,t)−Nu(x,t), m−1< α <m, m ∈ N, t⩾ 0, x ∈ R,

(3)
subject to the initial condition u(i)(0,0) = ci and the boundary condition

B

(
u,

∂u

∂t
,
∂u

∂xj

)
= 0, i= 0,1, · · · ,m−1, j = 0,1, · · · ,n,

where v is a known analytic function, Dα
t is the fractional Caputo sense derivative,

L is a linear operator, N is a nonlinear operator, B is a boundary operator, the ith
derivative of u is u(i)(x,t), the specified initial conditions are ci, i= 0,1, · · · ,m−1,
and we assume that the solution u is a causal function of time, which means that
vanishes for t < 0.

We construct the following homotopy:

(1−p)Dα
t u(x,t)+p[Dα

t u(x,t)+Lu(x,t)+Nu(x,t)−v(x,t)] = 0, p∈ [0,1], (4)

or

Dα
t u(x,t)+p[Lu(x,t)+Nu(x,t)−v(x,t)] = 0, p ∈ [0,1]. (5)

The homotopy parameter p changes from zero to unity, if p= 0, Eq. (4) or (5)
becomes Dα

t u(x,t) = 0 and if p= 1, Eq. (4) or (5) will turn out to the original FDE.
According to HPM, we assume that the solution of Eq. (4) or (5) can be written

in the p series as:

u(x,t) = u0(x,t)+pu1(x,t)+pu2(x,t)+ · · · . (6)

Now, by setting Nu(x,t) = M(x,t), substituting Eq. (6) into Eq. (5) or (4)
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and by collecting p’s terms of identical powers, we obtain:

p0 :Dα
t u0(x,t) = 0,

p1 :Dα
t u1(x,t) =−Lu0(x,t)−M0(u0(x,t))+v(x,t),

p2 :Dα
t u2(x,t) =−Lu1(x,t)−M1(u0(x,t),u1(x,t)),

p3 :Dα
t u3(x,t) =−Lu2(x,t)−M2(u0(x,t),u1(x,t),u2(x,t)), (7)

and so on. The functions M0,M1,M2, · · · satisfy:

M(u0(x,t)+pu1(x,t)+p2u2(x,t)+ · · ·)=M0(u0(x,t))+pM1(u0(x,t),u1(x,t))+ · · · .

By applying Jα
t on both sides of Eq. (7), considering the initial and boundary condi-

tions and setting p= 1 we can obtain the approximate solution as:

u(x,t) = Σ∞
i=0ui(x,t).

In the following Sections, we apply this method on time-fractional B(m,n) equation
for two values of l, and some different values of m and n.

4. APPLICATION OF HPM ON TIME-FRACTIONAL B(m,n) EQUATION FOR l = 1

In this Section we will apply HPM on time-fractional B(m,n) equation for
l = 1 in two different cases depending on parameters m and n. We illustrate one
example for both cases.

4.1. CASE B(2,2)

In this case, for a= b= 1, we have the following equation

Dα
t u+(u2)xx− (u2)xxxx = 0, 1< α≤ 2. (8)

To follow [12], we consider the initial conditions as:

u(x,0) =−2

3
+e

1
2
x, ut(x,0) =

1

2
e

1
2
x.

The standard operator form of the generalized time-fractional B(2,2) is:

Dα
t u=−(u2)xx+(u2)xxxx. (9)

To solve Eq. (8), we construct the following homotopy:

Dα
t u−Dα

t u0 = p

(
−∂2(u2)

∂x2
+

∂4(u2)

∂x4
−Dα

t u0

)
, (10)

where p ∈ [0,1] is the embedding parameter and is considered as a small parameter.
Now, suppose that the solution of Eq. (10) has the following form

u= u0+p1u1+p2u2+ · · · , (11)
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substituting (11) into (10) and collecting p’s terms of the same power of p yields:

p0 :Dα
t u0−Dα

t u0 = 0,

p1 :Dα
t u1 =−∂2(u20)

