On preparacompactness in bitopological spaces

Luay A. H. AL-Swidi

University of Babylon , College of Education –Ibn Hayan, Department of Mathematics .

Abstract

J. Dieudonne [8], introduced the notions of paracompactness and Martin M. K. [9], introduced the notions of paracompactness in bitopological spaces and K. AL-Zoubi and S. AL-Ghour [10], introduced the notions of P3-paracompactness of topological space in terms of preopen sets. In this paper, we introduce paracompactness in bitopological spaces in terms of ij-preopen sets. We obtain various characterizations, properties of paracompactness and its relationships with other types of spaces.

Key words: ij-preparacompact, ij-precontinuous, separation axioms .

1. Introduction

The concepts of regular open , regular closed , semiopen , semiclosed , and preopen sets have been introduced by many authors in a topological space (cf. [1-4]). These concepts are extended to bitopological spaces by many authors (cf. [5-7]).

Throughout the present paper (X, τ_1 , τ_2) and (Y, μ_1 , μ_2) (or simple X and Y) denote bitopological spaces . when A is a subset of a space X, we shall denote the closure of A and the interior of A in (X, τ_i) by τ_i -clA and τ_i -intA, respectively, where i = 1,2, and i,j = 1,2; i ≠ j.

A subset A of X is said to be ij- preopen (resp. ij-semiopen ,ij-regular open , ij-regular closed and ij-preclosed) if

 $A \subseteq \tau_i - \operatorname{int}(\tau_j - clA) \ (\operatorname{resp.} A \subseteq \tau_i - cl(\tau_j - \operatorname{int} A), \ A = \tau_i - \operatorname{int}(\tau_j - clA) \ ,$

 $A = \tau_j - cl(\tau_i - \text{int } A)$, and $\tau_j - cl(\tau_i - \text{int } A) \subseteq A$). The family of all ij-semiopen (resp. ij- regular open and ij- preopen) sets of X is denoted by ij-SO(X) (resp. ij-RO(X) and ij-PO(X)). The intersection of all ij- preclosed sets which contain A is called the ij- preclosure of A and is denoted by ij-PclA. Obviously, ij-PclA is the smallest ij-preclosed set which contains A.

Definition 1.1 .A bitopological space (X, τ_1, τ_2) is called ij-locally indiscrete if every τ_i – open subset of X is τ_i – closed.

Definition 1.2. A collection $\Xi = \{F_{\lambda} : \lambda \in \Gamma\}$ of subsets of X is called,

- locally finite with respect to the topology τ_i (respectively, ij-strongly locally finite), if for each x∈ X, there exists U_x ∈ τ_i (respectively, U_x ∈ ij − RO(X)) containing x and U_x which intersects at most finitely many members of Ξ;
- (2) ij-P-locally finite if for each $x \in X$, there exists a ij- preopen set U_x in X containing x and U_x which intersects at most finitely many members of Ξ .

Definition 1.3. A bitopological space (X, τ_1, τ_2) is called $(\tau_i - \tau_j)$ paracompact with respect to the topology τ_i , if every τ_i -open cover of X has τ_j -open refinement which is locally finite with respect to the topology τ_i [9].

We obtain the following lemmas :

Lemma 1.4. For a bitopological space (X, τ_1, τ_2), the followings are equivalent :

(a) (X, τ_1, τ_2) is ij-locally indiscrete;

(b) Every subset of X is ij-preopen ;

(c) Every τ_i - closed subset of X is ij-preopen.

Lemma 1.5. If A is a ij-preopen subset of X, then $\tau_i - clA$ is ij-regular closed.

Lemma 1.6. Let A and B be subsets of a space X. Then

- (a) If $A \in ij PO(X)$ and $B \in \tau_i$, then $(A \cap B) \in ij PO(X)$.
- (b) If $A \in ij PO(X)$ and $B \in ij SO(X)$, then $(A \cap B) \in ij PO(B, \tau_{1B}, \tau_{2B})$.
- (c) If $A \in ij PO(B, \tau_{1B}, \tau_{2B})$ and $B \in ij PO(X)$, then $A \in ij PO(X)$.

