Analysis of Inflow Time Series for Haditha Dam using Minitab Program

ZAINAB ALI OMRAN¹, RANA ABD AL-HADI MUKHEEF², WISAM SHAMKHI JABER¹, AHMED SAMIR NAJE²

ABSTRACT

The optimal exploitation of water from a dam reservoir requires a comprehensive knowledge of future availability of water resources. In this paper Haditha dam selected (is located on the Euphrates River, the provider of a modern city with 7 km, with an initial storage capacity of 8,28 billion cubic meters). An annual series of inflow discharge records are used for twenty one year from (1991 to 2011) with two month (January and Feb.), in this paper estimating a linear trend function and generate the random series of inflow discharge by using classical decomposition of the series. The Minitab program as used in the procedures of time series analyzing. The data and results were explained in tables and graphs.

Key words : Minitab Program, Haditha Dam, Time Series.

1. INTRODUCTION

A time series analysis is a valuable tool for obtaining information about analyzed data structures and their components, which provides a better foundation for future predictions in the event of success Reyna and et. al. 2015). Dams were Built in ancient times for a single purpose: water supply or irrigation. As civilizations advanced, there was a greater demand Br water supply, irrigation, flood control, avigation, water guality, sediment control, and energy. As a result, dams are Built for specific purposes such as water supply, flood control, irrigation, navigation, sedimentation control, and hydropower. Throughout the world, the demand for water is steadily increasing. There is no If above ground without water, our most important resource aside from air and land. Dams have served to ensure an adequate supply of quantity of water for nearly 5000 years by storing quantity of water in times of surplus and releasing it in times of scarcity, as well as preventing or mitigating floods. The majority of dams are single-purpose, but there are an increasing number of multipurpose dams. If dams are not properly constructed, there will be a severe disaster inside the dam's downstream regions. (Dogan, A., 2002).

The analysis of a temporally distributed sequence of data or the synthesis of a model for prediction in which periods are an independent variable is referred to as a time series model. Most statistical analyses of hydrologic time series for the typical periods scale encountered in water resource studies are predicated on the following fundamental assumptions: The series is homogeneous, stationary, and free of trends and shifts; it is nonperiodic and has no persistence. (Naresh and Soorya, 2016). Time series models are used for forecasting or monitoring by recognizing the underlying forces and structure that produced the observed data. Time series analysis refers to statistical techniques that deal with time series data. The basic goals of time series are to illustrate the important features in which of the time series pattern, to capture how the previous affects the coming time, or how multiple time series can interact to forecast future values in which of the series. (Sara and

Hanumanthappa,2017). The study aimed to analyze the behavior of inflow and outflow water through dams using periods series modelling and ARIMA modelling.

2. MATERIAL AND METHOD

2.1 The Case Study

The selected project is Haditha dam, one in which of the dams in which of Iraq, is located on the Euphrates River, the provider of a traditionally city with 7 km, with an initial storage ability of 8,28 billion cubic meters. In terms of it is contribution to electricity generation after the Mosul dam, the data used are an annual series of inflow rate of flow records are tried using for twenty single year from (1991 to 2011) in which for two months (jan. and Feb.)

Fig. 1 : Formation of Haditha Reservoir and site plan of the dam region (Google Earth)

Sale

A - 256

^{1.} University of Babylon, College of Engineering, Department of Civil Engineering, Babylon, Iraq

² College of Water Resource Engineering, AI – Qasim Green University, Iraq

2.2 Methodology

2.2.1 Time series structure

For analysis the variation in the inflow rate toward the Haditha Reservoir, the data of the inflow rates that recorded in January and February months had been used to find out the correlation that reflected the behavior of trending in these data

The data used and the lags obtained were included in tables 1 and 2.

Table 1 : the inf	low rates in Jan	uary toward Hadith	a Reservoir (1	991-2011)

	year T	رەش 1	inflow X _t	X,*T	T ²
	1	1991	510	510	1
	2	1992	496	992	4
	3	1993	414	1242	9
	4	1994	486	1944	16
	5	1995	1286	6430	25
	6	1996	1169	7014	36
	7	1997	1056	7392	49
	8	1998	1132	9056	64
	9	1999	1013	9117	81
	10	2000	934	9340	100
	11	2001	310	3410	121
	12	2002	616	7394.76	144
	13	2003	663	8623.194	169
	14	2004	710	9946.323	196
	15	2005	925	13879.35	225
	16	2006	934	14939.87	256
	17	2007	1173	19933.87	289
	18	2008	879	15829.55	324
	19	2009	310	5890	361
	20	2010	350	7000	400
	21	2011	592	12438.77	441
Σ	231		15959	172322.7	3311

