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Abstract- Blind Signal separation and independent component 

analysis are emerging techniques of Data analysis that aim to 

recover unobserved signals or " sources" from observed mixture.  

  Such problem requires us to venture familiar second order 

statistics, because a penalty term involving only pair wise 

decorrelation would not lead to separation. 

  Source separation can be obtained by optimizing a contrast 

function, i.e., a scalar measure of sum distributional property of 

the output. The constant modules property is very specific, more 

general contrast function are based on other measure, such as 

entropy, mutual independence, higher order decorrelation, 

divergence between distribution of output and some model, etc. 

  The contrast function  is used here can derived from maximum 

likelihood principle. The basic BSS model can be treated in 

several directions, considering for instance, more sensors than 

sources, noisy observation, and complex signal and mixture, or 

obtains the standard narrow band array processing / 

beaminforming model. Another extension is to consider 

convolution mixture: this result in multi channel blind 

deconvolution problem. These extensions are of practical 

importance. 

  Sometimes the researches are restricted to simplest model ( i.e., 

real signal as many sensors as sources, nonconvolutive mixture, 

noise free observation ) because its capture the essence of the BSS 

problem. Normally the BSS approach answers the following 

questions:- 

-  When is source separation possible? 

-  To what extent can the source signal be recovered? 

-  What are the properties of the source signal allowing for partial 

or complete blind recovery ?. 

   

  The aim of this paper is to analyze some of the operations that 

have been recently developed to address the blind signal (source) 

separation based on statistical principles and parameters. 

  

Index Term-  Applied Statistics, Blind deconvolution and 

equalization, blind separation of signals, independent component 

analysis, higher order statistics, learning rate, Principal 

Component analysis. 
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I. INTRODUCTION 

Moments and cumulants are widely used in scientific 

disciplines that deal with data, random variables or stochastic 

processes. They are well known tools that can be used to 

quantify certain statistical properties of the probability 

distribution like location (first moment) and scale (second 

moment). The definition is given by [1],  
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where N is the total number of samples, ix  are the values in 

the signal, 
2 ,σµ  are the mean and variance respectively 

(some times the mean value can represented by the name of the 

value with carrying small bar, such as XY  , ). In practise we 

have set of probability distribution samples and compute the 

estimates of these moments. However, for higher order 

moments these estimates become increasingly dominated by 

outliers, by which we mean the samples which are far away 

from the mean. Especially for heavy tailed distributions, this 

implies that these estimates have high variance and are 

generally unsuitable to measure properties of the distribution.  

  An undesirable property of moments is the fact that lower 

order moments can have dominating influence on the value of 

higher order moments. For instance, when the mean is large it 

will have dominating effect on the second order moment,  

                                      

            (2) 

  where E[.] denotes the expectation operator. The second term 

which measures the variation around the mean, i.e. the 

variance, is much more suitable statistic for scale than the 

second order moment. This process of subtracting lower order 

information can be continued to higher order statistics. Well 

known higher order cumulants are skewness (third order) 

measuring asymmetry and kurtosis (fourth order) measuring 

”peakiness” of the probability distribution [1].  

  Many statistical methods and techniques use moments and 

cumulants because of their convenient properties. For instance 

they follow easy transformation rules under affine 

transformations. Examples in the machine learning literature 

there are certain algorithms for Independent Components 

Analysis (ICA) [2,3,4]. Well known drawback of this 

algorithm is their sensitivity to outliers in the data. Thus, there 
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is a need to define robust cumulants which are relatively 

insensitive to outliers but retain most of the convenient 

properties that moments and cumulants enjoy. 

  In Blind Source Separation (BSS), multiple observations 

acquired by an array of sensors are processed in order to 

recover the initial multiple source signals. The term blind 

refers to the fact that the source signals are not observed and 

no information is available about the mixture [5].  

  The above problem which is related to foundation of the 

latent structure in high dimensional data. The term latent 

means hidden, unknown or unobserved; the term structure 

refers to some regularities in the data; high dimensional may 

be tens or tens of thousands of dimensions, depending on the 

situation; and data is any information that can be transformed 

into numerical values, most often represented as a matrix of 

multidimensional observations where each dimension 

corresponds to a variable whose value can be measured. One 

of the important points in this subject is to answer the 

question: “what are the data contains?”, to form a simple 

representation of a large data set that is difficult to analyze as 

such, and to present the data in a form that is understandable to 

a human observer[6,7,8]. 

