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Lab-scale bioremediation technology: the development of 
environmental biotechnology for the ex situ bioremediation of 

cadmium-contaminated freshwater 

Nadia Jebril 

Cadmium (Cd) is one of the most common contaminates in freshwater. Among 
freshwater remediation techniques, bioremediation – the use of bacteria to extract Cd 
from water – is an eco-friendly technique. Cd-resistant bacteria evolve in the natural 
environment and can be used to develop a bioremediation process for Cd. However, 
gaining an adaptive strain is usually difficult. This research aimed to find an alternative 
bioremediation process for Cd from freshwater using Cd-resistant bacteria. To 
increase the Cd-resistance of the isolated Brevibacillus agri C15, UV-light 
mutagenesis was used to generate the mutant B. agri C15 CdR with a minimum 
inhibitory concentration (MIC) of 21 ± 0.4 mM Cd, which was approximately                
0.25  fold higher than that of the wild type B. agri C15 (MIC:16 ± 0.7 mM Cd). 
Laboratory  bench-scale column reactors were operated for 28 days to investigate the 
effectiveness of the mutant B. agri C15 CdR entrapped in calcium alginate gel, as a 
bioremediation process for Cd from artificial groundwater (AGW) at different Cd 
concentrations (4.4, 8.8, 13.4 and 17.4 M). A new process for the purpose of attaining 
high Cd removal rates from AGW was achieved using the mutant in this study. 
Scanning electron microscopy (SEM) observations enabled a detailed description of 
the beads, and the detection of Cd within the beads supported the Cd accumulation 
mechanism using a dithizone histochemical method. The interactions of Cd, 
cation/anion, and humic acid competing for ion exchange sites on Ca-alginate beads 
containing the mutant cells in addition to the effect of pH were investigated. The 
efficient removal of Cd was achieved from AGW at pH 4.00. The constituents were 
found to hinder Cd uptake due to the formation of Cd complexes. The preferential 
removal of Cd using the mutant from AGW (pH 4.00 and 7.50), as well as from natural 
river water (NRW, Walkham River), reflects its ability to remove Cd from freshwater in 
general. The hazard classification and risk assessment of the products of this study’s 
new bioremediation process was not hazardous substances and did not represent a 
risk to humans. From a biotechnology standpoint, this thesis presents new prospects 
for this maintainable water bioremediation technique and the knowledge assembled in 
this study may provide a basis for the development of other bacteria for metal 
remediation and for further research in investigating and applying this technique. 
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1-1 Introduction  

 Human and industrial activities have led to a marked increase in the level of Cd in the 

environment across the globe. The estimated global average level of Cd in 

uncontaminated soil is 0.36 mg/kg, in soil water is 5 g/L and in unpolluted 

groundwater less than 1 µg/L (Kubier et al., 2019). Cadmium groundwater 

contamination is a widespread problem that causes severe environmental and health 

concerns. An average Cd level of 0.2 μg/L was determined in Irish groundwater (Tedd 

et al., 2017). Nokes and Weaver (2014) reported that health risks are associated with 

Cd in groundwater. Therefore, Cd is listed as a priority hazardous substance in the 

European Water Framework Directive (2000). Thus, Cd treatment is needed for water 

and more effective methods. Water treatment through physical, chemical, and 

biological techniques is an important aspect of water cleansing, and many studies 

have been undertaken to identify and develop treatment technologies.    

1-1-1 Groundwater 

Most of the water on the Earth’s surface is saline (96.5%) and is present in oceans, 

glaciers, and ice caps, the remainder being freshwater (3.5%). Saline waters are 

unusable by humans, while the usable water comes from freshwater resources such 

as groundwater, lakes, and rivers. Groundwater represents 99% of the Earth’s 

freshwater US Geological Survey (US GS, 2011) and is a significant source of drinking 

water for humans, who require at least 2 litres of water per day.  

Groundwater is considered an essential stage in the hydrologic cycle, formed where 

surface water leaks into the subsurface, into vast reservoirs of water in aquifers and 

subterranean rivers. In its natural state, the quality of groundwater is high, being 

almost free from pathogens and water were drawn from uncontaminated aquifers does 

not usually require complex treatment. However, pollution present in the soil or the 
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catchment of an aquifer, in general, can be transferred into the groundwater                      

(UK Groundwater Forum, 2011). The importance of groundwater to human endeavour 

can be illustrated with some examples: In England and Wales, one-third of the 

domestic water supplies (2,400 million L per year) comes from groundwater (Holman 

et al., 2010) and in the Middle East, groundwater is a significant source of domestic 

supplies owing to having just two rivers, Tigris (Turkey and Iraq) and Euphrates 

(Turkey, Syria, and Iraq). The geochemistry of groundwater varies depending on the 

local mineralogy present above and throughout the aquifer, the contact time of 

groundwater with the rock holding the water, and the local biogeochemical processes. 