Theorem 1.7. Let $\Xi = \{F_{\lambda} : \lambda \in \Gamma\}$ be a collection of ij-semiopen subsets of a bitopological space (X, τ_1, τ_2) , then Ξ is ij-P-locally finite if and only if it is ij-strongly locally finite.

Proof . (Necessity). Since every ij- regular open subset of X is ij-preopen , so Ξ is ij-P-locally finite.

(Sufficiency). Let $x \in X$ and W_x be a ij-preopen subset of X such that $x \in W_x$ and $W_x \cap F_{\lambda i} \neq \Phi$ for each i= 1,2,...,n. Put $R_x = \tau_i - int(\tau_i - clW_x)$, then R_x is a ijregular open which contains x. We show for every $\lambda \in \Gamma / \{\lambda_1, \lambda_2, ..., \lambda_n\}$, $F_{\lambda} \cap R_x = \Phi$. For each $\lambda \in \Gamma$, choose $U_{\lambda} \in \tau_j$ such that $U_{\lambda} \subseteq P_{\lambda} \subseteq \tau_i - clU_{\lambda}$. Now, if $F_{\lambda} \cap R_x \neq \Phi$, then $\tau_i - clU_{\lambda} \cap R_x \neq \Phi$ and so $\tau_i - clU_{\lambda} \cap \tau_i - int(\tau_i - clW_{\lambda}) \neq \Phi$, which implies that there exist $p \in \tau_i - clU_\lambda$ and $p \in \tau_i - int(\tau_i - clW_x)$. So for each $\tau_i - open$ set V_p containing p such that $V_p \cap U_\lambda \neq \Phi$, but $\tau_i - int(\tau_i - clW_x)$ is a $\tau_i - open$ containing p, which implies that $U_{\lambda} \cap \tau_i - \operatorname{int}(\tau_j - clW_x) \neq \Phi$, since $\tau_i - \operatorname{int}(\tau_j - clW_x) \subseteq \tau_j - clW_x$, so we get that $U_{\lambda} \cap \tau_{i} - clW_{x} \neq \Phi$, then there exists $q \in U_{\lambda}$ and $q \in \tau_{i} - clW_{x}$. Therefore for each $\tau_i - open$ sets H_q containing q , $H_q \cap W_x \neq \Phi$, but U_{λ} is containing q , so $U_{\lambda} \cap W_x \neq \Phi$, which implies τ_i – open that $\Phi \neq U_{\lambda} \cap W_{x} \subseteq P_{\lambda} \cap W_{x},$ which contradict the hypothesis Thus $\lambda \in \Gamma / \{\lambda_1, \lambda_2, \dots, \lambda_n\}$.

Now using the above theorem and the fact that every ij-regular open is τ_i -open and every τ_j -open, ij-regular closed set is ij-semiopen set, we obtain the following corollaries : **Corollary 1.8**. Let $\Xi = \{F_{\lambda} : \lambda \in \Gamma\}$ be a collection of τ_j -open (ij-regular closed) subset of a bitopological space (X, τ_1, τ_2) . If Ξ is ij-P-locally finite, then Ξ is locally finite with respect to the topology τ_i .

Now by using the above theorem , corollary 1.8 and the definition 1.3 , we obtain the following corollary :

Corollary 1.9. A bitopological space (X, τ_1, τ_2) is $(\tau_i - \tau_j)$ paracompact with respect to the topology τ_i if and only if every τ_i -open cover of X has a τ_j -open refinement which is ij-p-locally finite.

Theorem 1.10. Let $\Xi = \{F_{\lambda} : \lambda \in \Gamma\}$ be a collection of subsets of a bitopological space (X, τ_1, τ_2) . Then

(a) Ξ is ij-P-locally finite if and only if $\{ij - pclF_{\lambda} : \lambda \in \Gamma\}$ is ij-P-locally finite ;

(b) If Ξ is ij-P-locally finite, then $\bigcup_{\lambda \in \Gamma} ij - pclF_{\lambda} = ij - pcl(\bigcup_{\lambda \in \Gamma} P_{\lambda});$

(c) Ξ is locally finite with respect to the topology τ_i if and only if the collection $\{ij - pclF_{\lambda} : \lambda \in \Gamma\}$ is locally finite with respect to the topology τ_i .

