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ABSTRACT 
The effect of base temperature variation on the heat transfer from unsteady state annular 
heat sink of cooling microelectronic device. Three types of the base temperature variation 
equations are taken in the present study. The Sine wave variation, Cosine wave variation 
& exponential variation of the base temperature. The finite element technique based on 
Galerkin method with axisymmetric rectangular elements is used in the present analysis. 
The base temperature variation effects on the effectiveness & the efficiency of the heat 
sink are studied during the present research. We were taken the base temperature is 
depends on the time & the height of the heat sink. A Quick Basic computer program were 
performed on a high performance PC & some typical results are plotted in graphical 
forms. These plots give the effectiveness & efficiency of annular heat sink as a function 
of the dimensionless time (Fourier no.) with different forms of base temperature. The 
exponential equation for the base temperature along for heat sink height will produce 
high temperature peak value compared with the others (Sine and Cosine), while Cosine 
wave produce high amplitude than Sine wave for the heat sink height. 
 

  الخلاصة
) heat sink(خلال مستقبل حراري  الغير مستقرةِانتقال الحراره على القاعدة درجةِ الحرارة تغير لقد تم دراسة 
و موجةِ الجيبَ دالة  .درجة حرارة القاعدهمعادلاتِ من  ثلاثة أنواعِ  تم دراسة,  في الدراسةِ الحاليةِ. محيطي الشكل

استخدمت خلال البحث طريقة  .القاعدةدرجةِ الحرارة سية اخذت خلال تغير وآذلك الدالة الا جيبِ تمامالموجةِ 
مع استخدام  عناصر مستطيله و ) Galerkin(بالاعتماد على طريقة ) Finite Elements(العناصر المحدده 

ث تم اعتبار تم دراسة تاثير تغير المستقبل الحراري على آل من الكفاءه و الفاعلية المستقبل الحراري ، حي. متناظره
و ) Quick Basic(لقد تم آتابة برنامج بلغة . درجة حراره القاعده تتناسب مع الزمن و وارتفاع المستقبل الحراري

هذه المخططات . باستعمال حاسبة ذات آفاءه عالية ، بعض النتائج تم تنظيمها و تحويلها الى مخططات و رسوم
درجةِ الحرارة الدالة الاسية لتغير  .وقت و تغير درجة حرارة القاعدهتوضح فاعلية و آفاءه المستقبل الحراري مع ال

جيبِ الموجةِ و موجةِ الجيبَ دالة مقارنتاً مع  درجةِ الحرارةارتفاع المستقبل الحراري تنتج اعلى قيمة ل علىالقاعدة 
  .جةِ الجيبَمومقارنتاً مع دالة  درجةِ الحرارةتنتج اعلى قيمة ل جيبِالموجةِ بينما دالة ,  تمام

NOMENCLATURES 
Symbol Description Unit Symbol Description Unit 
A Cross section area m2 [C] Elemental capacity matrix - 
k Thermal conductivity W/m°C [N] Shape function vector - 
T Temperature K [K] Elemental stiffness matrix - 
t Time Sec [N*] Unsteady shape function vector - 
Z  Longitudinal coordinate (Z- axis) m {R} Residual vector - 
r Longitudinal coordinate (r- axis) m [W] Weighted function - 

S Local coordinate in longitudinal direction m [Km] Elemental stiffness matrix due to 
boundary condition - 

h The average heat transfer coefficient W/m2 °C L Extended surface length m 
C Heat  Capacity  q Heat transfer rate W 
Greek Symbols 
α Thermal diffusivity m2/s η Overall efficiency of extended surface - 
ε Extended surface effectiveness  - ρ Density Kg/m3 
Subscript 
c Average value between two adjustment values o Initial 
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INTRODUCTION 
Annular heat sinks are used extensively in heat exchanger devices to increase the heat 
transfer rate from heat source for a given temperature difference or to decrease the 
temperature difference between the heat source & the heat sink for a given heat flow rate. 
The interesting of used annular heat sinks in many thermal engineering field, such as 
cooling components in microelectronic package, air conditioning heat exchanger, where 
using heat sink, thermal analysts have succeeded in designing more compact & efficient 
heat transfer system. A schematic of the annular heat sink that used in the present study is 
shown in figure (1) in horizontal & vertical orientation. The heat sink consists of (Nf) 
identical fins with a centrally located circular support cylinder. Each fin has a fin 
thickness (tf), an outer radius (Ro), and an inner radius (Ri). Adjacent fins are separated 
by a distance (bf) & the overall length of the heat sink is (L).  
Convection heat transfer from annular heat sinks can be found in the open literature. 
Several solutions to the problem of steady condition within in annular fin of constant 
thickness have been presented [1] & [2]. Edwards and Chaddock, [3], discussed the heat 
transfer from annular heat sink experimentally. M.M.Yovanovich [4], used a simplified 
solution for annular fin of constant thickness with boundary conditions of third kind 
(Robin condition) applied to the fin base, sides & end. Sushanta K. Mitra, [5], developed 
a simplified & accurate technique by means of resistance method for determining the fin 
resistance of constant thickness annular fin with base contact resistance & end cooling. 
C.S.Wang, [6], studied the natural convection heat transfer from horizontal isothermal 
annular heat sink, he treat the inner & outer surface separately and establish the general 
model which account for the effects of all surfaces of the heat sink.. 
The objective of the present research is study the heat transfer from annular heat sink of 
cooling microelectronic system by using finite element techniques. The variation of base 
temperature is studied here & we assumed base temperature is varied with time & the 
heat sink height. Then we checked the traditional assumption of the heat sink of constant 
base temperature. 
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Figure (1): the annular heat sink for PC 
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MATHEMATICAL MODELLING             
Consider constant thickness annular heat sink, as shown schematically in figure (1) .The 
analysis is based the following assumptions: 
All the physical properties for the annular heat sink materials are assumed to be constant. 
There is a perfect contact between the wall and the extended surfaces. 
The environment heat transfer coefficient (h) is proportional with the film temperature 
(the average temperature between the fluid & surface temperatures).  
The differential equation for the transient temperature distribution is formulated from a 
consideration of heat balance over the differential element (∆z, ∆r), taken into account 
the assumptions of the problem. Hence, the differential equation for a two dimensional 
unsteady-state (transient) heat flows can be written as following: 
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The Initial & boundary conditions for the case study as following: 
The initial condition is given by 