Usually, groundwater is high in calcium, magnesium, bicarbonates, calcium chlorides, 

and magnesium sulphates, contributing to its alkalinity, making it ‘hard’ (Boyd, 2020). 

This hardness is, for example, due to the biological process of the organic matter, 

which is present in the soil zone, producing carbon dioxide, which leads to the 

formation of carbonic acid and biocarbonate ion: 

 CO2 + H2O ⇌  H2CO3 ⇌  H+ + HCO3, which gives a pH of groundwater between            

6.0 and 8.5 (Van Nguyen et al., 2020). 

Additionally, the occurrences of minor ions such as: borate, nitrate, potassium, 

strontium, fluoride, iron, and trace ions such as: aluminium, cadmium, arsenic, barium, 

chromium, copper, lead, manganese, lithium, phosphate, selenium, silver, uranium 

and zinc dissolved in groundwater at concentrations below 0.1 mg/L, contribute to the 

minerals content of groundwater. Elevated metal contents in groundwater are 

generally linked to the abundance of clay minerals, organic matter, carbonates, and 

hydrous oxides, as well as physicochemical conditions, such as pH, and/or anoxic 

conditions. For example, differences in arsenic concentration in groundwater were 

previously documented because of constant redox conditions (Du Laing et al., 2009). 
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It was found that the metal mobility increased with the decrease of groundwater pH 

(due to seasonal change in pH or pollution), while the hardness and salinity cause the 

immobilisation metals (Mulligan et al., 2001). For instance, high pH in the soil 

immobilises Cd, thus forming CdCO3 and Cd (OH)2 precipitate (Liang et al., 2014). 

1-1-2 Groundwater contamination   

Pollution is defined as the condition in which substances that are not normally found 

or where they occur are above the natural background levels that lead to pollution, 

causing damage to living resources and risks to human health (Chapman and 

Anderson, 2005). Population increase, urbanisation, industrialisation, and agricultural 

activities have led to the deterioration of the quality and the chemistry of groundwater 

in many areas of the world. While undoubtfully important, assessment and monitoring 

of aquifer parameters can be expensive, and therefore numerical methods are 

increasingly applied to groundwater quantity, movement, and quality (Batu, 2005). For 

example, different models can be used to predict element concentrations in water 

systems. Recently, Locatelli et al. (2019) have estimated the risk to groundwater by 

modelling the fate of contaminants and their transport. Rader et al. (2019) used the 

tableau-input coupled kinetic equilibrium transport–unit world model (TICKET–UWM) 

for evaluating of copper in surface water.  A study performed by Ramachandran et al. 

(2018) to assess the environmental impact on groundwater, using Piper's diagram and 

Gibbs plot, showed that the interaction between rock, water, and the anthropogenic 

activity were the most critical processes that controlled groundwater chemistry.  

Notably, due to human activities, approximately two-thirds of groundwater bodies in 

England and one-third of those in Wales are at risk due to pollution from nitrate and 

other pollutants, such as phosphate, oil, pesticides, solvents, and cadmium (Zhang 

and Hiscock, 2011). High concentrations of nitrate, fluoride, and arsenic have 
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increased groundwater risk in India and Bangladesh (Alagumuthu and Rajan, 2008). 

Globally, most groundwater is contaminated with some elements, which can affect 

human health and the overall health of the ecosystem. For example, groundwater 

contamination in 59 out of 64 regions in Bangladesh has been reported with 300 μg/L 

of arsenic (Chakraborti et al., 2010) exceeded the maximum recommended 

concentration for As in drinking water (10 g/L, World Health                          

Organisation- International Agency for Research on Cancer (WHO-IARC, 2004).  

1-1-3 Contamination and human health 

Arsenic is commonly used in the manufacturing of herbicides, insecticides, fungicides, 

and insecticides, which increases its level in the environment. US EPA (2018) reported 

that wood treatment with arsenic was estimated to release 48.9 million metric tons in 

2015. In addition to the agricultural arsenic applications, arsenic has also been used 

in veterinary medicine to eradicate tapeworms in sheep and livestock and the medical 

field in the treatment of syphilis, trypanosomiasis, amoebic and dysentery. 

