Characterizations of Continuity and Compactness with Respect to Weak Forms of *w***-Open Sets**

Luay A. Al-Swidi

Mathematics Department College of Education Ibn-Hayaan, University of Babylon

Mustafa. H. Hadi

Mathematics Department College of Education Ibn-Hayaan, University of Babylon

Abstract

In this paper we use the weak ω - open sets defined by T. Noiri, A. Al-Omari, M. S. M. Noorani in [5], to define new weak types of continuity and compactness and prove some theorems about them.

Keywords: Weak open set, weak continuity, weak compactness, \mathcal{U} -open set.

1. Introduction and Preliminaries

Through out this paper, (X,T) stands for topological space. Let (X,T) be a topological space and A a subset of X. A point x in X is called **condensation point** of A if for each U in T with x in U, the set $U \cap A$ is uncountable [3]. In 1982 the ω -closed set was first introduced by H. Z. Hdeib in [3], and he defined it as: A is ω -closed if it contains all its condensation points and the ω -open set is the complement of the ω -closed set. Equivalently. A subset W of a space (X,T), is ω -open if and only if for each $x \in W$, there exists $U \in T$ such that $x \in U$ and $U \setminus W$ is countable. The collection of all ω open sets of (X,T) denoted T_{ω} form topology on X and it is finer than T. Several characterizations of ω -closed sets were provided in [1, 3, 4, 6]. For a subset A of X, the closure of A and the ω -interior of A will be denoted by cl(A) and $int_{\omega}(A)$ respectively. The ω - interior of the set A defined as the union of all ω - open sets contained in A.

In 2009 in [5] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced and investigated new notions called $\alpha - \omega$ - open, $pre - \omega$ - open, $b - \omega$ - open and $\beta - \omega$ - open sets which are weaker than ω -open set. Let us introduce these notions in the following definition:

Definition 1.1. [5] A subset *A* of a space *X* is called:

- 1. $\alpha \omega open$ if $A \subseteq int_{\omega}(cl(int_{\omega}(A)))$, the complement is called $\alpha \omega closed$ set.
- 2. $pre \omega open$ if $A \subseteq int_{\omega}(cl(A))$, the complement is called $pre \omega closed$ set.
- 3. $b \omega open$ if $A \subseteq int_{\omega}(cl(A)) \bigcup cl(int_{\omega}(A))$, the complement is called $b \omega closed$ set.
- 4. $\beta \omega open$ if $A \subseteq cl(int_{\omega}(cl(A)))$, the complement is called $\beta \omega closed$ set.

Characterizations of Continuity and Compactness with Respect to Weak Forms of ω -Open Sets 578

In [5] T. Noiri, A. Al-Omari, M. S. M. Noorani introduced relationships among the weak open sets above by the lemma below:

Lemma 1.2. [5] In any topological space:

- **1.** Any open set is ω -open.
- 2. Any ω -open set is $\alpha \omega$ -open.
- 3. Any $\alpha \omega$ open set is $pre \omega$ open.
- 4. Any $pre \omega$ open set is $b \omega$ open.
- 5. Any $b \omega$ open set is $\beta \omega$ open.

The converse is not true [5].

Remark 1.3. [5] The intersection of two $pre - \omega$ -open, (resp. $b - \omega$ -open and $\beta - \omega$ -open) sets need not be $pre - \omega$ -open, (resp. $b - \omega$ - open and $\beta - \omega$ -open) sets.

Lemma 1.4. [5] The intersection of an $\alpha - \omega$ -open (resp. $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) subset of any topological space and an open subset is $\alpha - \omega$ -open (resp. $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) set.

Remark 1.5. The union of an $\alpha - \omega$ -closed (resp. $pre - \omega$ -closed, $b - \omega$ - closed and $\beta - \omega$ -closed) subset of any topological space and a closed subset is $\alpha - \omega$ -closed (resp. $pre - \omega$ - closed, $b - \omega$ - closed and $\beta - \omega$ - closed) set.