0tatT)0,Z,r(TT baseinitial === ………….…....……...……….……(2)                               
Because of symmetry of boundary conditions of the third kind which are imposed over 
the fin base, sides & end , then the boundary conditions as following:  

At     Z = 0 & (Ri - tb) < r <  Ri  0 
Z
Tk =
∂
∂    ………………..…….….………………….(3) 
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Z
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−     …..………………….…....…....(4) 
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−     ……...……........(7) 

At     r = Ri & 0 < Z < L    baseTT =                        ….……..………………………….(8) 
In our study, we have taken the Tbase variable as following, [7]: 
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GALERKIN FINITE ELEMENT TECHNIQUES 
To calculate the efficiency & the effectiveness, firstly, we must calculate the temperature 
distribution throughout the annular heat sink. The weighted residual finite element based 
on Galerkin method with axisymmetric rectangular elements had been used to solve the 
governing differential equations that mentioned previously compound with the initial & 
boundary conditions. 
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The solution of the set of the differential equations and boundary conditions established 
is approximated by following integral, [8]  
∫ =
v

i 0RdvW   ……………………………………………………..……...………….…(10) 
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It is noted the above equation is not equal zero, since the approximate solution does not 
satisfy Fourier equation exactly 
The temperature is approximated by a continuous function of Z & r. After some 
mathematical manipulation, it can show the temperature in a given elements as [9]: 

{ } { }n
T)e( TNT =        …..…………………...………………………..…………………..(12) 

mmkkjjii TNTNTNTNT +++= …… ………………………..……………………….(13) 
Where the Tn is the nodal temperatures vector including the temperatures at the nodes 
attached to the element, & {N}T is the row factor of the element shape functions.  
Where the axisymmetric rectangular elements shape function (figure (2)) as following: 
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The residual vector of Galerkin finite element as following: 
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With the substitution of eq. (3) in eq. (1) and application the Galerkin method weighted 
residual statement can be rewritten as: 
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In the above equation, the element distribution of the global capacitance matrix [C], of 
the global conductivity matrix [k], and the global force vector {f} are: 
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Where, the ( Lij ) is the length of the respective side of the element that subject to the 
boundary condition & the ( r ) is the average radius of the elements . There are three other 
results of [ ])e(

sK &{ })e(
sf , one for each element side. 

The linear first- order differential equations in the time domain will produce in finite 
element solution. These equations must be solved before the variation of (T) in space and 
time. A several procedures can be used for numerically solving of the eq. (25).  
Give a function T(t) and the interval [a, b], we can use the mean value theorem for 
differentiation to develop an equation for T(t). Then the final equation for temperature 
with time is: 
{ } ( ){ } { }ba T T 1T θ+θ−=     ………………………………………………….………...(28) 
And after substitution the above equation in equation (13), will produce: 
[ ] [ ]( ){ } [ ] [ ]( ){ } { } { } )ff)1((TktCTktC tttttt ∆+∆+ θ+θ−+∆θ−=∆θ+ …………………(29) 

In above equation, θ = 0; ½ & 1 corresponding to the explicit, Crank-Nicholson and 
purely implicit solution to the system, in our study we take (θ=1/2) (Crank Nicholson). 
The convective heat transfer coefficient formula in the present study as following [10]: 

78.0
rr V2.7h =  …………………………………………………………………………(30) 