  The main method for analyzing latent structure in the data is 

Independent Component Analysis. ICA is a computational 

method for separating a multivariate signal into additive 

subcomponents supposing the mutual statistical independence 

of the non-Gaussian source signals. 

  The independence assumption is correct in most cases so the 

blind ICA separation of a mixed signal gives very good results. 

It is also used for signals that are not supposed to be generated 

by a mixing for analysis purposes. The statistical method finds 

the independent components (factors, latent variables or 

sources) by maximizing the statistical independence of the 

estimated components. Non-Gaussianity, motivated by the 

central limit theorem, is one method for measuring the 

independence of the components. Non-Gaussianity can be 

measured, for instance, by kurtosis or approximations of 

negentropy. 

  Typical algorithms for ICA use centering, whitening and 

dimensionality reduction as preprocessing steps in order to 

simplify and reduce the complexity of the problem for the 

actual iterative algorithm. Whitening and dimension reduction 

can be achieved with Principal Component Analysis (PCA). 

Algorithms for ICA include infomax, FastICA and JADE, but 

there are many others also [9,10,11,12]. 

  In the other hand, Principal Components Analysis (PCA) is a 

technique that can be used to simplify a dataset; more formally 

it is a linear transformation that chooses a new coordinate 

system for the data set such that the greatest variance by any 

projection of the data set comes to lie on the first axis (then 

called the first principal component), the second greatest 

variance on the second axis, and so on. PCA can be used for 

reducing dimensionality in a dataset while retaining those 

characteristics of the dataset that contribute most to its 

variance by eliminating the later principal components (by a 

more or less heuristic decision). These characteristics may be 

the “most important”, but this is not necessarily the case, 

depending on the application.      

  Some algorithms utilize second-order (SO) statistics as the 

classical PCA in factor analysis. In contrast, ICA attempts to 

restore the independence of outputs using higher order 

statistics. The consequence is that the indeterminacy is reduced 

so that ICA allows blind identification of the static mixture, 

and transmitted sources can eventually be extracted [13,14] 

  More precisely, the ICA concept relies on the core 

assumptions that: -  

i) Sources should be independent in some way. Additionally, 

when a contrast functional is sought to be maximized. 

ii) the mixture has to be overdetermined, which means that 

there should be at most as many sources as sensors [15]. In 

fact, there must exist a linear source separator [6].  

  Since the first paper related to higher order (HO) BSS, 

published in 1985 [16], many concepts and algorithms have 

come out. For instance, the ICA concept was proposed a few 

years later, as well as the maximization of a fourth-order (FO) 

contrast criterion (subsequently referred to as COM2) [6]. At 

the same time, a matrix approach was developed in [7] and 

gave rise to the joint diagonalization (JAD) [17]. A few years 

later, Hyvarinen et al. developed the FastICA method: first for 

signals with values in the real field [18] and later for complex 

signals [10], using the fixed-point algorithm to maximize an 

FO contrast. This algorithm is of deflation type, as is that of 

Delfosse et al. [18], and must extract one source at a time, 

although some versions of FastICA extract all sources 

simultaneously. In addition, Comon proposed a simple 

solution named COM1 in [19], to the maximization of another 

FO contrast function previously published in [20,21,22]. 

Another algorithm of interest is second order (SO) blind 

identification (SOBI), based only on SO statistics, developed 

independently by several authors in the 1990s and addressed in 

depth later in [14]. 

  The aim of this paper is to analyze some of the operations 

that have been recently developed to address the blind signal ( 

source ) separation based on statistical principles and 

parameters. 

  This paper is organized as follows. Section two introduces 

the higher order statistics (HOS). Section three introduces the 

BSS problem. Section four defines the PCA and ICA in detail. 

Section five gives the statistical properties of adaptive 

algorithm for blind separation. Section six introduces the 

adaptive algorithm for blind deconvolution. Section seven 

provides the conclusions. 

II. HIGHER ORDER STATISTICS (HOS) 

 

  In recent years the field of HOS has continued its expansion, 

and applications have been found in fields as diverse as 

economics, speech processing, seismic data processing, plasma 

physics and optics. Many signal processing conferences 

(ICASSP, EUSIPCO) now have sessions specifically for HOS, 

and an IEEE Signal Processing Workshop on HOS has been 

held every two years since 1989 [1,4].  

