Description and study of energy-levels and the deformation for even-even ytterbium isotopes

Cite as: AIP Conference Proceedings 2591, 040016 (2023); https://doi.org/10.1063/5.0119842 Published Online: 29 March 2023

Salar H. Ibrahem and Mohsin K. Al-Janaby

Description and Study of Energy-Levels and the Deformation for Even-Even Ytterbium Isotopes

Salar H. Ibrahem ${ }^{1, \text { a) }}$ and Mohsin K. Al-Janaby ${ }^{1}$
${ }^{l}$ Department of Physics, Collage of Science, University of Babylon, Babel, Iraq.
${ }^{\text {a) }}$ Corresponding author: salar.mohamed @ student.uobabylon.edu.iq

Abstract

The program of interacting bosons was used for the purpose of finding the information about the isotopes of ytterbium, and through this information, the electrical and magnetic transitions probability was calculated, which had an impact on calculating some of the nuclear properties of these isotopes. The energy levels and deformation in these nuclei and contour shapes were also calculated and plotted. The energy ratios and branching ratios were calculated, which showed that the isotopes under study are between rotational determination and unstable gamma. The computed results are in very excellent agreement with experimental data for the isotopes under investigation.

INTRODUCTION

"The success in computing parity, spin, $\gamma-$, and beta decay in the ground levels, and the calculation of magnetic momentum derived from the (singly particle) shell model, already had resulted in the evolution of geometrical models, but it had failed to evaluate and calculate quadruple momentum and transition rates, particularly between closed shells transition region." This model assumes that a vast number of nucleons are travelling in a mutual collective. IBM is one of these models that studies the spectra of low energy levels, the nucleus has an even atomic number and mass number
In the parity shell, these bosons are explained as interconnected pairs of protons and interconnected pairs of neutron. This explanation limits the number of bosons, which is calculated by calculating the number of particle pairs (independently for neutrons and protons), the shell is less than half full if the shell is less than half filled, and the number of hole pairs if the shell is more than half filled. If protons' and neutrons' bosons were measured indistinguishably.
If the bosons of protons and neutrons are indistinguishable, the IBM is in its most basic form, which is known as IB M-1 [2-4].

It is possible to distinguish between the wave functions of neutrons and protons. This model generates electric transitions and energy levels by adjusting a number of parameters in the model to fit the results with experimental data [5-7]

The nuclei form of ${ }^{160-166} \mathrm{Yb}$ isotopes has been investigated analytically using IBM-1, and they have several infinite energy levels, with just the electric transition 2_{1}^{+}to 0_{1}^{+}only explored by T. K. Rz aca-Urban and Rz aca-Urban Nomura [8], Nomura In the IBM-1 model, the software set (IBM) version is used to approximate a set of parameters known as the Hamiltonian operator, as indicated in equation (1).

These parameters are handled as free parameters to get the best fit between theoretical estimated values and experimental data. The calculations allow for the efficient state that must occur in these parameters based on the nature of the neutron number decrease or increase for each nucleus.

The program set (IBMT) is used also to calculate the reducing electromagnetic transition prospects transitions in IBM-1.

INTERACTING BOSONS MODEL-1(IBM-1)

Since the IBM-1 assumed that the Hamiltonian only had one- and two-body interactions, it added the creation (s \dagger, $\mathrm{d} \dagger \mathrm{m}$) and annihilation (s, dm) operators, with $\mathrm{m}=0, \pm 1, \pm 2$.

The IBM-1 imaginary that the "Hamiltonian comprises only one- body and two- body relations, thus introduced creation) and annihilation ($\mathrm{s}, \mathrm{d}_{\mathrm{m}}$) operators, where $\mathrm{m}=0, \pm 1, \pm 2$. The Hamiltonian with one -boson term in boson-boson interaction is the most general Hamiltonian" [9-11]:

$$
\begin{equation*}
H=\in n d+a_{0} \tilde{P} . \tilde{P}+a_{1} L^{2}+a_{2} Q^{2}+a_{3} T_{3}^{2}+a_{4} T_{4}^{2} \tag{1}
\end{equation*}
$$

Where $a_{0}, a_{1}, a_{2}, a_{3}$, and a_{4} are the parameters that we resolve in this model to achieve the output levels, and \in, L, \tilde{P}, T_{3}, Q and T_{4} are the energy, angular momentum, pairing, octopole, quadruple, and hexadecapole operators, respectively.