∂x2
+

∂4(u20)

∂x4
−Dα

t u0,

p2 :Dα
t u2 =−∂2(2u0u1)

∂x2
+

∂4(2u0u1)

∂x4
,

p3 :Dα
t u3 =−∂2(2u0u1+u21)

∂x2
+

∂4(2u0u1+u21)

∂x4
,

and so on.
According to the procedure of HPM we have the following terms:

u0(x,t) =−2

3
+e

1
2
x+

1

2
e

1
2
xt,

u1(x,t) =
1

4
e

1
2
x tα

Γ(α+1)
+

1

8
e

1
2
x tα+1

Γ(α+2)
,

u2(x,t) =
1

16
e

1
2
x t2α

Γ(2α+1)
+

1

32
e

1
2
x t2α+1

Γ(2α+2)
,

and so on.
Therefore, the approximate solution of u(x,t) is:

u(x,t) = u0+u1+u2. (12)

When α= 2, solution (12) will be

u(x,t) =−2

3
+e

1
2
x+

1

2
e

1
2
xt+

1

4
e

1
2
x t2

Γ(3)
+

1

8
e

1
2
x t3

Γ(3)

+
1

16
e

1
2
x t4

Γ(5)
+

1

32
e

1
2
x t5

Γ(6)
.

By continuing the procedure, we can guess the exact solution of Eq. (8) as follows:

u(x,t) =−2

3
+

[
1+

t

2
+

t2

22 ∗2!
+

t3

23 ∗3!
+

t4

24 ∗4!
+ · · ·

]
e

1
2
x

=−2

3
+e

1
2
x

(
1+

∞∑
n=0

tn+1

2n+1 ∗ (n+1)!

)
. (13)

It must be noted that this guess is checked by using Maple software. That checking
showed that the solution (13) is the exact solution of Eq. (8) for α = 2. Thus, we
conclude that, the method works as well. Our solution is different from solution
(6.11) in Ref. [12], which has obtained by the Adomian decomposition method.
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4.2. CASE B(3,3)

For a= b= 1, the following equation is considered in this case:

Dα
t u+(u3)xx− (u3)xxxx = 0, (14)

where 1 < α ≤ 2. Besides, similar to Zhu [37], the initial conditions are considered
as:

u(x,0) =

√
6

2
sinh(

x

3
), ut(x,0) =

−1√
6
cosh(

x

3
).

In this case, the standard operator form of the generalized time-fractional B(3,3) is:

Dα
t u=−(u3)xx+(u3)xxxx. (15)

To solve (14), the following homotopy is constructed:

Dα
t u−Dα

t u0 = p

(
−∂2(u3)

∂x2
+

∂4(u3)

∂x4
−Dα

t u0

)
, (16)

where p ∈ [0,1] is the embedding small parameter. Now, suppose that the solution of
Eq. (16) has the following form

u= u0+p1u1+p2u2+ · · · . (17)

Substituting (17) into (16) and collecting p’s terms of the same power of p yields:

p0 :Dα
t u0−Dα

t u0 = 0,

p1 :Dα
t u1 =−∂2(u30)

∂x2
+

∂4(u30)

∂x4
−Dα

t u0,

p2 :Dα
t u2 =−∂2(3u20u1)

∂x2
+

∂4(3u20u1)

∂x4
,

p3 :Dα
t u3 =−∂2(3u20u2+3u0u

2
1)

∂x2
+

∂4(3u20u2+3u0u
2
1)

∂x4
,

and so on.
According to HPM, we can obtain the followings:

u0(x,t) =

√
6

2
sinh(

x

3
)− 1√

6
cosh(

x

3
)t,

u1(x,t) =

√
6

18
sinh(

x

3
)

tα

Γ(α+1)
−

√
6

54
cosh(

x

3
)

tα+1

Γ(α+2)