Theorem 1.6. [5] If $\{A_{\alpha} : \alpha \in \Delta\}$ is a collection of $\alpha - \omega$ -open (resp. $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) subsets of the topological space (X,T) then $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is $\alpha - \omega$ -open (resp. $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) set.

Corollary 1.7. If $\{A_{\alpha} : \alpha \in \nabla\}$ is a collection of $\alpha - \omega$ -closed (resp. $pre - \omega$ -closed, $b - \omega$ -closed and $\beta - \omega$ -closed) subsets of the topological space (X,T), then $\bigcap_{\alpha \in \nabla} A_{\alpha}$ is $\alpha - \omega$ -closed (resp. $pre - \omega$ -closed, $b - \omega$ -closed and $\beta - \omega$ -closed) set.

Definition 1.8. [5] A space (X,T) is called a *door space* if every subset of X is either open or closed.

Example 1.9. The space (X,T) for $X = \{a,b\}$, and $T = \{X, \phi, \{a\}\}$, is a door space.

Lemma 1.10. [5] If (X,T) is a door space, then every $pre - \omega$ - open set is ω -open.

Theorem 1.11. Let A be a $\beta - \omega$ -open set in the topological space (X,T), then A is $b - \omega$ -open, whenever X is door space.

Proof:

Let A be a $\beta - \omega$ - open subset of X. If A is open then by Lemma 1.4 it is $b - \omega$ - open. Then if A is closed we get $A \subseteq cl(\operatorname{int}_{\omega}(A) \subseteq (\operatorname{int}_{\omega}(cl(A)) \bigcup cl(\operatorname{int}_{\omega}(A)))$. Thus A is $b - \omega$ - open set in X X

Definition 1.12. [5] A subset *A* of a space *X* is called:

1. An $\omega - t$ -set, if $int(A) = int_{\omega}(cl(A))$.

2. An
$$\omega - B - set$$
, if $A = U \cap V$, where U is an open set and V is an $\omega - t - set$.

3. An $\omega - t_{\alpha}$ -set, if $int(A) = int_{\omega}(cl(int_{\omega}(A)))$.

- 4. An ωB_{α} -set if $A = U \bigcap V$, where U is an open set and V is an ωt_{α} -set.
- 5. An ω -set if $A = U \cap V$, where U is an open set and $int(V) = int_{\omega}(V)$.

Definition 1.13. Let (X,T) be topological space. It said to be satisfy

- 1. The ω -condition if every ω -open set is ω -set.
- 2. The ωB_{α} condition if every $\alpha \omega$ open set is ωB_{α} set.
- The ω-B-condition if every pre-ω-open is ω-B-set. Now let us introduce the following lemma from [5].
 Lemma 1.14. [5] For any subset A of a space X, We have
- 1. A is open if and only if A is ω open and ω -set.
- 2. A is open If and only if A is $\alpha \omega$ open and ωB_{α} -set.
- 3. A is open if and only if A is $pre \omega$ open and ωB set.

2. Decomposition of Continuity

Let us now use the weak ω -open sets to define a decomposition of continuity. Also we introduce some theorems about this notion.

Definition 2.1. A function $f:(X,\sigma) \to (Y,\tau)$ is called ω -continuous (resp. $\alpha - \omega$ -continuous, $pre - \omega$ -continuous, $b - \omega$ -continuous and $\beta - \omega$ -continuous), if for each $x \in X$, and each ω -open (resp. $\alpha - \omega$ -open, $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) set V containing f(x), there exists an ω -open (resp. $\alpha - \omega$ -open, $pre - \omega$ -open, $b - \omega$ -open, $b - \omega$ -open, $\beta - \omega$ -open, set U containing x, such that $f(U) \subset V$.

Proposition 2.2. A function $f:(X,\sigma) \to (Y,\tau)$ is ω -continuous (resp. $\alpha - \omega$ -continuous, $pre - \omega$ -continuous, $b - \omega$ -continuous and $\beta - \omega$ -continuous) if and only if for each ω -open (resp. $\alpha - \omega$ -open, $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) set V in Y, $f^{-1}(V)$ is ω open (resp. $\alpha - \omega$ -open, $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) set in X.