Proof . (a) Suppose that , Ξ is ij-P-locally finite . For each $x \in X$, there exists ijpreopen U_x containing x which meets only finitely many of the sets F_λ , say $F_{\lambda 1}, \ldots, F_{\lambda n}$. Since $F_{\lambda k} \subseteq ij - pclF_{\lambda k}$ for each k=1,2,, n, thus U_x meets $ij - pclF_{\lambda 1}, \ldots, ij - pclF_{\lambda n}$. Therefore $\{ij - pclF_{\lambda} : \lambda \in \Gamma\}$ is ij-P-locally finite.

Conversely. Let $x \in X$, there exists ij-preopen U_x containing x which meets only finitely many of the sets $ij - pclF_{\lambda}$. Say $ij - pclF_{\lambda 1}$,....., $ij - pclF_{\lambda n}$, we get that $U_x \cap ij - pclF_{\lambda k} \neq \Phi$ for each k =1,..., n. Let $q \in U_x$ and $q \in ij - pclF_{\lambda k}$, which implies that , for every ij-preopen set V_q such that $V_q \cap F_{\lambda k} \neq \Phi$, but U_x be ijpreopen containing q, so $U_x \cap F_{\lambda k} \neq \Phi$ for each k=1,..., n. Thus Ξ is ij-P-locally finite.

(b) Suppose, Ξ is ij-P-locally finite, which can be easily got $\bigcup_{\lambda \in \Gamma} ij - pclF_{\lambda} \subseteq ij - pcl(\bigcup_{\lambda \in \Gamma} P_{\lambda})$. On the other hand, let $q \in ij - pcl(\bigcup_{\lambda \in \Gamma} F_{\lambda})$, then

every ij-preopen V_q such that $V_q \cap (\bigcup_{\lambda \in \Gamma} F_{\lambda}) \neq \Phi$. By hypothesis, there exists ijpreopen U_q which meets only finitely many of the sets F_{λ} , say $F_{\lambda 1}$,...., $F_{\lambda n}$. Thus for each ij-preopen set V_q containing q, $V_q \cap (\bigcup_{k=1}^n F_{\lambda k}) \neq \Phi$, which implies that $q \in ij - pcl(\bigcup_{k=1}^{n} F_{\lambda k}) = \bigcup_{k=1}^{n} ij - pclF_{\lambda k} \text{, there exists h such that } q \in ij - pclF_{\lambda h}. \text{ Therefore}$ we get that $q \in \bigcup_{\lambda \in \Gamma} ij - pclF_{\lambda}$ and hence $\bigcup_{\lambda \in \Gamma} ij - pclF_{\lambda} = ij - pcl(\bigcup_{\lambda \in \Gamma} P_{\lambda})$.

(c) Suppose, Ξ is locally finite with respect to the topology τ_i , which implies that for each $x \in X$, there exists $\tau_i - open$ set U_x which meets only finitely many of the sets F_{λ} , say $F_{\lambda 1}$,...., $F_{\lambda n}$, but $F_{\lambda k} \subseteq ij - pclF_{\lambda k}$, we get that U_x which meets $ij - pclF_{\lambda 1}$,..., $ij - pclF_{\lambda n}$. Thus $\{ij - pclF_{\lambda} : \lambda \in \Gamma\}$ is locally finite with respect to the topology τ_i .

Conversely, let $x \in X$, then there exists $\tau_i - open$ set U_x which meets only finitely many of the sets $ij - pclF_{\lambda}$'s, say $ij - pclF_{\lambda 1}$,...., $ij - pclF_{\lambda n}$. Now choose a point $q \in U_x$

and $q \in ij - pclF_{\lambda k}$. For each k=1,2,...,n, therefore for each ij-preopen set V_q containing q such that $V_q \cap F_{\lambda k} \neq \Phi$, but $q \in U_x$, then we get U_x which meets only finitely many of the sets F_{λ} 's. Hence Ξ is locally finite with respect to the topology τ_i .