Furthermore, the Food and Drug Administration (FDA) recently stated that arsenic 

trioxide might be used in the treatment of acute leukemia in localised cells. These 

applications have increased the concentrations of arsenic to 5 mg/kg in soil, 10 μg/L 

in surface and groundwater, and between 1–2 μg/L in seawater (Ghosh et al., 2018). 

Lead is commonly used in many applications such as industrial, agricultural, and 

domestic products and processes. Lead-acid batteries were estimated to account for 

83% of the 152,000 metric tons of lead used in various industries in the United States 

in 2004. The assessment of metals in the UK recorded that the annual mean 

concentrations of lead emission in rural locations reached 7.58 ng/mL in 2003 and 

more contamination of lead (102.88 ng/mL) was recorded in an industrial location, 

Brookside Bilston Lane (Ireland et al., 2006).  
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Mercury is used in the manufacture of fungicides, batteries, thermostats, and dental 

amalgams. In Iraq, the use of treated wheat with methyl mercury as a fungicide in 1955 

caused poisoning to livestock and humans a dire consequence, which is referred to 

as the Iraq poison grain disaster (Al-Damluji, 1976). Because of this, the agricultural 

demand for mercury began to decline after this disaster suddenly. However, the total 

mercury consumption by industrial sectors such as artisanal gold mining, vinyl chloride 

monomer production, batteries, lamps was increased from 3000 metric tonnes in 2005 

to 6027 metric tonnes in 2015 in which East and Southeast Asia were the highest 

consumers of mercury with 2882 metric tonnes (United Nations Environment 

Programme [UNEP], 2017).  In water, the dominant form of mercury is methylmercury 

(MeHg). This strong neurotoxin bioaccumulates easily in the food chain and poses        

a major risk to human health, primarily through fish consumption (Morway et al., 2017).  

1-1-4 Cadmium chemistry and geochemistry 

Cadmium is a post-transition metal of the d-block, with an atomic number of 48 and a 

relative atomic mass of 122.411 g/mol. Under surface environmental conditions 

(temperature, pressure, redox), its chemistry is dominated by the Cd (II) oxidation 

state, and Cd (I) is sometimes also observed (Corbett et al., 1961). Redox potential 

(Eh) does not affect the solubility of Cd directly, as Cd (II) is the stable oxidation state, 

Cd mobility is indirectly related to the redox conditions when forms redox-sensitive 

aqueous complexes. The impact of Eh changes on Cd reduction or oxidation in natural 

environments has not been observed (Rinklebe et al., 2016). Depending on the 

composition of the groundwater, free Cd2+ comprises 55 % to 90 % of the total soluble 

Cd, while the remaining forms of Cd are inorganic complexes (Wilkin, 2007).  

In the Earth's crust, Cd occurs in association with zinc minerals, mostly in sphalerite 

(ZnS) in the form of greenockite (CdS), owing to their similar electron configuration 
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(Clark et al., 2001). Production figures for Cd vary between years in the range of 

20,000 to 28,000 metric tons. For example, the US GS (2019) estimated 23,520 metric 

tons of Cd were produced in 2017 by China (the top producer), South Korea, Japan, 

Canada, Mexico, Kazakhstan, Russia, Peru, Netherlands, and Poland. The British 

Geological Survey reported that more than 26,500 metric tons of Cd were produced in 

2016 by the countries listed above and in addition: Bulgaria, Germany, Norway, 

Turkey, USA, Argentina, Brazil, and India (Brown et al., 2018). Secondary Cd minerals 

include cadmoselite (CdSe), cadmium metacinnabar (Hg, Cd)S), monteponite (CdO), 

and otavite (CdCO3), which are rare and not used commercially (Clark et al., 2001). 

These natural forms of Cd in the Earth's crust have an average of 890 nmol/kg 

(Tchounwou et al., 2012). In anaerobic environments, anaerobic, sulfate-reducing 

microorganisms (SRM) contribute in the biogeochemical cycling of Cd, forming CdS:  

Cd2+ + H2S → CdS + 2H+ 

These microorganisms use sulfate as their terminal electron acceptor, producing 

hydrogen sulfide (Pagnanelli et al., 2010). In addition to SRM, Geobacillus species 

may also immobilise Cd to carbonate precipitation (CdCO3) at pH ≥7                          

(Hetzer et al., 2006).  

CdS and CdSe are also chemically produced from mined greenockite and used as 

CdS and Cd2SSe for the production of pigments for use in inks, paints, and plastics. 

