

On Neutrosophic Generalized Semi Generalized Closed Sets

Qays Hatem Imran^{1*}, Ali H. M. Al-Obaidi², Florentin Smarandache³ and Said Broumi⁴

¹Department of Mathematics, College of Education for Pure Science, Al-Muthanna University, Samawah, Iraq. ²Department of Mathematics, College of Education for Pure Science, University of Babylon, Hillah, Iraq. ³Department of Mathematics, University of New Mexico 705 Gurley Ave. Gallup, NM 87301, USA. ⁴Laboratory of Information Processing, Faculty of Science Ben M'Sik, University Hassan II, B.P 7955, Morocco. E-mails: qays.imran@mu.edu.iq, aalobaidi@uobabylon.edu.iq, smarand@unm.edu, broumisaid78@gmail.com *Correspondence: qays.imran@mu.edu.iq

Abstract

The article considers a new generalization of closed sets in neutrosophic topological space. This generalization is called neutrosophic *gsg*-closed set. Moreover, we discuss its essential features in neutrosophic topological spaces. Furthermore, we extend the research by displaying new related definitions such as neutrosophic *gsg*-closure and neutrosophic *gsg*-interior and debating their powerful characterizations and relationships.

Mathematics Subject Classification (2010): 54A05, 54B05. **Keywords:** *Neu^{gsg}CS*, *Neu^{gsg}OS*, *Neu^{gsg}*-closure and *Neu^{gsg}*-interior.

1. Introduction

The neutrosophic set theory was contributed by Smarandache in [1,2]. The neutrosophic topological space (simply Neu^{TS}) was offered by Salama et al. in [3]. The definition of semi- α -open sets in neutrosophic topological spaces was displayed by Imran et al. in [4]. The neutrosophic generalized homeomorphism was submitted by PAGE et al. in [5]. The class of generalized neutrosophic closed sets was given by Dhavaseelan et al. in [6]. The concepts of neutrosophic generalized αg -closed sets and neutrosophic generalized αg -closed sets of this article is to show the sense of neutrosophic gsg-closed set (briefly $Neu^{gsg}CS$) and investigate their main characteristics in Neu^{TS} . Moreover, we argue neutrosophic gsg-closure (in word Neu^{gsg} -closure) and neutrosophic gsg-interior (fleetingly Neu^{gsg} -interior) with revealing several of their vital spots.

2. Preliminaries

In this work, (\mathfrak{U}, ζ) (or simply \mathfrak{U}) always mean Neu^{TS} . Let \mathfrak{P} be a neutrosophic set in a Neu^{TS} (\mathfrak{U}, ζ) , we denote the neutrosophic closure, the neutrosophic interior, and the neutrosophic complement of \mathfrak{P} by $NeuCl(\mathfrak{P})$, $NeuInt(\mathfrak{P})$ and $\mathfrak{P}^c = 1_{Neu} - \mathfrak{P}$, respectively.

Definition 2.1: [3]

The family ζ of neutrosophic subsets of a non-empty neutrosophic set $\mathfrak{U} \neq \emptyset$ is called a neutrosophic topology (in short, $Neu^{\mathcal{T}}$) on \mathfrak{U} if it satisfies the below axioms:

- (i) 0_{Neu} , $1_{Neu} \in \zeta$,
- (ii) $\mathfrak{P}_1 \sqcap \mathfrak{P}_2 \in \zeta$ being $\mathfrak{P}_1, \mathfrak{P}_2 \in \zeta$,

(iii) $\sqcup \mathfrak{P}_i \in \zeta$ for arbitrary family $\{\mathfrak{P}_i | i \in \Lambda\} \subseteq \zeta$.

In this case, we signified Neu^{TS} by (\mathfrak{U}, ζ) or \mathfrak{U} . Moreover, the neutrosophic set in ζ is named neutrosophic open (in short, *NeuOS*). Furthermore, for any *NeuOS* \mathfrak{P} , then \mathfrak{P}^c is titled neutrosophic closed set (briefly, *NeuCS*) in \mathfrak{U} .