Definition 1.11 A function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \mu_1, \mu_2)$ is called :

- (1) ij-precontinuous if for each $V \in ij PO(Y)$, $f^{-1}(V) \in ij PO(X)$;
- (2) ij-strongly precontinuous if for each $V \in ij PO(Y), f^{-1}(V) \in \tau_i$;
- (3) ij-preclosed if for each $V \in ij PC(X)$, $f(V) \in ij PC(Y)$;
- (4) ij-strongly preclosed if for each $V \in \tau_i C(X)$, $f(V) \in ij PC(Y)$;
- (5) ij-preopen if for each $V \in ij PO(X)$, $f(V) \in ij PO(Y)$;
- (6) $(\tau_i \mu_i)$ continuous $((\tau_i \mu_i)$ open and $(\tau_i \mu_i)$ closed) if

 $f:(X,\tau_i) \to (Y,\mu_i) \text{ for } i=1,2 \text{ are } (\tau_1 - \mu_1) - \text{ continuous and}$ $(\tau_2 - \mu_2) - \text{continuous } ((\tau_1 - \mu_1) - \text{open}, (\tau_2 - \mu_2) - \text{open and} (\tau_1 - \mu_1) - \text{closed},$ $(\tau_2 - \mu_2) - \text{closed}).$

Lemma 1.12. Let $f:(X,\tau_1,\tau_2) \to (Y,\mu_1,\mu_2)$ be a function. Then

- (1) f is ij-preclosed if and only if for every $y \in Y$ and $P \in ij PO(X)$ such that $f^{-1}(y) \subset P$, there is $V \in ij PO(Y)$ such that $y \in V$ and $f^{-1}(V) \subset P$.
- (2) f ij-strongly preclosed if and only if for every $y \in Y$ and $P \in \tau_i$ which contains $f^{-1}(y)$, there is $V \in ij PO(Y)$ such that $y \in V$ and $f^{-1}(V) \subset P$.
- (3) If f be $(\tau_i \mu_i)$ continuous, $(\tau_i \mu_i)$ open function, then f is ij-preopen function.

Proposition 1.13 Let $f:(X, \tau_1, \tau_2) \to (Y, \mu_1, \mu_2)$ be a ij-precontinuous function. If $\Xi = \{F_{\lambda} : \lambda \in \Gamma\}$ is a ij-P-locally finite collection in Y, then $f^{-1}(\Xi) = \{f^{-1}(F_{\lambda}) : \lambda \in \Gamma\}$ is a ij-P-locally finite collection in X.

Proposition 1.14. Let $f:(X,\tau_1,\tau_2) \to (Y,\mu_1,\mu_2)$ be a ij-strongly precontinuous function. If $\Xi = \{F_{\lambda} : \lambda \in \Gamma\}$ is a ij-P-locally finite collection in Y, then $f^{-1}(\Xi) = \{f^{-1}(F_{\lambda}) : \lambda \in \Gamma\}$ is a locally finite collection with respect to the topology τ_i .

Definition 1.15 A subset A of a bitopological space (X, τ_1, τ_2) is called ij-strongly compact if for every cover of A by ij-preopen subsets of X has a finite subcover.

Proposition 1.16. Let $f:(X, \tau_1, \tau_2) \to (Y, \mu_1, \mu_2)$ be a ij-strongly closed function such that $f^{-1}(y)$ is compact relative to the topology τ_i for every $y \in Y$. If $\Xi = \{F_{\lambda} : \lambda \in \Gamma\}$ is a locally finite collection with respect to the topology τ_i , then $f(\Xi) = \{f(F_{\lambda}) : \lambda \in \Gamma\}$ is a ij-P-locally finite collection in Y.