  HOS measures are extensions of second-order measures 

(such as the autocorrelation function and power spectrum) to 

higher orders. The second-order measures work fine if the 
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signal has a Gaussian (Normal) probability density function, 

but as mentioned above, many real-life signals are non-

Gaussian.  

 

A. Higher Order Moments (3rd -skewness) 

For univariate data Y1, Y2, ..., YN, the formula for skewness is:  
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where Y  is the mean value, σ  is the standard deviation, and 

N is the number of data samples. The skewness for a normal 

distribution is zero, and any symmetric data should have a 

skewness near zero. Data skewed to the left are said to be 

negatively skewed; the mean and median are to the left of the 

mode. Data skewed to the right are said to be positively 

skewed; the mean and median are to the right of the mode, 

Fig.(1) show the skewness [4]. 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Skewness. 

 

B. Higher Order Moments (4th-kurtosis) 

  For univariate data Y1, Y2, ..., YN, the formula for kurtosis is:  
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where Y is the mean value, σ  is the standard deviation, and 

N is the number of data samples. Fig. (2) show the kurtosis. 

  The kurtosis for a standard normal distribution is three. For 

this reason, some sources use the following definition of 

kurtosis [21]:  
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  Kurtosis can be either positive or negative. Random variables 

that have a negative Kurtosis are called subGaussian, and 

those with positive Kurtosis are called superGaussian. In 

statistical literature, the corresponding expression platykurtic 

and leptokurtic are also used. 

  SuperGaussian random variables have typically a “spiky” 

PDF with heavy tails, i.e., the PDF is relatively large at zero 

and at large values of the variable, will being small for 

intermediate values. On the other hand, subGaussian random 

variables have typically a “flat” PDF, which is rather constant 

near zero, and very small for large values of the variables, as 

shown in Fig. (2) [23]. 

 

 

 

 

 

 

 

 

 

 

 

Fig.(2). Kurtosis 

 

Example (1) 

  The following example shows histograms for 10,000 random 

numbers generated from a normal, a double exponential, a 

Cauchy, and a Weibull distribution which show the measure of 

skewness and kurtosis [4] as in Fig. (3). 

 

 

 

 

 

 

 

 

 

 

Fig. (3). an example show the measure of skewness ad kurtosis 

III. BLIND SIGNAL SEPARATION (BSS) 

 

  Blind signal separation, also known as blind source 

separation, is the separation of a set of  signals from a set of 

mixed signals, without the aid of information (or with very 

little information) about the nature of the signals. 

  Blind signal separation relies on the following assumption: 

The source signals are non-redundant. For example, the signals 

may be mutually statistically indepndent or decorrelated.  

  Blind signal separation thus separates a set of signals into a 

set of other signals, such that the regularity of each resulting 

signal is maximized, and the regularity between the signals is 

minimized (i.e. statistical independence is maximized). 

  The separation of independent sources from mixed observed 

data is a fundamental and challenging signal processing 

problem [9,24]. In many practical situations, one or more 

desired signals need to be recovered from the mixtures only. A 

typical example is speech recordings made in an acoustic 

environment in the presence of background noise and/or 

competing speakers. The task of Blind Signal Separation 

(BSS) is that of recovering unknown source signals from 

sensor signals described by:  

              

  x(t)=As(t)           (6) 

where x(t)=[x1,x2,...,xn]
T

 is an available n×1 sensor vector, 

s(t)=[s1,s2,...,sn]
T

 n×1 unknown source vector having stochastic 

independent and zero-mean non-Gaussian elements si(t), and A 

µ

SubGaussian 

Gaussians are mesokurtic with κ =3 

µ

SuperGaussian 
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is a n×n unknown full-rank and non singular mixing matrix. 

The BSS problem consists in recovering the source vector s(t) 

using only the observed data x(t), the assumption of 

independence between the entries of the input vector s(t) and 

possibly some a priori information about the probability 

distribution of the inputs. Statistical independence means that 

given one of the source signals, nothing can be estimated or 

predicted about any other source signals. Fig. (4) Shows an 

example of eq. (6). 

 

 

   

 

 

 

 

 

Fig. (4). Example of Mixing Model. 