Definition 2.2:

Let \mathfrak{P} be a neutrosophic subset of a $Neu^{TS}(\mathfrak{U}, \zeta)$, then it is called to be:

- (i) a neutrosophic semi-open set and denoted by $Neu^{s}OS$ if $\mathfrak{P} \subseteq NeuCl(NeuInt(\mathfrak{P}))$. [8]
- (ii) a neutrosophic semi-closed set and denoted by $Neu^{s}CS$ if $NeuInt(NeuCl(\mathfrak{P})) \subseteq \mathfrak{P}$. The intersection of entire $Neu^{s}CSs$, including \mathfrak{P} is named a neutrosophic semi-closure, and it is symbolized by $Neu^{s}Cl(\mathfrak{P}).[8]$
- (iii) a neutrosophic α -open set and denoted by $Neu^{\alpha}OS$ if $\mathfrak{P} \sqsubseteq NeuInt(NeuCl(NeuInt(\mathfrak{P})))$. [9]
- (iv) a neutrosophic α -closed set and denoted by $Neu^{\alpha}CS$ if $NeucCl(NeuInt(NeuCl(\mathfrak{P}))) \subseteq \mathfrak{P}$. The intersection of the whole $Neu^{\alpha}CSs$ including \mathfrak{P} is named neutrosophic α -closure, and it is symbolized by $Neu^{\alpha}Cl(\mathfrak{P}).[9]$

Definition 2.3:

Let \mathfrak{P} be a neutrosophic subset of a $Neu^{\mathcal{TS}}(\mathfrak{U}, \zeta)$, and let \mathfrak{M} be a a NeuOS in (\mathfrak{U}, ζ) such that $\mathfrak{P} \sqsubseteq \mathfrak{M}$ then \mathfrak{P} is called to be:

- (i) a neutrosophic generalized closed set, and it is denoted by $Neu^{\mathscr{G}}CS$ if $NeuCl(\mathfrak{P}) \subseteq \mathfrak{M}$. The complement of a $Neu^{\mathscr{G}}CS$ is a $Neu^{\mathscr{G}}OS$ in (\mathfrak{U}, ζ) . [10]
- (ii) a neutrosophic αg -closed set, and it is denoted by $Neu^{\alpha g}CS$ if $Neu^{\alpha}Cl(\mathfrak{P}) \subseteq \mathfrak{M}$. The complement of a $Neu^{\alpha g}CS$ is a $Neu^{\alpha g}OS$ in (\mathfrak{U}, ζ) . [11]
- (iii) a neutrosophic $g\alpha$ -closed set, and it is denoted by $Neu^{g\alpha}CS$ if $Neu^{\alpha}Cl(\mathfrak{P}) \subseteq \mathfrak{M}$. The complement of a $Neu^{g\alpha}CS$ is a $Neu^{g\alpha}OS$ in (\mathfrak{U}, ζ) . [12]
- (iv) a neutrosophic *sg*-closed set, and it is denoted by $Neu^{sg}CS$ if $Neu^{s}Cl(\mathfrak{P}) \subseteq \mathfrak{M}$. The complement of a $Neu^{sg}CS$ is a $Neu^{sg}OS$ in (\mathfrak{U}, ζ) . [13]
- (v) a neutrosophic gs-closed set, and it is denoted by $Neu^{gs}CS$ if $Neu^{gc}Cl(\mathfrak{P}) \subseteq \mathfrak{M}$. The complement of a $Neu^{gs}CS$ is a $Neu^{gs}OS$ in (\mathfrak{U}, ζ) . [14]

Proposition 2.4:[9,10]

In a *Neu*^{TS} (\mathfrak{U}, ζ) , then the next arguments stand, and the opposite of every argument is not valid:

- (i) Each *NeuOS* (resp. *NeuCS*) is a *Neu^{\alpha}OS* (resp. *Neu^{\alpha}CS*).
- (ii) Each *NeuOS* (resp. *NeuCS*) is a *Neu[#]OS* (resp. *Neu[#]CS*).