TRANSITIONS REGIONS IN IBM-1

Pairs of symmetries are an important aspect of symmetry notions since they serve as benchmarks and, as a result, transitional region limits. The nuclei concatenation in such a phase transitional area can be computed quite easily. Generally, their location along the appropriate leg of the symmetry triangle is determined by a variation of a single parameter. This parameter is usually calculated as the ratio of the coefficients in the Hamiltonians of the two symmetries conquering the triangle's apexes at the transition leg's termini. The Casten triangle displays the three dynamical symmetries as well as the transitional zones, as seen in Fig. (1).

FIGURE 1. The Casten triangle [12]
Each peak in Fig. (b) represents an exact symmetry that is identical to one of the three forms shown. Transition points and their crucial symmetries, as well as first-order phase transitions, are defined. According to [12], " transition between a spherical nuclear form and a prolate or oblate distorted one. "there is a nuclear triple point that represents the second-order

Fig.(2) represents a typical spectrum for the three dynamical symmetries, Fig.(2a) is O (6) typical spectrum symmetry, Fig.(2b) is $\operatorname{SU}(5)$ typical spectrum symmetry and Fig.(2c) is $\mathrm{SU}(3)$ typical spectrum symmetry.

FIGURE 2. A typical spectrum with $\mathrm{SU}(3), \mathrm{SU}(5)$ and $\mathrm{O}(6)$ symmetry [13]
The limits previously discussed give a set of analytical solutions that can be easily tested, as the number of the nuclei that can be characterized by these limits is so few, because most of nuclei have common properties between these limits called transition region, which can be divided into four classes:

$$
\text { Class A: } \mathbf{U}(5) \rightarrow \mathbf{S U}(3)
$$

This nuclei has properties between vibrational and rotational limit in the transition region, and the Hamiltonian operator is given as follows [14]:

$$
\begin{equation*}
\hat{\mathrm{H}}^{\mathrm{I}+\mathrm{II}}=\varepsilon \hat{\mathrm{n}}_{\mathrm{d}}+\mathrm{a}_{1} \hat{\mathrm{~L}} \cdot \hat{\mathrm{~L}} \mathrm{a}_{2} \widehat{\mathrm{Q}} \cdot \widehat{\mathrm{Q}} \tag{2}
\end{equation*}
$$

The ratio $\left(\varepsilon \hat{n}_{d} / a_{2}\right)$ determines the properties of nuclei in this region. Thus, when the ratio gets higher, the properties become closer to $\mathrm{U}(5)$ limit, but when the ratio gets lower, the properties becomes closer to $\mathrm{SU}(3)$ limit.

Class B: $\mathrm{SU}(3) \rightarrow \mathbf{O}(6)$

The nuclei has properties between rotational limit and γ_{-}unstable limit in the transition region and the Hamiltonian is [16]:

$$
\begin{equation*}
\hat{\mathrm{H}}^{\mathrm{II}+\mathrm{III}}=\mathrm{a}_{0} \widehat{\mathrm{P}} . \widehat{\mathrm{P}}+\mathrm{a}_{1} \hat{\mathrm{~L}} . \hat{\mathrm{L}}+\mathrm{a}_{2} \widehat{\mathrm{Q}} \cdot \widehat{\mathrm{Q}} \tag{3}
\end{equation*}
$$

The ratio $\left(a_{0} / a_{2}\right)$ determines the properties of nuclei in this region. Thus, when the ratio gets higher, the properties become closer to $\mathrm{O}(6)$ limit, but when the ratio gets lower, the properties becomes closer to $\mathrm{SU}(3)$ limit.

$$
\text { Class C: } \mathbf{U}(5) \rightarrow \mathbf{O}(6)
$$

The nuclei has properties between vibrational limit and γ - unstable limit in the transition region and the Hamiltonian is [16]:

$$
\begin{equation*}
\hat{\mathrm{H}}^{(\mathrm{I}+\mathrm{III})}=\varepsilon \widehat{\mathrm{n}}_{\mathrm{d}}+\mathrm{a}_{0} \widehat{\mathrm{P}} \cdot \widehat{\mathrm{P}}+\mathrm{a}_{1} \hat{\mathrm{~L}} \cdot \hat{\mathrm{~L}}+\mathrm{a}_{3} \widehat{\mathrm{~T}}_{3} \cdot \widehat{\mathrm{~T}}_{3} \tag{4}
\end{equation*}
$$