 

  This model in Eq. (6) is instantaneous (or memoryless) 

because the mixing matrix contains fixed elements, and also 

noise-free.  

  If noise is included in the model, it can be treated as an 

additional source signal or as measurement noise. In this case 

the model becomes:- 

 )()()( tntAstx +=   (7) 

where the noise vector )(tn  is of dimension 1×n . The mixing 

matrix may be constant, or can be variable with the time index 

t . In the time-varying case, A   becomes )(tA  [10,13]. 

  In “multichannel blind deconvolution” or “blind 

equalization”, the n- dimensional vector of received signals 

)(tx  is assumed to be produced from the m-dimensional vector 

of source signals using “ z -domain” mixture model: - 

)()()( zszAzx =               (8) 

  In this case, the mixture is said to be a “convolutive mixture”, 

(i.e., the channel has some memory effect) [10]. 

 

A. Instantaneous Linear Mixtures of Signals 

    In order to recover the original source signals from the 

observed mixtures, we use a simple linear separating system 

[8]: - 

 )()( tBxty =     (9) 

where T
n tytyty )](),...,([)( 1=  is an estimate ),(ts  and B  is 

a nn ×  (assume mn = ) separating matrix. 

 

B.Convolutive Mixtures of Signals 

  A simple Finite Impulse Response (FIR) feedback 

architecture is combined with a second order cost function and 

gradient descent learning to separate two speech signals. The 

process is blind in that nothing is known about the sources or 

the mixing process. The conditions under which it is possible 

to separate multiple signals are given. Spatial diversity 

information, which exploits only the structure between 

multiple sensors, is employed to separate instantaneous 

mixtures and a combination of spatial and spectral diversity 

information is used to separate convolutive mixtures. The 

mixing process is assumed to be linear and time-invariant and 

the demixing process is linear.   

  The overall two-source, two-observation system )2 ,2( == nm  

for a feedback architecture [25] is shown in Fig. (5).   

 

 

 

 

 

 

 

 

 

 

Fig. (5). Block diagram of overall system (including both 

mixing )()()( zszHzx =  and demixing sub-blocks) When 

)2 ,2( == nm  and )(zy  = 11
])()[(

−−+ zzGIzx  . 

 

where )(zs  is the 1×m  source vector in the −z domain, 

)(zH  is  the mn ×  mixture matrix, and )(zx  is the 1×n  

observation vector and )(zG  is the nm ×  demixing matrix . 

Each element of  )(zG  is an FIR filter, hence the reason for 

the name FIR feedback.   

 

IV. PRINCIPAL COMPONENTS ANALYSIS (PCA) AND 

INDEPENDENT COMPONENTS ANALYSIS (ICA) 

 
Principal Components Analysis (PCA) is a technique used to 

reduce multidimensional data sets to lower dimensions for 

analysis. Depending on the field of application. It is also 

named the discrete Karhunen-Loève transform, the Hotelling 

transform or proper orthogonal decomposition (POD) [1]. 

  PCA is mostly used as a tool in exploratory data analysis and 

for making predictive models. PCA involves the calculation of 

the eigenvalue decomposition or Singular value decomposition 

of a data set, usually after mean centering the data for each 

attribute. The PCA is mathematically defined as an orthogonal 

linear transformation that transforms the data to a new 

coordinate system. PCA is theoretically the optimum transform 

for a given data in least square terms. 

  In PCA an observed vector x  is first centered by removing 

its mean. Then the vector is transformed by a linear 

transformation into a new vector, possibly of lower dimension, 

whose elements are uncorrelated with each other. The linear 

transformation is found by computing the “eigenvalues 

decomposition” of the covariance matrix, which for zero-mean 

vectors is the correlation matrix }{ T
xxE  of the data. The 

eigenvectors of }{ TxxE  form a new coordinate system in 

which the data are presented. 

  The decorrelating process is called whitening or sphering. 

This can be accomplished by scaling the vector elements by 
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the inverses of the eigenvalues of the correlation matrix. The 

whitened data have the form:  

  )()(~ 21
txEDtx

T−=                                   (10) 

where )(~ tx  is the whitened data vector, D  is a diagonal 

matrix containing the eigenvalues of the correlation matrix and 

E  contains the corresponding eigenvectors of the correlation 

matrix as its columns [16]. 

   Independent Components Analysis (ICA) is a statistical and 

computational technique for revealing hidden factors (latent) 

that underlies sets of random variables, measurements, or 

signals. 