−
√
6

81
sinh(

x

3
)

tα+2

Γ(α+3)
+

√
6

81
cosh(

x

3
)

tα+3

Γ(α+4)
,
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and so on.
Therefore, we can approximate solution of u(x,t) using two terms

u(x,t) = u0+u1. (18)

When α= 2 solution (18) is as follows:

u(x,t) =

√
6

2
sinh(

x

3
)− 1√

6
cosh(

x

3
)t+

√
6

36
sinh(

x

3
)t2

−
√
6

324
cosh(

x

3
)t3−

√
6

1944
sinh(

x

3
)t4+

√
6

9720
cosh(

x

3
)t5+ · · · . (19)

This solution is as same as solution of Zhu [37] which was obtained by ADM, we
can write the closed form of (19) by Taylor series as:

u(x,t) =

√
6

2
sinh(

x− t

3
).

Figure 1 shows the physical behaviour of the numerical solution of u(x,t) of (18) in
3D plots. We have plotted solution (18) for four values of the differentiation order,
α. All solutions are compacton ones.

Fig. 1 – Compacton solutions of Eq. (14), (a) plot for α= 1.1, (b) plot for α= 1.4, (c) plot for α= 1.7,
(d) plot for α= 2.
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5. APPLICATION OF HPM ON TIME-FRACTIONAL B(m,n) FOR l = 2

Here, we apply HPM on time-fractional B(m,n) equation in two different
cases depending on values of m and n. For both cases we obtain the approximate
solutions and figure out them for some values of the differentiation order, α. Note
that in the case of l= 2, the fractional derivative applies on a nonlinear function, that
is, applies on u2.

5.1. CASE B(1,2)

In the first case, we consider m = 1,n = 2,a = −1, and b = 1. Therefore, we
have the following equation:

Dα
t (u

2)− (u)xx− (u2)xxxx = 0, (20)

where 1< α≤ 2. In this case we consider the following initial conditions:

u(x,0) =
−1

3v2
cosh2

(vx
4

)
, ut(x,0) =

1

6
cosh

(vx
4

)
sinh

(vx
4

)
.

By the same procedure in the previous Section, we obtain:

u0(x,t) =
−1

3v2
cosh2

(vx
4

)
+

1

6
cosh

(vx
4

)
sinh

(vx
4

)
t,

u1(x,t) =

(
2

(
−1

3v2
cosh2

(vx
4

)
+

1

6
cosh

(vx
4

)
sinh

(vx
4

)
t

))−1

{
1

36
cosh2(

vx

4
)
(
cosh2(

vx

4
)−1

)
v2

2tα+2

Γ(α+3)
+

v4

288

2tα+2

Γ(α+3)

− sinh(
vx

4
)cosh(

vx

4
)

(
cosh2(vx4 )

9
− 3

16

)
v2

tα+1

Γ(α+2)
+

5

96

tα

Γ(α+1)

}
.

Therefore, the approximate solution of (20) is presented as:

u(x,t) = u0+u1. (21)

When α= 2, solution (21) is as follows:
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u(x,t) =
−1

3v2
cosh2

(vx
4

)
+

1

6
cosh

(vx
4

)
sinh

(vx
4

)
t

+

(
2

(
−1

3v2
cosh2

(vx
4

)
+

1

6
cosh

(vx
4

)
sinh

(vx
4

)
t

))−1

{
1

36
cosh2(

vx

4
)
(
cosh2(

vx

4
)−1

)
v2

2tα+2

Γ(α+3)
+

v4

288

2tα+2

Γ(α+3)

− sinh(
vx

4
)cosh(

vx

4
)

(
cosh2(vx4 )

9
− 3

16

)
v2

tα+1

Γ(α+2)
+

5

96

tα

Γ(α+1)

}
.

(22)

Figure 2 shows the physical behaviour of approximate solution of u(x,t) (21)
in 3D plots. The traveling wave solutions are plotted for four different values of α.
Besides, the plots of Fig. 2 shows the continuous dependence of the solution of time-
fractional derivatives. Because, as α→ 2, the plots of the approximate solution (21)
are close to the plots of solution (22), the latter being the approximate solution for
the integer order differential equation.