Properties of this limit depend on the ratio $\left(\varepsilon \widehat{n}_{d} / a_{0}\right)$.

$$
\text { Class D: } U(5) \rightarrow S U(3) \rightarrow O(6)
$$

The nuclei of this class possesses the common properties between three limits and the Hamiltonian operator is given as follows [16]:

$$
\begin{equation*}
\hat{\mathrm{H}}^{(\mathrm{I}+\mathrm{II}+\mathrm{III})}=\varepsilon \hat{\mathrm{n}}_{\mathrm{d}}+\mathrm{a}_{0} \widehat{\mathrm{P}} \cdot \widehat{\mathrm{P}}+\mathrm{a}_{1} \hat{\mathrm{~L}} \cdot \hat{\mathrm{~L}}+\mathrm{a}_{2} \widehat{\mathrm{Q}} \cdot \widehat{\mathrm{Q}}+\mathrm{a}_{3} \widehat{\mathrm{~T}}_{3} \cdot \widehat{\mathrm{~T}}_{3}+\mathrm{a}_{4} \widehat{\mathrm{~T}}_{4} \cdot \widehat{\mathrm{~T}}_{4} \tag{5}
\end{equation*}
$$

ENERGY RATIOS

Some ratios between the ground energy levels $8^{+}, 6^{+}$and 4^{+}with the first excited state 2^{+}to match the three limits as exposed in Table (1) [12].
The analytical solvable dynamical symmetries $\mathrm{SU}(3)$ and $\mathrm{O}(6)$ with schematically descriptions - soft nuclei are used to describe axial symmetric rotations and spherical vibrators in IBM [13]. The unstable region $\gamma-$ soft, from the ratio between $E_{8_{1}}^{+} / E_{2_{1}}^{+}, E_{6_{1}}^{+} / E_{2_{1}}^{+}$and $E_{4_{1}}^{+} / E_{2_{1}}^{+}$as in Table (1).

TABLE 1. Typical energy levels ratios for each limits [12]

Limit	$\frac{\boldsymbol{E}_{\mathbf{1}_{1}^{+}}}{\boldsymbol{E}_{\mathbf{1}^{+}}}$	$\frac{\boldsymbol{E}_{6_{1}^{+}}}{\boldsymbol{E}_{\mathbf{2}_{1}^{+}}}$	$\frac{\boldsymbol{E}_{8_{1}^{+}}}{\boldsymbol{E}_{\mathbf{2}_{\mathbf{1}}}}$
$\mathrm{U}(5)$	2	3	4
$\mathrm{SU}(3)$	3.33	7	$1 \cdot$
$\mathrm{O}(6)$	2.5	4.5	7

BRANCHING RATIO

Other important quantities show that the difference between the three limits are the branching ratio ([17]:

$$
\begin{gather*}
R=\frac{B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right)}{B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)}, R^{\prime}=\frac{B\left(E 2 ; 2_{2}^{+} \rightarrow 2_{1}^{+}\right)}{B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)}, R^{\prime \prime}=\frac{B\left(E 2 ; 0_{2}^{+} \rightarrow 2_{1}^{+}\right)}{B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)} \tag{6}\\
R=\left\{\begin{array}{cc}
U(5): & \rightarrow 2\left(N_{b}-1\right) / N_{b} \\
S U(3): 10\left(N_{b}-1\right)\left(2 N_{b}+5\right) / 7 N_{b}\left(2 N_{b}+3\right) & \rightarrow 10 / 7 \\
O(6): \quad 10\left(N_{b}-1\right)\left(N_{b}+5\right) / 7 N_{b}\left(N_{b}+4\right) & \rightarrow 10 / 7
\end{array}\right. \tag{7}\\
R^{\prime}=\left\{\begin{array}{cc}
U(5): \\
S U(3): 0 & 2\left(N_{b}-1\right) / N_{b} \\
O(6): 10\left(N_{b}-1\right)\left(N_{b}+5\right) / 7 N_{b}\left(N_{b}+4\right) & \rightarrow 10 / 7
\end{array} .\right. \tag{8}\\
R^{\prime \prime}=\left\{\begin{array}{c}
U(5): 2\left(N_{b}-1\right) / N_{b} \rightarrow 2 \\
S U(3): 0 \\
O(6): 0
\end{array}\right. \tag{9}
\end{gather*}
$$