Proposition 1.17. Let $f:(X, \tau_1, \tau_2) \to (Y, \mu_1, \mu_2)$ be a ij-preclosed function such that $f^{-1}(y)$ is ij-strongly compact relative to X for every $y \in Y$. If $\Xi = \{F_{\lambda} : \lambda \in \Gamma\}$ is a ij-P-locally finite collection in X, then $f(\Xi) = \{f(F_{\lambda}) : \lambda \in \Gamma\}$ is a ij-P-locally finite collection in Y.

2. ij-preparacompact spaces

In this section, we introduce the generalized paracompact and separation axioms using the notions of ij-preopen sets in bitopoogical spaces, and give some characterization of these types of spaces and study the relationships between them and other well known spaces.

Definition 2.1. A bitopological space (X, τ_1, τ_2) is called ij-preparacompact if every τ_i – open cover of X has a ij-P-locally finite ij-preopen refinement.

Definition 2.2. Let (X, τ_1, τ_2) be a bitopological space. The space X is said to be :

- (1) pair wise Hausdorff space if and only if for each distinct two points x, y in X, there exists two disjoint τ_i − open U and τ_j − open V such that x ∈ U and y ∈ V [11];
- (2) pair wise regular if and only if for each $\tau_i closed$ set F and $x \in X$, $x \notin F$, there are two disjoint $\tau_i - open$ U and $\tau_i - open$ V such that $F \subset U$, $x \in V$ [11];
- (3) pair wise P-regular if and only if for each $\tau_i closed$ set F and $x \in X$, $x \notin F$, there are two disjoint ij-preopen sets U and V, such that $x \in U$ and $F \subseteq V$;

- (4) pair wise P-normal if and only if whenever A and B are disjoint $\tau_i closed$ sets in X, there are disjoint ij-preopen sets U and V with $A \subseteq U$ and $B \subseteq V$;
- (5) pairwise $P T_1 space$ if for each two distincts points x and y in X, there are ij-preopen sets U and V in X such that $x \in U$ and $y \in V$;
- (6) pairwise $T_1 space$ if for each two distincts points x and y in X, there are $\tau_i open$ U and $\tau_i open$ V in X such that $x \in U$ and $y \in V$ [11];
- (7) pairwise $P T_3 space$ if it's pairwise P-regular $P T_1 space$;
- (8) pairwise $P T_4 space$ if it's pairwise P-normal $P T_1 space$.

Lemma 2.3 A bitopological space (X, τ_1, τ_2) is pairwise p-regular if and only if for each τ_i -open set U and $x \in U$, then there exists $P \in ij - PO(X)$ such that $x \in P \subseteq ij - pclP \subseteq U$.

Theorem 2.4. Every ij-preparacompact pairwise Hausdorff bitopological space (X, τ_1, τ_2) is pair wise p-regular.

Proof : Let A be a $\tau_i - closed$ and let $x \notin A$. For each $y \in A$, choose an $\tau_i - open$ U_y and $\tau_i - open$ H_x such that $y \in U_y$, $x \in H_x$ and $U_y \cap H_x = \Phi$, so we get that $x \notin ij - pclU_y$. Therefore the family $U = \{U_y : y \in A\} \cup \{X - A\}$ is an $\tau_i - open$ cover of x and so it has a ij-P-locally finite ij-preopen refinement Π . Put $V = \{H \in \Pi : H \cap A \neq \Phi\}$, then V is a ij-preopen set containing A and $ij - pclV = \bigcup \{ij - pclH : H \in \Pi \text{ and } H \cap A \neq \Phi\}$ (Theorem 1.10 (b)). Therefore U = X - ij - pclV is a ij-preopen set containing x such that U and V are disjoint subsets of X. Thus X is pairwise p-regular.

From the above theorem, the following corollaries are obtained :

Corollary 2.5 .Every ij-preparacompact pairwise Hausdorff bitopological space (X, τ_1, τ_2) is pair wise p-normal.

Corollary 2.6 .Every ij-preparacompact paiwise Hausdorff bitopological space (X, τ_1, τ_2) is

(a) paiwise $p - T_3 - space$;

(b) pairwise $p - T_4 - space$.

