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Abstract: The purpose of this research is to develop the wave equation by replacing the 

constant with a quadratic function based on the two variables (x, t). Some elementary and 

boundary conditions using MATHEMATICA. 

1. Introduction  

 A highly accurate numerical method is drove for the solution of one-

dimensional wave equation with Neumann boundary conditions. A multi-dimensional 

fractional  wave equation that describes propagation of damped waves is introduced and 

analyzed  this feature is a decisive factor for inheriting some crucial characteristics of wave 

equation, such as a constant phase velocity of the damped waves which is now described by the 

fractional wave equation in [1] and [2]. In [3] , the wave equation with variable wave speed on 

nonconforming domains with fourth order accuracy in both space and time. This accomplished 

using an implicit finite difference scheme for the wave equation and solving an elliptic 

(modified Helmholtz) equation at each time step with fourth order spatial accuracy by the 

method of difference potentials. In [4] , The present a numerical algorithm for the linear one-

dimensional heat and wave equation .In this method ,a finite difference approach had been used 

to discrete the time derivative while quantic spline is applied as an interpolation function in the 

space dimension. The numerical methods are of great importance for approximating the 

solutions of nonlinear ordinary or partial differential equations, especially when the nonlinear 

differential equation under consideration faces difficulties in obtaining its exact solution. In this 

latter case, we usually resort to one of the efficient numerical methods In [5]. An initial-

boundary value problem for fractional in time diffusion –wave equation is considered. A priori 

estimates in Sobolev spaces are derived in [6] . The fractional diffusion equation is solved for 

different boundary value problems, these being absorbing and reflecting boundaries in half-

space and in a box. Thereby , the method of images and Fourier –Laplace transformation 

technique are employed in [7]. The illustration with numerical experiments the behavior of 

certain algorithms based on exact regularization. First ,we consider an elliptic PDE with a 

nonlinear discontinuity in [8].The first-order (or linear) Rytov or Born approximation is the 
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foundation for formulation of wave –equation tomography and waveform inversion, so the 

validity of the Rytov/ Born approximation can substantially affect the applicability of these 

theories in [9]. In [10] The two-dimensional nonlinear wave equations are considered .Solution 

to the problem is approximated by using optimal homotopy method .We can develop this work 

through the study of linear partial differential equations by using the periodic conditions and we 

can find the uniqueness solution. Also we can graph all the problems by using the Mathematica 

program. 

 

2-Setting the problem 

We consider the following for the system partial differential equations:   

2 2
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2 2
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( ,0) ( ),

( , )
( ),

(0, ) ( , ) 0.
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g x
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u t u a t



 
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




                                                                          (2.1) 

Where ( , )u x t is the unknown continuous function and
2 ( , )k x t , ( , )f x t are an arbitrary 

continuous function dependent with respect variables x and .t  The initial boundary conditions 

are held in equation (2.1). 

NDSolve is able to solve some partial differential equations directly when you specify more 

independent variables. NDSolve currently uses the numerical method of lines to compute 

solutions to partial differential equations.  

The method is restricted to problems that can be posed with an initial condition in at least one 

independent variable. For example, the method cannot solve elliptic partial differential 

equations such as Laplace's equation. NDSolve uses the method of lines and is typically 

suitable for solving problems of a hyperbolic equation in partial differential equations, 

NDSolve computes the solution for the partial differential equation the results is a two-

dimension Interpolating Function. Now to solve the system (2.1) numerically, we use typical 

commands: 

sol  [   ]         [      [   ] {     } {     }}[ ]solve the Problem 

      [    {     } {     }]Plot the solution  

Next, we show several examples of using NDSolve. 
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3 .Study some application examples for equation (2.1) 

3.1. Let consider the problem (2.1), with 

 

  

 

Solution: using Mathematica code we obtain: 

 
2 2 2

, ,: { [ , ] [ , ] , [ ,0] 10 (1 ) ,

[0,1][ ][ ,0] 0, [0, ] 0, [1, ] 0};

[ , ] / . [ , [ , ],{ ,0,0.6],{ ,0,0.4},Pr 1][1]

t t x xIn Put In Mathematica eqns u x t t u x t x u x x x

Derivative u x u t u t

sol u x t NDSolve eqns u x t x t ecisionGoal

      

  

  Results 

after implementation of the program are:  

: [{{0.,1.},{0.,0.4}}, ][ , ]Out Put Mathematica InterpolatingFunction x t  

Solution is generated by this command as it is shown in figure (1) 

 

 

 

 

 

 

 

 

 

Figure 2.1: Graph the function ( , )u x t  

 

3.2. Let's consider  the problem (2.1), with  
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Solution: the numerical solution of this problem is: 

2 2

, ,

2 4

: { [ , ] (cos[ ] sin[ ] ) [ , ] sin[ ] , [ ,0]

2 (1 ) ,

[0,1][ ][ ,0] 0, [0, ] 0, [1, ] 0};

[ , ] / . [ , [ , ],{ ,0,1],{ ,0,5},Pr

t t x xIn Put In Mathematica eqns u x t t x u x t t x u x

x x

Derivative u x u t u t

sol u x t NDSolve eqns u x t x t ecisionGoa

      

 

  

 1][1]l 

Results after implementation of the program are: 

: [{{0.,1.},{0.,5.}}, ][ , ]Out Put Mathematica InterpolatingFunction x t Then, we can plot the 

numerical solution of the problem (4.3.3) by using Plot3DCommand,weget

3 [ ,{ ,0,5},{ ,0,1}, {" "," ",""}, {{0,1,2,3,4,5},{0,1},{ 2,0}}]Plot D sol t x AxesLabel t x Ticks  

 

The solution is generated by this command as it is shown in figure (2) 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Graph the function ( , )u x t  

 

4. Numerical Solution of Linear Hyperbolic Equation 

Let's consider the predefined functions in both systems with the aid of which we can 

obtain the approximate numerical solutions solving various linear partial differential equations 

problem. In Mathematica, various initial boundary value problems can be solved numerically 

with the aid function NDSolve (with various options). This can be done by the Mathematica it 

is possible to solve numerically only evolution equations using NDSolve. Additionally, it is 

possible to specify explicit the method of lines for solving partial differential equations. 