POTENTIAL ENERGY SURFACE (P.E.S)

"The potential energy surface is calculated using the P.E.S. for program. For $160-166 \mathrm{Yb}$ isotopes, the contour plots in the (-) plane resulting from E are displayed. The mapped IBM energy surfaces are form for the majority of the considered Yb nuclei. The triaxial form is linked to intermediate values ($0-60$). The triaxial deformation helps to understand the prolate to oblate shape transition that occurs in the considered Yb isotopes." [18].

RESULTS AND DISCUSSION

The energy levels of isotopes were estimated using the (IBM) software in Fortran and the Hamiltonian as equation (1) with the values listed in Table (2).

These parameters are gotten energy levels for ${ }^{160} \mathrm{Yb},{ }^{162} \mathrm{Yb},{ }^{164} \mathrm{Yb}$ and ${ }^{166} \mathrm{Yb}$ and draw it in Fig. $(2,3,4,5)$ respectively, there is an excellent corresponding with the experimentally results [19-22], and it is so near from the typical spectrum with $\operatorname{SU}(3)$ symmetry (Fig.(2-c)). We can see that there are many uncertain energy levels or unknown parties in this investigation.

TABLE 2. The Hamiltonian's parameters in MeV units and the number of bosons (N).

The Isotopes	Boson Number	\mathbf{E}	$\mathbf{a}_{\mathbf{0}}$	$\mathbf{a}_{\mathbf{1}}$	$\mathbf{a}_{\mathbf{2}}$	$\mathbf{a}_{\mathbf{3}}$	$\mathbf{a}_{\mathbf{4}}$	$\boldsymbol{\chi}$
${ }^{160} \mathrm{Yb}$	11	0	0.0114	0.0184	-0.0165	0	0	-0.068
${ }^{162} \mathrm{Yb}$	12	0	0.0116	0.0164	-0.0164	0	0	-1.170
${ }^{164} \mathrm{Yb}$	13	0	0.0126	0.0132	-0.0123	0	0	-0.280
${ }^{166} \mathrm{Yb}$	14	0	0.0112	0.0119	-0.0114	0	0	-0.112

FIGURE 3. Energy Levels for ${ }^{160} \mathrm{Yb}$.

FIGURE 4. Energy Levels for ${ }^{162} \mathrm{Yb}$.

FIGURE 5. Energy Levels for ${ }^{164} \mathrm{Yb}$.

FIGURE 6. Energy Levels for ${ }^{166} \mathrm{Yb}$.
For this current work and the experimental values in a very excellent matching with the theoretical values as in Table(1), we can determine that ${ }^{160-166} \mathrm{Yb}$ isotopes are located in the $\mathrm{SU}(3)-\mathrm{O}(6)$ area, because the ratio of $E_{8_{1}}^{+}$ $/ E_{2_{1}}^{+}, E_{6_{1}}^{+} / E_{2_{1}}^{+}$and $E_{4_{1}}^{+} / E_{2_{1}}^{+}$for this present work shown in Table(3) and in Figs. (7), (8) and(9)is also in a good matching with ta typical values in Table (1).

TABLE 3. Experimental and present work energy levels ratios for Yb isotopes.

Isotopes	${ }^{160} \mathrm{Yb}$		${ }^{162} \mathbf{Y b}$		${ }^{164} \mathrm{Yb}$		${ }^{166} \mathbf{Y b}$	
	Exp.	IBM-1	Exp.	IBM-1	Exp.	IBM-1	Exp.	IBM-1
E_{41}^{+} / E_{2}^{+}	2.965	2.98	3.109	3.096	3.193	3.25	3.247	3.263
E_{61}^{+} / E_{2}^{+}	5.655	6.059	6.102	6.419	6.378	6.568	6.598	6.711
$E_{8_{1}}^{+} / E_{2}^{+}$	8.865	8.905	9.780	9.798	10.353	10.04	10.898	10.884

FIGURE 7. $\mathrm{E}_{1}^{+} / \mathrm{E} 2_{1}^{+}$Ratios between experimental and the IBM-1 with standard ratios for ${ }^{160-166} \mathrm{Yb}$ isotopes.