Theorem 2.7. Let (X, τ_1) and (X, τ_2) are regular spaces. Then (X, τ_1, τ_2) is ijpreparacompact if and only if every τ_i -open cover Ξ of X has a ij-P-locally finite ij-preclosed refinement Σ .

Proof : To prove necessity, let Ξ be $\tau_i - open$ cover of X. For each $x \in X$, we choose a member $U_x \in \Xi$ and by the regularity of (X, τ_1) and (X, τ_2) , an $\tau_i - open$ subsets V_x containing x such that $\tau_i - clV_x \subset U_x$. Therefore $\Psi = \{V_x : x \in X\}$ is an

 τ_i -open cover of X and so by hypothesis it has a ij-P-locally finite ij-preopen $\Omega = \{W_{\lambda} : \lambda \in \Gamma \}.$ Now, consider refinement, say the collection $ij - pcl\Omega = \{ij - pclW_{\lambda} : \lambda \in \Gamma\}$ as a ij-P-locally finite (Theorem 1.10 (a)) of ij- (X, τ_1, τ_2) .Since preclosed subsets of for every $\lambda \in \Gamma$ $ij - pclW_{\lambda} \subseteq ij - pclV_x \subseteq \tau_i - clV_x \subseteq U_x$ for some $U_x \in \Xi$, therefore $ij - pcl\Omega$ is a refinement of Ξ .

Conversely, let Ξ be an $\tau_i - open$ cover of X and Ψ be a ij-P-locally finite ijpreclosed refinement of Ξ . For each $x \in X$, choose $W_x \in ij - PO(X)$ such that $x \in W_x$ and W_x intersect at most finitely many members of Ψ . Let Σ be a ijpreclosed ij-P-locally finite refinement of $\Omega = \{W_x : x \in X\}$. For each $V \in \Psi$, let V' = X / H, where $H \in \Sigma$ and $H \cap V = \Phi$. Then $\{V' : V \in \Psi\}$ is a ij-preopen cover of X. Now, for each $V \in \Psi$, choose $U_V \in \Xi$ such that $V \subseteq U_V$, therefore the collection $\{U_V \cap V' : V \in \Psi\}$ is a ij-P-locally finite ij-preopen (Lemma 1.6 (a)) refinement of Ξ and thus (X, τ_1, τ_2) is ij-preparacompact.

Theorem 2.8 .Let A be a ij-regular closed subset of a ij-preparacompact bitopological space (X, τ_1, τ_2) . Then $(A, \tau_{1A}, \tau_{2A})$ is ij-preparacompact.

Proof : Let $\Psi = \{V_{\lambda} : \lambda \in \Gamma\}$ be an $\tau_i - open$ cover of A in $(A, \tau_{1A}, \tau_{2A})$. For each $\lambda \in \Gamma$, choose $U_{\lambda} \in \tau_i$ such that $V_{\lambda} = A \cap U_{\lambda}$, then the collection $\Xi = \{U_{\lambda} : \lambda \in \Gamma\} \cup \{X - A\}$ is an $\tau_i - open$ cover of the ij-preparacompact space X and so it has a ij-P-locally finite ij-preopen refinement. Say $\Psi = \{W_{\delta} : \delta \in \Delta\}$, then by Lemma 1.6(b) and since $ij - RO(X) \subseteq ij - SO(X)$, the collection $\{A \cap W_{\delta} : \delta \in \Delta\}$ is a ij-P-locally finite ij-preopen refinement of Ψ in $(A, \tau_{1A}, \tau_{2A})$. This completes the proof.

Theorem 2.9 .Let A and B be subsets of a bitopological space (X, τ_1, τ_2) such that $A \subseteq B$.

- (1) If $B \in ij PO(X)$ and A is ij-preparacompact relative to $(B, \tau_{1B}, \tau_{2B})$, then A is ij-preparacompact relative to (X, τ_1, τ_2) .
- (2) If $B \in ij SO(X)$ and A is ij-preparacompact relative to (X, τ_1, τ_2) , then A is ij-preparacompact relative to $(B, \tau_{1B}, \tau_{2B})$.