Fig. 2 – Traveling wave solutions of Eq. (20), (a) α= 1.1, (b) α= 1.4, (c) α= 1.7, (d) α= 2.
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5.2. CASE B(3,2)

Here, the last case is considered for m = 3,n = 2,a = −1, and b = 1.
Hence, we must obtain approximate solution for the following equation:

Dα
t (u

2)− (u3)xx− (u2)xxxx = 0, (23)

where 1< α≤ 2. In this case we consider the following initial conditions:

u0(x,0) =
−5

9
v2

1

cosh2(vx4 )
, ut(x,0) =− 5

18
v4

sinh(vx4 )

cosh3(vx4 )
.

For this case, the following terms can be obtained by application of HPM:

u0(x,t) =
−5

9
v2

1

cosh2(vx4 )
− 5

18
v4

sinh(vx4 )

cosh3(vx4 )
t,

u1(x,t) =

(
2

(
−5

9
v2

1

cosh2(vx4 )
− 5

18
v4

sinh(vx4 )

cosh3(vx4 )
t

))−1

{
25

324

v12

cosh4(vx4 )

2tα+2

Γ(α+3)
+

25

81

v8

cosh4(vx4 )

tα

Γ(α+1)

+
25

81
v10

sinh(vx4 )

cosh5(vx4 )

tα+1

Γ(α+2)
− 2575

2592

v12

cosh6(vx4 )

2tα+2

Γ(α+3)

− 2125

1296

v8

cosh6(vx4 )

tα

Γ(α+1)
− 125

2592
v14

sinh(vx4 )

cosh7(vx4 )

6tα+3

Γ(α+4)

− 2125

864
v10

sinh(vx4 )

cosh7(vx4 )

tα+1

Γ(α+2)
+

36875

15552

v12

cosh8(vx4 )

2tα+2

Γ(α+3)

+
11375

7776

v8

cosh8(vx4 )

tα

Γ(α+1)
+

625

3888
v14

sinh(vx4 )

cosh9(vx4 )

6tα+3

Γ(α+4)

+
25

81
v10

sinh(vx4 )

cosh5(vx4 )

tα+1

Γ(α+2)
− 2575

2592

v12

cosh6(vx4 )

2tα+2

Γ(α+3)

− 625

518
v14

sinh(vx4 )

cosh11(vx4 )

6tα+3

Γ(α+4)

}
.

Therefore, the approximate solution of (23) is

u(x,t) = u0+u1. (24)

We have plotted the approximate solution (24) in 3D cases for some values of α in
Fig. 3. As the plots of Fig. 3 show, in all cases we have soliton solutions for (23).
The plots (a),(b), and (c) show the continuity dependence on the time-fractional
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derivatives. Because, they are very similar to plot (d), which shows the integer case
α= 2.

Fig. 3 – Soliton solutions of Eq. (23), (a) α= 1.1, (b) α= 1.4, (c) α= 1.7, (d) α= 2.

6. CONCLUSION

In this paper, we have established semi-analytical solutions for some kinds of
time-fractional Boussinesq-like B(m,n) equations. Compacton, traveling wave, and
soliton solutions are presented for the governing model. The examined equations are
characterized by a set of initial and boundary conditions. We used the homotopy
perturbation method for analytical treatment of these equations and to illustrate the
analysis. Proper graphs were used to illustrate the obtained results. To the best of our
knowledge, some of these equations are investigated for the first time in this paper.
The obtained results validate the reliability and rapid convergence of the homotopy
perturbation method. As a matter of fact, when fractional orders of derivatives ap-
proach to an integer value, the graphs of solution for the former cases are close to
the graphs of the latter. This shows that, the solution depends continuously on the
time-fractional derivative, which confirms the reliability of our solutions.
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