FIGURE 8. $E 6_{1}^{+} / E 2_{1}^{+}$ratios between experimental and the IBM-1 with standard ratios for ${ }^{160-166} \mathrm{Yb}$ isotopes.

FIGURE 9. $\mathrm{EB}_{1}^{+} / \mathrm{E} 2_{1}^{+}$ratios between experimental and the IBM-1 with standard ratios for ${ }^{160-166} \mathrm{Yb}$ isotopes.
The electric transition probabilities obtained from the IBMT algorithm were compared to experiment data in Table (4) for the transition from the initial level I to the final level (f), using E2DD and E2SD values. These transitions are significant because they allow us to calculate the probability of emission or γ-ray absorption at any energy. E2SD is equal effective charge $\left(\alpha_{2}\right)$, where $\left(\alpha_{2}\right)$ is dependent on the limit of the region of isotopes in order to obtain the appropriate electric transition, and $\mathrm{E} 2 \mathrm{DD}=(5)^{1 / 2} \beta_{2}$, where $\left(\beta_{2}\right)$ is the parameter of deformation.

TABLE 4. Represents some of permissible electric transitions calculated in IBM-1 model for Yb isotope.

$B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right) \quad B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$					
The Isotopes	Boson Number	$\begin{aligned} & \mathbf{e}^{2} \mathbf{b}^{2} \\ & \text { Exp. } \end{aligned}$	$\begin{gathered} \mathbf{e}^{2} \mathbf{b}^{2} \\ \mathbf{I B M} \mathbf{1 B} \end{gathered}$	E2SD	E2DD
${ }^{160} \mathrm{Yb}$	11	0.692	0.692	0.141	-0.417
${ }^{162} \mathrm{Yb}$	12	0.857	0.857	0.100	-0.295
${ }^{164} \mathrm{Yb}$	13	1.01	1	0.113	-0.336
${ }^{166} \mathrm{Yb}$	14	0.876	0.876	0.106	-0.315

The branching ratio R, R^{\prime} and $R^{\prime \prime}$ have been found in agreement both experimentally and theoretically (Table (4)) also with in consistence with their ideal corresponding limits as in equations (7),(8) and (9) depending on these equations and the results in Table (5) it have been found that ${ }^{160-166} \mathrm{Yb}$ isotopes are locating between $\mathrm{O}(6)$ and $\mathrm{SU}(3)$ region.

TABLE 5. The branching ratio between two electric transitions for Yb Isotopes.

The Branching Ratios	Isotopes							
	${ }^{160} \mathrm{Yb}$		${ }^{162} \mathbf{Y b}$		${ }^{164} \mathrm{Yb}$		${ }^{166} \mathrm{Yb}$	
	Exp.	IBM - 1	Exp.	IBM -1	Exp.	IBM -1	Exp.	IBM -1
$R=\frac{B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right)}{B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)}$	1.4	1.33	1.4	1.36	1.4	1.34	1.41	1.33
$R^{\prime}=\frac{B\left(E 2 ; 2_{2}^{+} \rightarrow 2_{1}^{+}\right)}{B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)}$	-----	0.016	-----	0.096	-----	0.072	-----	0.028
$R^{\prime \prime}=\frac{B\left(E 2 ; 0_{2}^{+} \rightarrow 2_{1}^{+}\right)}{B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)}$	----	0.036	----	0.024	----	0.003	----	0.009

TABLE 6. The electric transitions in $\left(\mathrm{e}^{2} \mathrm{~b}^{2}\right)$ with positive parity for Yb isotopes.