We study the linear second order partial differential equations define for the following system: 

2 2
2

2 2
( , ) ( , ),

u u
k x t f x t

t x

 
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                                                                     (4.1) 
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2 2
2

2 2
( , ) ( , ) .i
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                                                               (4.2) 

Where
 ,f x y

and
( , ) , 1,2ig x t i 

, are arbitrary functions, then equations (4.1) and (4.2) 

have the same initial and boundary conditions 

( ,0) 0,u x   

 

There is no need for 8 boundary conditions because the equations are 

programmatically solved. In Mathematica there are constant steps that 

cannot be added. 

(0, ) ( , ) 0.u t u L t   
It can solve the problems (4.1) and (4.2) numerically by using Mathematica. In reality, the 

system (4.1) and (4.2) are quite easy to solve with the method of lines. 

 

5. Study some application examples for equation (4.1) and (4.2) 

-Let's consider the problem (4.1) and (4.2) with  
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Solution: The problem (5.1) can be solved numerically by using Mathematica  where  L=0.5 

and T=1.5 

: ' '

[ , Im 500, { ,{ 5,5}}, int *2,

{ , [0.01]}};
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:

{0.5,1.5,1/100,100,3,{ [1,00], [0,0,1], [0,1,0]},{0.3,0.7,1.5}}

Out put Mathematica

RGBColor RGBColor RGBColor  

{51,176}  

Then it can plot numerical solution of the initial boundary value problems(5.1) and (5.1) as 

shown in figure (3) 

  

 



ICCEPS

IOP Conf. Series: Materials Science and Engineering 571 (2019) 012001

IOP Publishing

doi:10.1088/1757-899X/571/1/012001

7
  7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

A 3D graphical solution of the problem (5.1)  is Plotted  using Mathematica Programm as 

follows: 

: [ [ ] [ [0.1,1/ 2] / . [ ]];Pr int[ [ ]];

3 [ ] 3 [ [ [ , ] / . [ ]],{ ,0,1},{ ,0, },

[{ , }, [ ]],

1, int { 1,2,1},

In Put Mathematica Do numVals i Evalute u sol i numVals i

g D i Plot D Evalute u x t sol i x t tF

ColorFunction Function x y Hue x

BoxRatios ViewPo







   Im 500],{ ,1,2}];

[{ 3 [1], 3 [2]}]

ageSize i

GraphicsRow g D g D



 

:

{0.456055}

{0.579758}

Out Put Mathematica

 

A surface plot of the solution of equations (5.1) and (5.1)  is shown in figure(4.5) 

 

 

 

 

 

 

 

 

Figure 4: Plots of numerical solutions of the initial boundary value problems for equation 

(5.1)  (upper plot) and equation (5.1) (lower plot) at different times   = 0.3 (Red), 0.7 (Blue), 

1.5 (Green) 
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6. Discussion of result  

At the beginning it can consider the construction of numerical and graphical solutions of 

various initial boundary value problems. That can be by using predefined functions and 

embedded methods in system (Mathematica), for the second-order partial differential equations. 

In some cases, the numerical solutions are compared with the corresponding analytical 

solutions and obtain the corresponding error function. In addition to that, it can explain how to 

find numerical and graphical solutions, by specifying a particular numerical method and 

numerical boundary conditions. In Mathematica various initial boundary value problems can be 

solved numerically with the aid of the function NDSolve (with various option). While in Maple 

with the aid of predefined function pdsolve ( with option numeric). It can solve numerically 

initial boundary value problems for a single partial differential equation (of higher order). As 

well as the partial differential equation systems can solve by using the embedded methods or by 

specifying a particular method for solving a single partial differential equation. It is possible to 

impose Dirichlet, Neumann, Robin , or periodic boundary conditions.  

 

 

 

 

 

 

 

Figure 5: 3D Plots of numerical solutions of the initial boundary value problems for the 

equation(5.1) on the left and equation(5.1) on the right 
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7-Conculusions 

 It can prove the numerical solution method for linear partial differential 

equations in the Mathematica function NDSolve is presented. Mathematica's NDSolve 

command includes a general solver for partial differential equations based on the method of 

lines. In Mathematica with the aid of the predefined function NDSolve, it is possible to obtain 

approximate numerical solutions of various linear and nonlinear partial differential equations 

problems (initial boundary value problems). This can be done by the Mathematica system by 

applying the method of lines. It is noted that in Mathematica (Ver   8), it is possible to solve 

numerically only evolution equations NDSolve. Additionally, it is possible to specify explicitly 

the method of lines for solving partial differential equations and the proper suboptions for the 

method of lines. 

 

 

 

 

 

 

 

NDSolve finding numerical solutions to partial differential equations problems  (initial 

boundary value problems), where depVars and indVars are the dependent and independent 

variables respectively. 

NDSolve, Method, finding numerical solutions to partial differential equations problems by 

method of lines with some specific sub options (sub Ops). 

The option Method and the most important sub options as follows: 
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