Such pigments are becoming a human health concern in common household 

products, as high levels of cadmium have been found in paints on enamel drinking 

glasses, ceramics, and children’s toys (Turner, 2019). Cd has wide-ranging 

applications in the production of nickel-cadmium batteries, plating metals, and as           

a neutron absorber in nuclear reactors (Scoullos et al., 2012). Rechargeable,            

nickel-cadmium batteries contribute to 85% of the total cadmium consumption 
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globally; however, the use of Cd has risen with the increase of the expenditure on 

coatings, pigments, stabilisers, alloys and electronic compounds (Agency for Toxic 

Substances and Disease Registry [ATSDR], 2012). Like all metals, Cd cannot be 

degraded biologically after being released into the environment. Cadmium-containing 

mining waste, products, and compounds have to be recycled or treated before safe 

storage or disposal into the environment. The majority of waste Cd is found in coal 

ash, cement production waste, and sewage sludge (Scoullos et al., 2012). For 

example, in the 1980s, Cd in coal fly ash contributed more than 26% of total Cd 

globally released into landfills, from where it entered treated landfill leachate, 

subsequently reached wastewater treatment plants and river systems (Nriagu, 1989). 

Anthropogenic sources contribute 85% – 90% of the total yearly emission of Cd to the 

air (19,700 tonnes/year in 2000), while natural sources were estimated at 150-2,600 

tonnes/year in 2000 (WHO, 2008). The forms of Cd in the atmosphere predominantly 

consist of Cd, CdO, CdS, and CdCl. The typical atmospheric residence time of Cd is 

about 1 – 10 days, which is sufficient for it to be transported up to a thousand 

kilometers before the deposit occurs. The continuous volcanic emissions, smelting, 

fossil fuel combustion, and refuse incineration leads to levels of Cd in the air, which 

exceed the Cd inhaled daily (5 ng/mL), resulting in concern about annual production 

levels and their consequent impact on human health. The average Cd concentrations 

which are discharged from the effluents of metal plating industries were 0.13 – 0.17 

M, whereas the highest concentration (8.8 M) was discharged from lead-acid mine 

drainage (Bar and Das, 2016). United States Environmental Protection Agency (US 

EPA, 2011) estimated that 0.15 metric tons of Cd was released into surface water in 

2009. The concentration of Cd in the flow of rainwater in urban areas ranges from     

0.8 M to 1.2 M (Cole et al., 1984).  Due to the pollution from the Orinoco and the 
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Amazon rivers, Cd concentration in the Gulf of Mexico is higher, exceeding 4.4 M 

(Hernández-Candelario et al., 2019). 

Excessive concentrations of Cd, which contaminate water, have been detected in 

several countries, have consequently attracted attention, and raised significant 

concern. Cd concentrations in various freshwater types, many of which exceed 

environmental quality standards (e.g., 4.4 µM in Irish groundwater in the UK, Tedd et 

al., 2017), are listed in Table 1. High concentrations in rivers and aquifers are possible 

due to the activities of mining industries and leaching from soil contamination, as 

reported by Vaessen and Brentführer (2014). Aquifers impacted by past or present 

mining activities have been reported to contain the highest Cd concentrations by 

sources collected in Table 1 (e.g., Portugal, 622 µM (Neiva et al., 2015)) and the UK, 

427 µM  (Banks, 1997)), but also show more modest contamination (< 5 µM, e.g., USA 

(Davis et al., 2010; Sims et al., 2017)). High concentrations of Cd were also recorded 

in areas within proximity to industrial activities, such as brass manufacture, metal-

working, automotive engineering, jewellery making, armaments, and brewing in 

Birmingham, UK (61 M (Shepherd et al., 2006)).  Landfill appears to contribute to 

contamination of the aquifer with Cd in Vision, Denmark (60 M Cd, Christensen, 

1996), but less so in Gazipur, India (0.14 µM, Mor et al., 2006). The groundwater in 

rural areas, is usually less contaminated with Cd, for example, in India                         

(0.08 to 1.0 M Cd (Buragohain et al., 2010)).  
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Table 1. Total concentrations of Cd in different freshwater bodies reported in the 
literature. The standard guideline concentration for Cd in drinking water is 3 μg/L 
(WHO, 2011), equivalent to 0.027 µM. 
Freshwater Average (range) of 

concentration of Cd 
(M) 

pH Reference 

Aquifer impacted 
by landfill, 
Gazipur, Delhi, 
India 

0.13 
(0.10-0.17) 

6.3-6.9 Mor  et al., 2006 

Aquifer impacted 
by mining, 
Dhanbad, India 

22 
(20-24) 

** Prasad et al., 2014 

Aquifer impacted 
by mining, 
Phoenix, Nevada, 
USA 

3.8 
(3.2-4.4) 