The Isotopes	${ }^{166} \mathrm{Yb}$		${ }^{166} \mathrm{Yb}$		${ }^{177} \mathbf{Y b}$		${ }^{172} \mathrm{Yb}$	
$\mathrm{Ji}^{\text {P }} \mathrm{Ji}^{+}$	Exp.	IBM - 1	Exp.	IBM -1	Exp.	IBM -1	Exp.	IBM -1
$2_{1} \rightarrow 0_{1}$	0.712	0.6934	1.173	0.8564	0.684	1.0068	0.831	0.8764
$2_{1} \rightarrow 0_{2}$	-----	0.1278	-----	0.0214	-----	0.01891	-----	0.0435
$2_{1} \rightarrow 0_{3}$	-----	0.0006	-----	0.0003	-----	0.0158	-----	0.0013
$2_{2} \rightarrow 0_{1}$	-----	0.2314	-----	0.0494	-----	0.0645	-----	0.0914
$2_{2} \rightarrow 0_{2}$	-----	0.0159	-----	0.0050	-----	0.0033	-----	0.0002
$2_{2} \rightarrow 0_{3}$	-----	0.00003	-----	0.0193	-----	0.0040	-----	0.0002
$2_{3} \rightarrow 0_{1}$	-----	0.0002	-----	0.0014	-----	0.0030	-----	0.0019
$2_{3} \rightarrow 0_{2}$	-----	0.1315	-----	0.7084	-----	0.3441	-----	0.1794
$2_{3} \rightarrow 0_{3}$	-----	0.1073	-----	0.0053	-----	0.0915	-----	0.1131
$2_{4} \rightarrow 0_{1}$	-----	0.0022	-----	0.00009	-----	0.0018	-----	0.0041
$2_{4} \rightarrow 0_{2}$	-----	0.1908	-----	0.0009	-----	0.0981	-----	0.1637

Finally, the deformation in nucleus is shown in Figs. (10-13), The parameters used in the IBMP-code for ${ }^{160-166} \mathrm{Yb}$ isotopes shown in Table (7).

FIGURE 10. Potential Energy Surface with the Deformation for Yb

FIGURE 11. Potential energy surface with the deformation for ${ }^{162} \mathrm{Yb}$.

FIGURE 12. Potential energy surface with the deformation for ${ }^{164} \mathrm{Yb}$.

FIGURE 13. Potential energy surface with the deformation for ${ }^{166} \mathrm{Yb}$.

TABLE 7. The parameters used in the IBMP-code for ${ }^{160-166} \mathrm{Yb}$ isotopes.

The Isotopes	\mathbf{N}	$\mathbf{E S}$ $(\mathbf{M e V})$	$\mathbf{E D}$ $(\mathbf{M e V})$	$\mathbf{A 1}$ $(\mathbf{M e V})$	$\mathbf{A 2}$ $(\mathbf{M e V})$	$\mathbf{A 3}$ $(\mathbf{M e V})$	$\mathbf{A 4}$ $(\mathbf{M e V})$
${ }^{160} \mathrm{Yb}$	11	-0.223	0.086	0.004	0.021	-0.178	0.000
${ }^{162} \mathrm{Yb}$	12	-0.150	0.071	0.003	0.021	-0.120	0.000
${ }^{164} \mathrm{Yb}$	13	-0.241	0.014	0.011	0.014	-0.193	0.000
${ }^{166} \mathrm{Yb}$	14	-0.100	0.038	0.002	0.019	-0.080	0.000

CONCLUSIONS

1. Ytterbium isotopes $\left({ }^{160-166} \mathrm{Yb}\right)$ have dynamical symmetry between $\mathrm{SU}(3)$ and $\mathrm{O}(6)$, because the ratio values are nearly identical to those in Tablet (1), and when compared to the Casten Triangle, whose Hamiltonian is eq.(5) and the branching ratios for it refer to the $\mathrm{SU}(3)$ region due to the close match with typical values.
2. The angular momentum and parity of many high energy levels were confirmed with the experimental data. Unknown levels were been known with positive parity.
3. The branching ratios of the electric transitions are a good exam to know the limit of the isotope and emphasis it.
4. The values of calculated $\mathrm{B}(\mathrm{E} 2)$ are in excellent agreement with the experimental data. Although there are many variations between them, such as the effect of deformation on the nuclei of these isotopes, there are many similarities.
5. All the isotopes of Yb in this study are between $\mathrm{O}(6)$ and $\mathrm{SU}(3)$ limit except ${ }^{166} \mathrm{Yb}$ it is nearby $\mathrm{SU}(3)$ limit, due to the increase in the number of its bosons than the rest of the isotopes, which leads to an increase in the interaction between them and thus an increase in distortion in the nucleus.