Proof:

Let f be an ω -continuous map from X to Y, and let $x \in X$, and V be an ω -open subset of Y containing f(x). We must show that $f^{-1}(V)$ is ω -open subset of X containing x, let $x \in f^{-1}(V)$, then by the ω -continuity of f we can find an ω -open set U in X and containing x, such that $f(U) \subset V$, then $U \subset f^{-1}(V)$, which is true for any $x \in f^{-1}(V)$. This implies $f^{-1}(V)$ is ω - open subset of X. For the opposite side, let us assume that the inverse image of any ω -open set is also an ω -open to prove f is ω -continuous map. Let $x \in X$ and let V be an ω -open subset of Y containing f(x), by the hypothesis $f^{-1}(V)$ is ω -open subset of X, so for any $x \in f^{-1}(V)$, $f(f^{-1}(V)) \subset V$, and f is ω -continuous. By the same way we can prove the other cases X

Theorem 2.3. Let (X, σ) and (Y, τ) be two topological spaces such that X satisfies the $\omega - B_{\alpha}$ -condition, and $f:(X, \sigma) \to (Y, \tau)$ be a map. If f is $\alpha - \omega$ -continuous then it is ω -continuous.

Proof:

Let $f:(X,\sigma) \to (Y,\tau)$ be an $\alpha - \omega$ -continuous, to prove it is ω -continuous, let $x \in X$ and V be an ω -open (so it is $\alpha - \omega$ -open) set containing f(x). Since f is $\alpha - \omega$ -continuous there exists an $\alpha - \omega$ -open subset U of X containing x such that $f(U) \subset V$. Then since X satisfies the $\omega - B_{\alpha}$ -condition we have U is an ω -open of X containing x such that $f(U) \subset V$. This implies f is ω -continuous X

Theorem 2.4. Let (X, σ) and (Y, τ) be two topological spaces such that X is door space, and $f: (X, \sigma) \to (Y, \tau)$ be a map.

1. If f is $pre - \omega$ - continuous then it is ω -continuous.

Characterizations of Continuity and Compactness with Respect to Weak Forms of ω -Open Sets 580

2. If f is $\beta - \omega$ - continuous then it is $b - \omega$ - continuous.

Proof:

By the same way as the proof of Theorem 2.3, using Lemma 1.2, Lemma 1.10 and Theorem 1.11, we can prove this theorem X

Theorem 2.5. Let (X, σ) and (Y, τ) be two topological spaces that satisfy the ω -condition then the map $f: (X, \sigma) \to (Y, \tau)$ is continuous if and only if it is ω -continuous.

Proof:

Let be $f:(X,\sigma) \to (Y,\tau)$ a continuous map, $x \in X$ and V be an ω - open set in Y and containing f(x). Since X satisfy ω -condition, so V is also open in Y. And by the continuity of f there is an open set U (also it is ω - open) with $f(U) \subset V$. For the converse let f be an ω -continuous map and V be an open set in Y and containing f(x), so it is also ω -open and by the ω - continuity of f, there is an ω -open set U in X containing x with $f(U) \subset V$, and since X satisfies the ω -condition U is an open set therefore f is continuous X

Remark 2.6. Theorem 2.5. is not true in general. It mean if $f:(X,\sigma) \to (Y,\tau)$ is ω -continuous, then it is not necessarily continuous. As we see in the following example.

Example 2.7. Let $X = \{a, b, c\}$, $\sigma = \{\phi, X, \{c\}\}$, $Y = \{d, e, f\}$, $\tau = \{\phi, Y, \{d\}\}$, and let $f: (X, \sigma) \to (Y, \tau)$ be a map defined by f(a) = f(b) = d, f(c) = e.f is ω -continuous but not continuous.

Note that since X and Y are countable, so any subset of them is ω -open. If x = a, we have f(x) = d. $V_1 = \{d\}, V_2 = \{d, e\}, V_3 = \{d, f\}$, and $V_4 = Y$ are ω -open sets in Y containing f(x), so there exist $U_1 = \{a, b\}, U_2 = \{a, c\}, U_3 = \{a\}$ and $U_4 = X$ such that $f(U_1) = V_1$, $f(U_2) = V_2$, $f(U_3) = V_3$ and $f(U_4) = V_4$. Similarly for x = b, and x = c, Therefore f is ω -continuous map.