6.5-7.9 Davis et al., 2010 

Aquifer impacted 
by mining, 
Techatticup, 
Nevada, USA 

4.7 
(4.1-5.3) 

** Sims  et al., 2017 

Rural aquifer, 
Qatar 

7.6 (6.8-8.4) 7.8-7.9 Kuiper et al., 2015 

Pigeon spring, 
Snake Gulch, 
Kanab Creek, 
USA 

124.5 
(120-128) 

6.7-8.0 Beisner et al., 
2017 

Aquifer impacted 
by mining, 
Antiquary, 
Bolivian Altiplano 

36.4 
(31-42) 

7.8-9.4 Ramos et al., 2014 

Aquifer impacted 
by mining, Sorval 
Guarda, Portugal 

622 
(603-642) 

** Neiva  et al., 2015 

Aquifer impacted 
by industries, 
Birmingham, UK 

61 
(5.8-6.4) 

** Shepherd et al., 
2006 

*Aquifer impacted 
by Landfill,  
Vejen, Denmark 

60 
(55-63) 

** Christensen  

et al.,1996 

Aquifer impacted 
by mining, North-
western Arizona, 
USA 

1.4 
(1.1-1.6) 

** Rösner, 1998 

Rural aquifer, 
Reading,  
Berkshire, UK 

2.1 
(1.8-2.4) 

6-6-8.4 Edmunds  
et al., 2003 
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Freshwater Average (range) of 
concentration of Cd 

(M) 

pH Reference 

Rural aquifer, 
Dhemaji, Assam, 
India 

0.5 
(0.08-1.0) 

** Buragohain 
et al., 2010 

Aquifer impacted 
by a river, 
Washington state 

45 
(42-48) 

** Twarakavi and 
Kaluarachchi, 2005 

Aquifer impacted 
by River Ubeji 
River, Delta 
State, Nigeria 

1.2 
(0.75-1.5) 

** Etchie et al., 2012 

Aquifer impacted 
by River Basin, 
Seini, Romania 

0.21 
(0.12-0.31) 

7.8-8.5 Dippong et al., 
2019 

Aquifer impacted 
by mining, 
Yorkshire, UK 

472 
(423-432) 

** Banks, 1997 

Glacial aquifer, 
Alaska, USA 

1.2 
(0.45-25) 

** Groschen et al., 
2009 

* No control of reference site established except for aquifer impacted by Landfill, 
Vejen, Denmark was 6.3-6.6 M 
** No pH established. 
 
These differences in Cd contamination relate not just to the source strength but also 

to the pathways whereby the Cd transfer to and transport within aquifers depends on 

its mobility, for which pH is an important parameter. The pH range varied from 6.6 to 

8.5. Cd speciation and mobility is strongly affected by pH, with the highest movement 

in the pH range of 4.5 to 5.5, and likely precipitation occurring at a pH > 7.5 (Mulligan 

et al., 2001).  
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1-1-5 Effects of cadmium on human health 

Some metals are essential for living organisms in trace amounts, such as cobalt, 

copper, iron, manganese, molybdenum, and vanadium. In contrast, others, such as 

cadmium, chromium, mercury, lead, arsenic and antimony, are non-essential. Both 

essential and non-essential metals cause toxic effects, depending on the dose an 

organism is experiencing (Bernard, 2008). Cadmium is a non-essential element for 

life, and it is toxic to Homo Sapiens. The United States Environmental Protection 

Agency (US EPA) and the International Agency for Research on Cancer (IARC) 

classified some elements, including Cd, As, Hg, and Pb, as human carcinogens 

(ATSDR, 2012). Furthermore, chronic exposure to low levels of Cd is associated with 

several diseases, such as deranged blood pressure regulation, osteoporosis, early 

onset of diabetic renal complications, and end-stage renal failure.  

Humans may be exposed to Cd by drinking polluted water, ingesting contaminated 

food, and inhaling polluted air, which causes diseases. For example, end-stage renal 

disease was reported in a Swedish population, living near a Cd battery plant, and using 

renal replacement therapy (Hellström et al., 2001). Skin exposure to Cd is rare, and it 

occurs mainly as an occupational hazard through contact with Cd-contaminated 

workplaces (ATSDR et al., 2012). After absorption, the blood transfers Cd into different 

organs, such as the liver, kidney, testis, lungs, heart, prostate, and bone, potentially 

with harmful consequences. One of the biggest concerns about the presence and 

accumulation of Cd in the human organs is that the Cd can persist for many years, as 

it has a long biological half-life of 30 years (ATSDR et al., 2012).  

 

 

 