  ICA defines a generative model for the observed multivariate 

data, which is typically given as a large database of samples. 

In the model, the data variables are assumed to be linear or 

nonlinear mixtures of some unknown latent variables, and the 

mixing system is also unknown. The latent variables are 

assumed nonGaussian and mutually independent and they are 

called the independent components (IC) of the observed data. 

These independent components, also called sources or factors, 

can be found by ICA [9].  

  Several assumptions are required for successful blind 

separation using ICA method, they are [6, 9, 11, 12]: - 

• The sources are “statistically independent” of one 

another. This assumption is very important and a common 

one for all the algorithms of blind separation. 

• The channel can be instantaneous or convolutive and the 

matrix A  is assumed to be invertible. 

• The number of sensors n is greater than or equal to the 

number of the sources m. This is necessary assumption in 

most existing algorithms. However, it has been shown that 

in some applications, the number of sources can be greater 

than the number of sensors. 

• At most one source is normally distributed. This valid 

assumption only for the noise-free model given in Eq. (6). 

• The mixing matrix  A   is full rank. 

• Sources are zero mean and stationary. 

• The noise )(tn  is white and Gaussian noise. 

  Although robust moments and cumulants can potentially find 

applications in a broad range of scientific disciplines, we will 

illustrate their usefulness by showing how they can be 

employed to improve algorithms for independent components 

analysis (ICA). The objective of ICA is to find a new basis for 

which the data distribution factorizes into a product of 

independent one dimensional marginal distribution. To achieve 

this, removes first and second order statistics from the data by 

shifting the sample mean to the origin and sphering the sample 

covariance to be the identity matrix. These operations render 

the data decorrelated but higher order dependencies may still 

remain. It can be shown [3] that if an independent basis exists, 

it must be a rotation away from the basis in which the data is 

decorrelated, i.e.  

xica = O xdecor                       (11) 

where O is a rotation. One approach to find O is to propose a 

contrast function that, when maximized, returns a basis onto 

which the data distribution is a product of independent 

marginal distributions. Various contrast functions have been 

proposed, e.g. the negentropy [6] and the mutual information 

[2]. All contrast functions share the property that they depend 

on the marginal distributions which need to be estimated from 

the data. Naturally, the Edgeworth expansion [6,4] and the 

GramCharlier expansion [2] have been proposed for this 

purpose. This turns these contrast functions into functions of 

moments or cumulants. However, to obtain reliable estimates 

one needs to include cumulants of up to fourth order. It has 

been observed frequently that in the presence of outliers these 

cumulants often become unreliable. 

 

Example (2) [26]: -  

  Let us take two sources; each one has ten discrete samples, as 

shown in Fig. (6) given below, and the data as follows: - 

 

 

 

 

 

 

 

Fig. (6). Original data of the two sources. 
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Mixing process 

    Let use choose uniform randomly distributed mixing matrix 

(its elements values are bounded between 1 and -1) for the 

given two sources and two mixing sensors, as follows: - 


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  Then using Eq. (12), the resulting mixing signals as shown in 

Fig. (7), and the data are: - 
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Fig. (7). Mixed Data. 

 

Whitening Process using PCA 

  This process calculates the necessary two whitening vectors 

to be used in separation algorithms. Using Eq. (16), the 

resulting whitening vectors as shown in Fig. (8) and the data 

are: - 

][)(

][)(

0.77416-  0.40059,-  0.26609,-  1.403,  0.2996,  0.28931,-  2.6763,  0.48294,-  0.50168,  -0.13926,2

1.0833  1.2558,-  1.4999,-  0.43103,  0.70937,  0.54197,-  0.018475,  1.0502,  1.7124,-  0.39534,1
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Fig. (8). Whitening Data. 

 

  By applying one of the BSS algorithm [27,28] in example 

above the result is shown in Fig. (9). 

 

 

 

 

 

 
 

Fig. (9). Demixed signal. 

 

V. STATISTICAL PROPERTIES OF ADAPTIVE ALGORITHM FOR 

BLIND SEPARATION 

 

  Some of adaptive algorithms are efficient in giving accurate 

estimators and some are convergent. Let 

)()(
1

i

i

n

i

spsp ∏
=

=                                         (12) 

be the true probability density function (PDF) of the source 

signals is  and )( ii sp  is the probability of signal samples. 