REFERENCES

1. Hady H. N., (2020), "A Theoretical Description of some Even-Even Isotopes ${ }^{156-178} \mathrm{Yb},{ }^{124-140} \mathrm{Ba}$ and ${ }^{72-80} \mathrm{Se}$ using IBM Model," Ph.D. thesis, University of Babylon.
2. Muttaleb M. K., (2012), "A Study the ${ }^{152-160} \mathrm{Gd}$ nuclei by the geometrical interacting Boson model," Forth scientific conference of Basic Education college university of Babylon special volume, pp. 125-137.
3. Scholten O., (1985), "The interacting boson approximations and applications," Nucl. Phys. Vol.14, No. 189.
4. Casten R. , (1990), "Nuclear structure from a simple perspective," Oxford university press.
5. Casten R. and Warner D., (1988), "Interacting boson model Rev.," Mod. Phys. 960 pp. 389-469.
6. Kadhim M. A., (2015), "Nuclear Structure of Even-Even Os, Pt and Hg Isotopes By Using IBM-2," Ph.D. thesis University of Babylon.
7. Jaber Gh. A. and Muttaleb M. K., (2019), "Study the deformation in some even krypton isotopes (88-92) using IBM-1 model," Vol.1234, No.1, p.2.
8. Nomura K., Rodríguez-Guzmán R., Humadi Y. M., Robledo L. M., Abusara H., (2017), "Structure of krypton isotopes within the interacting boson model derived from the Gogny energy density functional," Phys. Rev. C, Vol. 96, No.3, p 34310.
9. Rząca-Urban T., Sieja K., Urban W., Czerwiński M., Blanc A., Jentschel M., Mutti P., Köster U., Soldner T., G. de France, Simpson G. S., and Ur C. A., (2017), "Structure of $90,91 \mathrm{Kr}$ nuclei: solving the puzzle of their population in fussion," Phys. Rev. C, Vol.95, No.6, p. 6430.
10. Iachello F. and Arima A., (1987), "The interacting boson model," Cambridge University Press Cambridge England.
11. Warner D., (2021), " Relativistic nuclear collisions: Establishing a non-critical baseline for fluctuation measurements," Nucl. Phy. A, Nature Vol.420, No.6916, p. 614-615.
12. Jaber Gh. Ab., (2020), "Nuclear Structure for Some Even-Even (Kr, Xe, Hg) Nuclei Using IBM1-2," Ph.D. thesis, University of Babylon.
13. Aboud S. N. , (1990), "An application of interacting boson model in nuclear", M.Sc. Thesis, Basra University.
14. Tuli J.K., (1998), Nuclear Data Sheets, Vol. 11, No.1, p. 12.
15. Obiad R. M., (2020), "Study Mixed Symmetry States of Deformed Even-Even Nuclei Using Interacting Boson Model (IBM-2)," Ph.D. thesis, University of Babylon.
16. Al-Shareefi M. A. and Abbood N. A., (2018)," Study of Properties of ${ }^{146,148} \mathrm{Nd}$ Isotopes by Using IBM-1 Model", Journal of Babylon University/Pure and Applied Sciences, Vol.26, No.3, P.115.
17. Baglin C. M., (2008), Nuclear Data Sheets, Vol.109, No.1103, pp. 1-3.
18. Baglin C. M., (2010), Nuclear Data Sheets, Vol. 111, No. 1807, pp. 1-3.
19. Baglin C. M., Mccutchan E. A., Basunia S., (2018), Nuclear Data Sheets, Vol.153, No.1, pp. 1-3.
20. Singh B., (2015), Nuclear Data Sheets, Vol.107, No.791, pp.1-4.
21. M. S. Basunia, (2006), Nuclear Data Sheets, Vol.107, No.791, pp.1-4.
22. E. Achterberg, O. A. Capurro and G. V. Marti, (2009), Nuclear Data Sheets, Vol.10, No.1473, pp.1-7.