Table 2 : the inflow rates in February toward Haditha Reservoir (1991-2011)

	year T	رەش 1	inflow X _t	X ,* T	T ²
	1	1991	399	399	1
	2	1992	552	1104	4
	3	1993	358	1074	9
	4	1994	626	2504	16
	5	1995	1235	6175	25
	6	1996	1309	7854	36
	7	1997	1345	9415	49
	8	1998	1350	10800	64
	9	1999	945	8505	81
	10	2000	1187	11870	100
	11	2001	377	4147	121
	12	2002	391	4687.2	144
	13	2003	635	8254.071	169
	14	2004	1214	17000.83	196
	15	2005	859	12885	225
	16	2006	1313	21008	256
	17	2007	751	12767	289
	18	2008	758	13644	324
	19	2009	278	5282	361
	20	2010	405	8100	400
	21	2011	576	12096	441
Σ	231		16863	179571.1	3311

3. TIME SERIES ANALYSIS

For analysis the data under the time series techniques, a plot for inflow at each month was made under Minitab program. The time series plot for January and February months had been showed in Figure 2 and 3.

The next step was the founding of the autocorrelation for each month, the autocorrelation function was used to catch any bond in changing between the available inflow rate in each year. The autocorrelation graphs had been showed in Figure 4 and 5.

The forecasting data of inflow rates were evaluated by applying the autoregressive technique on the random variation of the inflow rates for January and February months. If the Y values are normally distributed, the partial autocorrelation between

 Y_t and Y_{t-u} can be defined as

 \emptyset (u) = cor(Y_t, Y_{t-u}|Y_{t-1}, ..., Y_{t-u+1}).

A more general approach is based on regression theory.

 Y_t based on $Y_{t\mathchar`-1},\ .$. , $Y_{t\mathchar`-u\mathchar`-1}.$ The prediction is

$$\acute{\mathbf{Y}}_{t} = \beta_1 \mathbf{Y}_{t-1} + \beta_2 \mathbf{Y}_{t-2} \cdot \cdot \cdot , \ \beta_{u-1} \mathbf{Y}_{t-u+1}$$

It is also possible to "think backwards in time" and consider predicting Y_{t-u}

with the same set of predictors (Bras and Rodriguez-Iturbe,1985). The best predictor will be

$$\dot{Y}_{i-u} = \beta_1 Y_{t-u+1} + \beta_2 Y_{t-u+2} \cdot \cdot \cdot , \beta_{u-1} Y_{t-1}.$$

The formula obtained was applied on each data under the functions that builtin by Minitab program. the results were explained by the tables 3 and 4 and showed by the continued and dashed graphs in Figures 6 and 7.

For assigning more stability in forecasting the data of inflow rates, the errors that obtained from the difference between the actual and forecasted results of inflow were dealt under the technique of auto regression then the data had been reclaimed again to be as the dashed lines in Figures 8 and 9.

Fig. 2 : Time series plot for January month (1991-2011)

Fig. 5 : Autocorrelation output for February month (1991-2011)

			0044)					
EFIG. 4 : Autocorrelation	1 output for Janu	ary month (1991	-2011)	-ig. 5 : Autocorrelation	output for Febru			
loadec	Table 3 : the inflow rates in January (actual and forecasted) (1991-2011)							
nwoC	year T	رەش 1	inflow X _t	Forecasted X _t	е			
-	1	1991	510	667.45	-157.445			
	2	1992	496	611.22	-115.218			
	3	1993	414	603.44	-189.440			
	4	1994	486	557.89	-71.888			
	5	1995	1286	597.89	688.115			
	6	1996	1169	1042.30	126.703			
	7	1997	1056	977.30	78.698			
	8	1998	1132	914.53	217.471			
	9	1999	1013	956.75	56.252			
	10	2000	934	890.64	43.358			
	11	2001	310	846.76	-536.756			
	12	2002	616	500.11	115.886			
	13	2003	663	670.10	-7.102			
	14	2004	710	696.21	13.789			
	15	2005	925	722.32	202.679			
	16	2006	934	841.76	92.244			
	17	2007	1173	846.76	326.244			
	18	2008	879	979.52	-100.524			
	19	2009	310	816.20	-506.203			
	20	2010	350	500.11	-150.114			
	21	2011	592	522.34	69.665			

year T	رەش 1	inflow X _t	Forecasted X _t	е
1	1991	399	658.37	-259.375
2	1992	552	566.45	-14.451
3	1993	358	650.44	-292.442
4	1994	626	543.94	82.056
5	1995	1235	691.06	543.936
6	1996	1309	1025.38	283.622
7	1997	1345	1066.00	278.999
8	1998	1350	1085.76	264.236
9	1999	945	1088.51	-143.508
10	2000	1187	866.18	320.819
11	2001	377	999.03	-622.029
12	2002	391	554.37	-163.374
13	2003	635	562.06	72.940
14	2004	1214	696.00	517.995
15	2005	859	1013.85	-154.850
16	2006	1313	818.97	494.029
17	2007	751	1068.20	-317.197
18	2008	758	759.68	-1.684
19	2009	278	763.53	-485.526
20	2010	405	500.03	-95.028
21	2011	576	569.75	6.255