Then, the PDF of  Asx =  is written in terms of  
1−= AB  as  

)()det(),;( BxpBpBxpx =                   (13) 

  Given a series of observations x(1),..., x(T), it is a statistical 

problem to estimate the true B . This problem is “ill-posed” in 

the sense that the statistical model in Eq.(13) includes not only 

the parameters B , which we want to know, but also n  

unknown functions  p(s), i= 1,..., n. 

A statistical model is said to be semiparametric when it 

includes extra unknown parameters of infinite dimensions. 

Since the unknown functions are of infinite dimensions, this 

brings some difficulties for estimating B  [10].  

A.Estimating Functions  

By design, all valid contrast functions reach their minima at a 

separating point when the model holds; in this sense, no one is 

better than another. In practice, however, contrasts are only 

estimated from a finite data set. Sample-based contrasts 

depend not on the distribution of  y  but on its sample 

distribution. Estimating from a finite data set introduces 

stochastic errors depending on the available samples and also 

on the contrast function. Thus, a statistical characterization of 

the minima of sample-based contrast functions is needed and 

will provide a basis for comparing contrast functions [10,29]. 

  A learning algorithm is easily obtained from an estimating 

function as: -  

  

 )()]([)()()1( kWkyFkkWkW η+=+        (14) 

where )(kW  is demixing matrix after using whitening process 

and )(kη  is a learning rate at time k. 

An important problem is to find such an estimating function 

which gives a good performance. An estimating function F is 

said to be inadmissible when there exists an estimating 

function F which gives a better estimator than F does for any 

probability distributions. We need to obtain the class of 

admissibly estimating functions [8].  

 

B.Information Geometry and its Role in Analysis of Such 

Statistical Problem  

  Information geometry is particularly useful for analyzing this 

type of problem. When it is applied to the present problem we 

can obtain all the set of estimating functions. It includes the 

Fisher efficient one, which is asymptotically the best one. 

However, the best choice of F (estimating function) again 

depends on the unknown P, thus we need to use an adaptive 

method. The following important results are obtained by 

applying information geometry: 

1) The off-diagonal components ,  ),,( jiWyfij ≠  of an 

admissible estimating function has the form 

 
iiiiiiij yyfyyfWyf )()(),( βα +=                (15) 

      where α  and β  are suitably chosen constants or variable 

parameters. 

2) The diagonal part ),( Wyfii  can be arbitrarily assigned. 

Most learning algorithms have been derived heuristically, 

one might further try to obtain better rules by searching for an 

extended class of estimating functions such as 
Tygyf )()(  

or more general ones. However, this is not admissible, and we 

can find a better function for noiseless case in the class of: 

TT
yyfyyfyF )()()( βα +=                  (16) 

It should be noted that F(y) and K (w) F(y) give the same 

estimating equations, where K(w) is a linear operator. 

Therefore, F and KF are equivalent when we estimate w by 

batch processing.  Two learning rules: - 

)()()()1( yFkkWkW η+=+              (17) 

)()()()()1( yFwKkkWkW η+=+     (18) 

have different dynamical characteristics, although their 

equilibria are the same. The universally convergent algorithm 

uses the inverse of the Hessian as K(w), so that the 

convergence is guaranteed.  

  Summarizing, all the adaptive learning algorithms with the 

equivariant properties for blind separation of sources can be 

written in the general form using estimating functions [8,29].  

VI ADAPTIVE ALGORITHMS FOR (BLIND DECONVOLUTION ) 

 

  A.Learning Algorithms in the Frequency Domain  

  When the observed signals x(k) are time-delayed multi-path 

mixtures as in  

y1(t) y2(t) 
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   ∑
∞

−∞=

−=
p

p pksHkx )()(                   (19) 

where  pH  is an )( nm × -dimensional matrix of mixing 

coefficients at lag  p. 