Next f is not continuous. Let x = b, f(x) = d if $V = \{d\}$, then when U=X, we have $f(U) = \{d, e\} \not\subset \{d\} = V$. Hence f is not continuous map.

Theorem 2.8. Let (X,σ) and (Y,τ) be two topological spaces that satisfy the $\omega - B_{\alpha}$ condition then the map $f:(X,\sigma) \to (Y,\tau)$ is continuous if and only if it is $\alpha - \omega$ -continuous.

Theorem 2.9. Let (X, σ) and (Y, τ) be two topological spaces that satisfy the ω -B-condition then the map $f: (X, \sigma) \to (Y, \tau)$ is continuous if and only if it is $pre - \omega$ -continuous.

Theorem 2.10. Let (X, σ) and (Y, τ) be two door topological spaces and $f: (X, \sigma) \to (Y, \tau)$ be a map. Then

- 1. *f* is pre - ω continuous if and only if it is ω continuous.
- 2. *f* is $\beta \omega$ continuous if and only if it is b- ω continuous.

Proof of (1):

Let f be a pre- ω -continuous, and let V be an ω -open set in Y and containing f(x), therefore it is $pre-\omega$ -open and since f is $pre-\omega$ -continuous, there is a pre- ω -open set U in X containing x and $f(U) \subset V$. Since X is a door space U is also an ω -open set. For the converse let f be an ω -continuous map and V be a pre- ω -open set in Y. Then since Y is door space we get Vis ω -open, and by the ω -continuity of f there exists an ω -open set U in X containing x (also pre- ω -open) with $f(U) \subset V$. And so f is a ω -continuous. Similarly we can prove (2) X

3. Weak ω – Compactness

In this article we shall introduce weak ω – compactness. It is defined that every cover by such weak open sets contains a finite subcover. So let us state new definitions for the weak new types of ω – compact sets, and prove several rather simple theorems about it.

Definition 3.1. Let X be a topological space. We say that a subset A of X is ω -compact [2] (resp. $\alpha - \omega$ -compact, $pre - \omega$ -compact, $b - \omega$ -compact and $\beta - \omega$ -compact) if for each cover of ω -open (resp. $\alpha - \omega$ -open, $pre - \omega$ -open, $b - \omega$ -open and $\beta - \omega$ -open) sets from X contains a finite sub cover for A.

Theorem 3.2. In any topological space, every $\beta - \omega$ – compact set is compact.

Proof :

Let X be a topological space, and let A be a $\beta - \omega$ -compact subset of X, to prove A is compact, let C be an open cover for A. Since we can consider C as a cover of $\beta - \omega$ -open sets by lemma 1.2 and A is $\beta - \omega$ -compact subset of X. Then C contains a finite sub cover, Thus X is compact set.

Theorem 3.4. Let (X,T) be a topological space

- 1. If (X,T) is door space, then any \mathscr{A} -compact set is pre- ω -compact.
- 2. If (X,T) is door space, then any b- ω -compact set is $\beta \omega$ -compact.

3. If (X,T) satisfies the ω -condition, then any compact set is ω -compact.

4. If (X,T) satisfies the $\omega - B_{\alpha}$ condition, then any compact set is $\omega - \alpha$ -compact.

5. If (X,T) satisfies the ω -B-condition, then any compact set is pre- ω - compact.

Proof:

1. Let X be a topological door space, and let A be an ω -compact subset of X, and C be a cover of pre- ω - open subsets of X. Since X is a door space so we can consider C as a cover of ω -open sets. And by the ω -compactness of X, C contains a finite sub cover of pre- ω -open sets. Hence A is pre- ω -compact.

Similarly we can prove (2).