Proof : (1) Let $\Xi = \{U_{\lambda} : \lambda \in \Gamma\}$ be an τ_i -open cover of A in X. Then the collection $\Xi_B = \{B \cap U_{\lambda} : \lambda \in \Gamma\}$ is an τ_{iB} -open cover of A in $(B, \tau_{1B}, \tau_{2B})$. Since A is ij-preparacompact relative to $(B, \tau_{1B}, \tau_{2B})$. Hence Ξ_B has a ij-P-locally finite ij-preopen refinement Ω_B in $(B, \tau_{1B}, \tau_{2B})$. Since $B \in ij - PO(X)$ and $U_{\lambda} \in \tau_i$, $\forall \lambda \in \Gamma$, so by lemma 1.6 (a), $B \cap U_{\lambda} \in ij - PO(X)$, $\forall \lambda \in \Gamma$. Then the

collection Ω_B is a ij-P-locally finite ij-preopen refinement of Ξ in (X, τ_1, τ_2) . Therefore A is a ij-preparacompact relative to (X, τ_1, τ_2) .

(2) Let $\Psi = \{V_{\lambda} : \lambda \in \Gamma\}$ be an $\tau_{iB} - open$ cover of A in $(B, \tau_{1B}, \tau_{2B})$. For every $\lambda \in \Gamma$, choose $U_{\lambda} \in \tau_i$ such that $V_{\lambda} = B \cap U_{\lambda}$. Then the collection $\Xi = \{U_{\lambda} : \lambda \in \Gamma\}$ is an $\tau_i - open$ cover of A relative to (X, τ_1, τ_2) and so it has a ij-P-locally finite ij-preopen refinement of Ξ in (X, τ_1, τ_2) , say Σ . Thus, by lemma 1.6 (b), the collection $\Sigma_B = \{P \cap B : P \in \Sigma\}$ is a ij-P-locally ij-preopen refinement of Ξ in $(B, \tau_{1B}, \tau_{2B})$.

Corollary 2.10. Let A be a subset of a bitopological space (X, τ_1, τ_2) .

- (1) If $A \in ij PO(X)$ and the subspace $(A, \tau_{1A}, \tau_{2A})$ is ij-preparacompact, then A is ij-preparacompact relative to (X, τ_1, τ_2) .
- (2) If $A \in ij SO(X)$ and A ij-preparacompact relative to (X, τ_1, τ_2) , then the subspace $(A, \tau_{1A}, \tau_{2A})$ is ij-preparacompact.

Theorem 2.11 If $f:(X,\tau_1,\tau_2) \to (Y,\mu_1,\mu_2)$ be $(\tau_i - \mu_i)$ -continuous , $(\tau_i - \mu_i)$ -open, ij-strongly ij-preopen and surjective function such that $f^{-1}(y)$ is ijstrongly compact relative to (X, τ_1, τ_2) for every $y \in Y$. If (X, τ_1, τ_2) is ijpreparacompact, then so is (Y, μ_1, μ_2) .

Proof : Let $\Psi = \{V_{\lambda} : \lambda \in \Gamma\}$ be an $\mu_i - open$ cover of (Y, μ_1, μ_2) . Since f is $(\tau_i - \mu_i)$ -continuous, the collection $\Xi = f^{-1}(\Psi) = \{f^{-1}(V_{\lambda}) : \lambda \in \Gamma\}$ is an τ_i -open cover of the ij-preparacompact (X, τ_1, τ_2) space and so it has a ij-P-locally finite ij-preopen refinement, say Ω . Since f is $(\tau_i - \mu_i)$ -continuous and $(\tau_i - \mu_i)$ -open, then by lemma 1.12 (3), f is ij-preopen function and so by Proposition 1.17, the collection $f(\Omega)$ is a ij-P-locally finite ij-preopen refinement of Ψ . The result is proved.