By using a truncated version of a doubly-infinite multichannel 

equalizer of the form: -                            

 ∑
∞

−∞=

−=
p

p pkxkWky )()()(              (20) 

where  
T

n kykyky )](),...([)( 1=  is an n -dimensional 

vector of the output signals which are to be estimators of the 

source signals, and }  ),({ ∞≤≤∞− pkWp is a. sequence 

of  )( nm × -dimensional coefficient matrices .We need 

spatial separation and temporal decomposition in order to 

extract the source signals s(k). A simple way of extending the 

blind source separation algorithms is to use frequency domain 

techniques. By using the Fourier Transform, in eq. (21) and 

(22) are represented by: - 

   x(w) = H(w)s(w)                            (21) 

   Y(w) = w(w)x(w)                            (22) 

where w  denotes the frequency and H, W are the linear 

matrix expressions [8,29]. 

 

B.Adaptive Algorithm in Time Domain for Multi-Input Multi-

Output for Blind Deconvolution  

We discuss the natural gradient algorithm for adapting W(z, k) 

in the convolutive model  

      x(k) = H(z)[s(k)]                                   (23)                                       

     y(k) =W(z, k)[x(k)] = T(z, k)[s(k)]          (24)      

where 

 ∑
∞

−∞=

−=
p

p

p zkwkzW )(),(                      

  ∑
∞

−∞=

−=
p

p
p

z
HzH )(                    

 

    T (z,k)=W(z,k)H(z) 

 

  For the multichannel deconvolution and equalization task, we 

assume that the sources )}({ ksi  are independent identical 

distribution (i.i.d.) and that both H(z) and W(z, k) are stable 

with no zero eigenvalues on the unit circle |z|=1 in complex 

plane of z. We assume that the number of sources m equals the 

number of the sensors n and that all signals and coefficients 

are real valued [17,30].  

 

C. Adaptive Learning Rules for SISO and SIMO Blind 

Equalization 

  For SISO blind equalization, the following adaptive 

learning algorithms: -  

1-filtered-regressor (FR) algorithm  
*))(()()()1( kuLkyfkkWkW −−=+ η        (25) 

 

where ∑
=

−==
L

p

p

T

L pkxkwkykwkwkw
0

0 ),()()(  ,)](),...([)(  and 

∑
=

− −=−=
L

p

pL

T

k pkykwkuwithLkukuu
0

* )()()(    )](),...([  

2-Extended Blind Separation (EBS) Algorithm  

                  )(]()()()1( kWyFkkWkW kη+=+       (26) 

where ,)](),...([ T

k Lkykyy −= and the mm ×  matrix 

][ kyF  can take one of the following forms: - 

H

kkk

T yyfkyF )()(][ −Λ=                     (27) 

  )()()()()()(][ 321

H

kk

H

kk

H

kkk

T
yfykyyfkyykkyF ααα +−−Λ=  (28) 

where )(kΛ  is a diagonal positive definite matrix, e.g., 

Ik =Λ )(   or 
H

kk yyfdiagk )({)( =Λ  and 0≥iα  are 

suitable  nonnegative parameters [3]. 

 

D.Adaptive Optimality of learning rate in the Learning 

Algorithms  

The problem of optimal updating of the learning rate (step 

size) is a key problem encountered in all the learning 

algorithms. Many of the research works related to this problem 

are devoted to batch and / or supervised algorithms. Various 

techniques like the conjugate gradient, quasi-Newton, and 

Kalman filter methods have been applied. However, relatively 

little work has been devoted to this problem for on-line 

adaptive unsupervised algorithms [17].  

VII. CONCLUSIONS  

 

  In this paper, we have reviewed adaptive blind signal 

processing with higher order statistics. Learning adaptive 

algorithms are mathematically justified and their properties are 

briefly analyzed.  

  Any Gaussian signal is completely characterised by its mean 

and variance. Consequently the HOS of Gaussian signals are 

either zero (e.g. the third-order moment of a Gaussian signal is 

zero), or contain redundant information. Many signals 

encountered in practice have non-zero HOS, and many 

measurement noises are Gaussian, and so in principle the HOS 

are less affected by Gaussian background noise than the 

second-order measures. (e.g. the power spectrum of a 

deterministic signal plus Gaussian noise is very different from 

the power spectrum of the signal alone. However the 

bispectrum of the signal + noise is, at least in principle, the 

same as that of the signal). 

  Due to wide interest in this fascinating area of research,  

further developments (are expected) of computationally 

efficient separation, deconvolution, equalization, self adaptive 

or self-organized systems with robust on-line algorithms for 

many real word applications like wireless communication, the 
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“cocktail party” problem, speech and image recognition, 

intelligent analysis of medical signals and image, feature 

extraction, ect.  
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