Table 4 : the inflow rates in February (actual and forecasted) (1991-2011)

www.IndianJournals.com Members Copy, Not for Commercial Sale

Fig. 6 : Time series plot for January month (actual and forecasted) (1991-2011)

Fig. 8 : Time series plot for January month (actual and forecasted after AR of errors) (1991-2011)

Fig. 7 : Time series plot for February month (actual and forecasted) (1991-2011)

Fig. 9 : Time series plot for February month (actual and forecasted after AR of errors) (1991-2011

A - 256

Table 5(a) : The inflow rates in January (actual and forecasted after AR of error) (1991-2011)

Y	ear T	1.	رەش	in	flow X _t	Fore	casted error _t	Fore	casted X _t	
	1	19	91		510		-163	673		
	2	19	92		496		-102		598	
	3	19	93		414		-182		596	
	4	19	94		486		-54		540	
	5	19	95		1286		690		596	
	6	19	96		1169		28		1141	
	7	19	97		1056		54		1002	
	8	19	98		1132		200		932	
	9	19	999		1013		20		993	
	10	20	000		934		28		906	
	11	20	01		310		-550		860	
	12	20	02		616		180		436	
	13	20	003		663		-30		693	
	14	20	04		710		7		703	
	15	20	05		925		193		732	
	16	20	006		934		58		876	
	17	20	07		1173		307		866	
	18	20	800		879	-151			1030	
	19	20	09		310		-500	810		
	20	20	010		350		-90		440	
	21	20)11		592		82		510	
Tabl	e 5(b) ∶	The i	nflow r	ates i	n February (199 <i>1</i>	/ (actu 1-2011	al and forecaste)	ed after	AR of er	
	yea	r T	1 0	رەش	inflow	/ X t	Forecasted X	t	е	
	1	199		91	1 399		-274.392		673	
	2		19	92	552		-43.067		595	
	3		19	93	358		-309.492		667	
	4		19	94	626		51.879		574	

Members Copy, Not for Commercial Sale www.IndianJournals.com

year T	رەش 1	inflow X _t	Forecasted X _t	е
1	1991	399	-274.392	673
2	1992	552	-43.067	595
3	1993	358	-309.492	667
4	1994	626	51.879	574
5	1995	1235	531.442	704
6	1996	1309	292.937	1016
7	1997	1345	276.023	1069
8	1998	1350	261.042	1089
9	1999	945	-147.400	1092
10	2000	1187	297.674	889
11	2001	377	-623.248	1000
12	2002	391	-209.114	600
13	2003	635	48.858	586
14	2004	1214	505.071	709
15	2005	859	-146.759	1006
16	2006	1313	470.349	843
17	2007	751	-310.238	1061
18	2008	758	-33.029	791
19	2009	278	-501.974	780
20	2010	405	-134.322	539
21	2011	576	-14.600	591

4. CONCLUSION

The inflow rates information toward the Haditha reservoir for January and February months in period (1991 to 2011) had been used to build time series analysis and examining of the behavior of data according to state of variation. The data showed high random variation for the two months as showed by the autocorrelation graphs that built by using Minitab program. Auto regression technique was applied to the data and the results were explained in related graphs. For gaining more precious in data variation system, the error was then considered in time series and auto regression was made to identify the new error distribution along the inflow rates data. The new inflow rates then calculated and graphed. The double auto regression reclamation showed better closing from the forecasted data and the actual data that can be very noticeably in the range of years (1997 to 2001) and the range (2005 to 2007). The variation in the inflow rates in these two months reflected the high accumulation of water feeding that coming from the weather condition(rainfall intensity) as well as the inflow rates from the Euphrates river.

REFERENCES

- 1. Bras, R.L., and Rodriguez-Iturbe, I. (1985) Random Functions and Hydrology. Addison-Wesley Publishing Company, Inc.
- Dogan, A.(2002). The role of Dams 2. in Development. Wter Resources Development, Vol. 18, No 1,9-24.
- Reyna, T., Guillen N., Lábaque M., 3. Alvarez J.4, Eder M. and Funes F.(2015). Using Time Series Analysis to support the Water Resources Management in the Upper Basin of the Suguía River. Pinnacle Environmental and Earth Science
- 4. Naresh, V. and Soorya, V.(2016). A Comparative Analysis of Forecasting Reservoir Inflow using ARMA Model & Holt Winters Exponential Smoothening Technique. International Journal of Innovation in Science and Mathematics. ISSN (Online): 2347-9051
- 5. Sara, K.T . and Hanumanthappa, M. (2017). Time Series Analysis for Water Inflow. International Journal of Engineering Research & Technology (IJERT). ISSN: 2278-0181
- Salas, J.D., Delleur, J.W., Yevjevich, 6. V., and Lane, W.L.(1988).Applied Modelling of Hydrologyical Time Series. Water Resources Publication, Fort Collins, Co.