Where Vr is the air velocity along the plate, 
Since mass velocity is the fundamental variable in forced-convection equations, Schack 
recommends that the velocity should be corrected according to the ideal gas law for 
temperatures. The velocity along the plate can be expressed by 

ρ
=

flowA
mV
&

 …………………………………………………………………………..(31) 

Substituting Eq. 31 into Eq. 30 gives the convective heat transfer coefficient as 
78.0
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ρ

=
&

 ………………………………………………………..……….(32) 

Where Tfilm is the film temperature in Kelvin 
The total heat lost from the heat sink heat sink equal to the summation of heat lost from 
each element which subjected to the boundary condition (air) as following: 

( ) TTA hq fi
BC

1i
iict −∑=

=   ……….................................................................................... (33) 
Ac = 2 π i ∆r . ∆Z    ……………………………………………………………….…...(34)                      
The ratio of the actual heat lost from heat sink to the heat lost from the bared cylinder 
surface without fins is called heat sink effectiveness, it is calculated as following: 

( ) TTA hq fi
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=
        ………………..……………………………..….……...(35) 

Ao = 2 π ri . L    ……………………………………………………………………...(36)    
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Then, the heat sink effectiveness 
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=ε =      ……………………………………..…..……...(38)                      

The ratio of actual heat transfer lost by heat sink to the heat lost from the same heat sink 
but it’s surfaces temperature are constant and equal to base temperature, as following  

( )fb
BC

1c
ibfb TTA hq −∑=

=
            ……………………………………...……..…..……...(39) 

Then, the heat sink efficiency 
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The nodals temperature are assumed to be converged to the steady-state values when the 
difference of the nodals temperature between two alternative time steps (n) and (n+1) 
satisfies the equation 

( ) 6j
i

j
i

1j
i 10T/TTError −+ ≤−= …………………..……………………..…..……...(41) 

 
RESULTS & DISCUSSION 
Before the discussion of the results, we must check the accuracy of the present program 
& analysis, and then we compared the results of the present program with the two 
dimensional heat transfer from annular fins, [4] in figure (3). For two cases, when the 
heat from the extended tip insulated & non-insulated. From this figure, we can observe a 
good accuracy in our program & technique.  
Also, we can showed the variation of the heat sink efficiency with the Biot number, the 
efficiency decreased as the Biot number increased due to increasing of the heat transfer 
coefficient, the increasing of heat transfer coefficient will increase the heat transfer 
removed from the heat sink & then reduce the temperature difference between the surface 
& the environment temperatures with constant base temperature. 
Figures (4) & (5), showed the efficiency & the effectiveness of the heat sink at a constant 
Biot number & variable base temperature. Because of we took the initial temperature 
equal to the base temperature in our case study, the efficiency & the effectiveness of heat 
sink start from the high value & then its decreased as the time (Fourier number) increased 
to reach the steady state value, after this value no change will occurs in the efficiency & 
the effectiveness of the heat sink with time (Fourier umber) increased. In our steady we 
took three cases for the variation of the base temperature with engine overall length 
(Sine, Cosine, and Exponential) & with time effect took the cosine wave form. We can 
note the exponential form for engine length will produce high temperature peak value 
compared with the others, while cosine wave produce high amplitude than sine wave for 
the engine length. 
In order to check the effect of the variation of the base temperature on the efficiency & 
effectiveness of the annular heat sink, we took different forms for base temperature.  
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As shown in figures (6) & (7), the periodic cosine time variation is replaced with sine 
time variation (see the legends of figures (6) & (7)), we can show nearly the same 
behaviors of the previous figures (4) & (5), also the base temperature for the exponential 
form will produce high amplitude. 
For special case, where the base temperature of the annular heat sink changed 
exponentially with time (see the legends of figures (8) & (9)), we can note the efficiency 
& the effectiveness for this case not reach to the steady state value & the efficiency 
reduced than steady state value as the time (Fourier number) increased while the 
effectiveness of the annular heat sink firstly decreased to reach the steady state value & 
then increased sharply after this value, this behavior due to the base temperature reach to 
the large value abnormal distribution as the time increased.     
 
CONCLUSION 
The unsteady heat transfer from annular heat sink of cooling microelectronic device are 
solved numerically here by using finite elements (Galerkin method) with axisymmetric 
rectangular elements. The results of the present work showed the large effect of the base 
temperature on the efficiency & the effectiveness of annular heat sink. The exponential 
time change of base temperature is not produced & reach to the steady state value, and 
the exponential engine height change of base temperature for other two cases will 
produce high temperature peak & variation in the base temperature.. 
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Figure (3): show the comparison for two cases extended insulated tip & non insulated tip 

Figure (4): show the efficiency against the dimensionless time 
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Figure (6): show the efficiency against the dimensionless time 

Figure (5): show the effectiveness against the dimensionless time 
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Figure (7): show the effectiveness against the dimensionless time 

Figure (8): show the efficiency against the dimensionless time 
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 Figure (9): show the effectiveness against the dimensionless time 