3. Let X be a topological space satisfies the ω -condition, and A be a compact subset of X, to prove A is ω - compact, let C be a cover of ω -open sets for A. Since X satisfies the ω - condition, we can consider C as a cover of open sets and by the compactness of A, C contains a finite subcover of open(also ω -open) sets for A. This implies X is ω -compact. Similarly we can prove (4) and (5) X

Theorem 3.5. An ω -closed (resp. $\alpha - \omega$ -closed, $pre - \omega$ -closed, $b - \omega$ -closed and $\beta - \omega$ -closed) sub set of ω - compact (resp. $\alpha - \omega$ -compact, $pre - \omega$ -compact, $b - \omega$ -compact and $\beta - \omega$ -compact) subspace is $c\omega$ -ompact (resp. $\alpha - \omega$ -compact, $pre - \omega$ -compact, $pre - \omega$ -compact, $b - \omega$ -compact and $\beta - \omega$ -compact).

Proof:

Let *Y* be an \mathcal{O} -compact subspace of the topological space *X*, and let *F* be an \mathcal{O} -closed subset of *Y*. Let $C = \{G_{\lambda}, \lambda \in \Lambda\}$ be a cover of $\circ \omega$ -open sets for *F*. Then $C \cup (Y \setminus F = D)$ is a cover of ω -open sets for *Y*. Since *Y* is ω -compact there is a finite subcover D' of *D* for *Y*, and hence without $Y \setminus F$, a cover for *F* (because *F* and $Y \setminus F$ are disjoint). So we have shown that a finite sub collection of *C* cover *F*. Thus *F* is ω -compact. Similarly we can prove the other cases X

Theorem 3.6. Let $f: X \to Y$ be an ω -continuous (resp. $\alpha - \omega$ -continuous, pre- ω -continuous, b- ω -continuous, and $\beta - \omega$ - continuous) map from the ω -compact (resp. $\alpha - \omega$ -compact, pre- ω - compact, $b - \omega$ - compact, and $\beta - \omega$ - compact) space X onto a topological

Characterizations of Continuity and Compactness with Respect to Weak Forms of ω -Open Sets 582

space Y. Then Y is ω -compact (resp. $\alpha - \omega$ -compact, $pre - \omega$ - compact, $b - \omega$ - compact and $\beta - \omega$ - compact) space.

Proof:

Let $f: X \to Y$ be an ω -continuous map from the ω -compact space X on to Y. Let $\{Y_{\lambda}, \lambda \in \Lambda\}$ be a cover of ω - open sets for Y, then since f is ω -continuous map so $\{f^{-1}(Y_{\lambda}), \lambda \in \Lambda\}$ is a cover of ω -open sets for X. Since X is ω -compact so it has a finite sub cover $\{f^{-1}(Y_{\lambda_i}): i = 1, 2, \dots, n\}$. Then by the surjection of f we get $\{Y_{\lambda_i}: i = 1, 2, \dots, n\}$ is an ω -open cover for Y. Hence Y is ω -compact. With a simple modification to that prove one can prove the other cases X

References

- [1] A. Al-Omari and M. S. M. Noorani "*Regular generalized* ω *-closed sets*", I nternat. J. Math. Math. Sci., vo. 2007. Article ID 16292, 11 pages, doi: 10.1155/2007/16292 (2007).
- [2] A. Al-Omari and M. S. M. Noorani," $Contra \omega continuous$ and almost contra $\omega continuous$ ", I nternat. J. Math. Math. Sci., vo. 2007. Article ID40469,13 pages. doi: 10.1155/2007/16292 (2007).
- [3] H. Z. Hdeib, " *ω*-closed mappings", Rev. Colomb. Mat. 16 (3-4): 65-78 (1982).
- [4] H. Z. Hdeib, " *ω*-continuous functions", Dirasat 16, (2): 136-142 (1989).
- [5] T. Noiri, A. Al-Omari, M. S. M. Noorani", *Weak forms of ω-open sets and decomposition of continuity*", E.J.P.A.M.2(1): 73-84 (2009).
- [6] T. Noiri, A. Al-Omari and M. S. M. Noorani," *Slightly* ω *continuous functions*", Fasciculi Mathematica 41: 97-106 (2009).