Theorem 2.12 . Let $f:(X,\tau_1,\tau_2) \to (Y,\mu_1,\mu_2)$ be a $(\tau_i - \mu_i)$ -closed ijprecontinuous surjective function such that $f^{-1}(y)$ is τ_i -compact in (X,τ_i) for every $y \in Y$. If (Y,μ_1,μ_2) is ij-preparacompact, then so is (X,τ_1,τ_2) .

Proof : Let $\Xi = \{U_{\lambda} : \lambda \in \Gamma\}$ be an $\tau_i - open$ cover of a bitopological space (X, τ_1, τ_2) . For each $y \in Y$, Ξ is an $\tau_i - open$ cover of the $\tau_i - compact$ subspace $f^{-1}(y)$ and so there exists a finite subcover Γ_y of Γ such that $f^{-1}(y) \subseteq \bigcup_{\lambda \in \Xi_y} U_{\lambda}$. Put $U_y = \bigcup_{\lambda \in \Gamma_y} U_{\lambda}$ is $\tau_i - open$ in (X, τ_i) . As f is a $(\tau_i - \mu_i)$ -closed function, for each $y \in Y$, there exists $\mu_i - open$ subset V_y of Y such that $y \in V_y$ and $f^{-1}(V_y) \subseteq U_y$. Then the collection $\Psi = \{V_y : y \in Y\}$ is an $\mu_i - open$ cover of the ij-preparacompact

space (Y, μ_1, μ_2) and so it has a ij-P-locally finite ij-preopen refinement, say $\Omega = \{ W_{\gamma} : \gamma \in \Delta \}$. Since f is ij-precontinuous , the collection $f^{-1}(\Omega) = \{ f^{-1}(W_{\gamma}) : \gamma \in \Delta \}$ is a ij-preopen ij-P-locally finite cover of (X, τ_1, τ_2) such that for each $\gamma \in \Delta$, $f^{-1}(W_{\gamma}) \subseteq U_{\gamma}$ for some $y \in Y$. Finally , the collection $\{ f^{-1}(W_{\gamma}) \cap U_{\lambda} : \gamma \in \Delta , \lambda \in \Gamma_{\gamma} \}$ is a ij-P-locally finite ij-preopen refinement of Ξ . Thus (X, τ_1, τ_2) is ij-preparacompact.

3.Conclsions

We define the paracompact bitopological spaces using the ij-preopen sets. And proved some properties and relations with some other spaces.

References

- [1] M. H. Stone, 1937." Applications of the theory of Boolen rings to general topology ", Trans. Amer. Math. Soc., 41; 375-381.
- [2] N. Levine , 1963." Semi open sets and continuity in topological spaces ", Amer. MathMonthly, 70; 36-41.
- [3] S. G. Crossley and S.K. Hildebrand, 1971." Semi closure ", Texas J. Sci., 22; 99-112.
- [4] A. S. Mashhour, M.E. Abd EL-Monsef and S.N. EL-Deeb, 19821."On precontinuous and weak precontinuous mappings ", Proc. Math. Phys. Soc. Egypt, 53 ; 47-53.
- [5] A. R. Singal and S. P. Arya, 1971."On Pairwise Almost Regular spaces ", Glasnik Math., 6 ;335-343 .
- [6] B. Shanta, 1981. "Semi open sets, semi continuity and semi open mappings in bitopological spaces", Bull. Calcatta Math. Sco., 73;237-246.
- [7] S. Sampath Kumar, 1997." On a Decomposition of pairwise continuity ", Bull. Cal Math. Soc. , 28(), pp. 441-446.
- [8] J. Dieudonne, 1944." Une generalization des spaces compacts ", J. Math. Pures. Appl. 23;65-76.
- [9] Martin M. K., 2001."A note on Raghavan Reilly's Pair wise paracompactness ", Internat. J. Math. And Math. Sci. Vol. 24, No. 2; 139-143.
- [10] K. AL-Zoubi and S. AL-Ghour," On P3- paracompact spaces ", Int. J. Math. And Math. Sci. Vol. 2007 (2007), Art. ID 80697, PP. 1-16.
- [11] J.C. Kelly, 1963" Bitopological Spaces", Proc. London Math. Soc., 3 ; PP. 17-

89.