DOI: <u>https://doi.org/10.54216/IJNS.18030101</u> Received: March 02, 2022 Accepted: May 30, 2022 (iii) Each $Neu^{\alpha}OS$ (resp. $Neu^{\alpha}CS$) is a $Neu^{s}OS$ (resp. $Neu^{s}CS$).

Proposition 2.5:[11,12]

In a *Neu*^{TS} (\mathfrak{U}, ζ) , then the next arguments stand, and the opposite of every argument is not valid:

- (i) Each $Neu^{g}OS$ (resp. $Neu^{g}CS$) is a $Neu^{\alpha g}OS$ (resp. $Neu^{\alpha g}CS$).
- (ii) Each $Neu^{\alpha}OS$ (resp. $Neu^{\alpha}CS$) is a $Neu^{g\alpha}OS$ (resp. $Neu^{g\alpha}CS$).
- (iii) Each $Neu^{g\alpha}OS$ (resp. $Neu^{g\alpha}CS$) is a $Neu^{\alpha g}OS$ (resp. $Neu^{\alpha g}CS$).

Proposition 2.6:[13-15]

In a *Neu*^{TS} (\mathfrak{U}, ζ) , then the next arguments stand, and the opposite of every argument is not valid:

- (i) Each *Neu^gOS* (resp. *Neu^gCS*) is a *Neu^{gs}OS* (resp. *Neu^{gs}CS*).
- (ii) Each $Neu^{s}OS$ (resp. $Neu^{s}CS$) is a $Neu^{s}OS$ (resp. $Neu^{s}CS$).
- (iii) Each *Neu^{sg}OS* (resp. *Neu^{sg}CS*) is a *Neu^{gs}OS* (resp. *Neu^{gs}CS*).
- (iv) Each $Neu^{g\alpha}OS$ (resp. $Neu^{g\alpha}CS$) is a $Neu^{gs}OS$ (resp. $Neu^{gs}CS$).

3. Neutrosophic Generalized sg-Closed Sets

In this sector, we present and analyse the neutrosophic generalized sg-closed sets and some of their features.

Definition 3.1:

Suppose that \mathfrak{P} is a neutrosophic set in a $Neu^{\mathcal{T}S}(\mathfrak{U},\zeta)$ and assume that \mathfrak{M} is a $Neu^{s_{\mathcal{P}}}OS$ in (\mathfrak{U},ζ) where $\mathfrak{P} \sqsubseteq \mathfrak{M}$. The set \mathfrak{P} is termed as a neutrosophic generalized $s_{\mathcal{G}}$ -closed set, and it is signified by $Neu^{g_{\mathcal{G}}}CS$ if $NeuCl(\mathfrak{P}) \sqsubseteq \mathfrak{M}$. The collection of all $Neu^{g_{\mathcal{G}}}CSs$ in a $Neu^{\mathcal{T}S}(\mathfrak{U},\zeta)$ is signified by $Neu^{g_{\mathcal{G}}}C\mathfrak{U}$.

Theorem 3.2:

In a *Neu*^{TS}(\mathfrak{U}, ζ), the subsequent arguments are valid:

(i) Each *NeuCS* is a *Neu^{gsg}CS*.

(ii) Each *Neu^{gsg}CS* is a *Neu^gCS*.

Proof:

(i) Let *NeuCS* \mathfrak{P} and *Neu^{sg}OS* \mathfrak{M} be in a *Neu^{TS}*(\mathfrak{U}, ζ) where $\mathfrak{P} \sqsubseteq \mathfrak{M}$. Then *NeuCl*(\mathfrak{P}) = $\mathfrak{P} \sqsubseteq \mathfrak{M}$. Therefore \mathfrak{P} is a *Neu^{gsg}CS*.

(ii) Let $Neu^{gsg}CS \mathfrak{P}$ and $NeuOS \mathfrak{M}$ be in a $Neu^{TS}(\mathfrak{U}, \zeta)$ where $\mathfrak{P} \sqsubseteq \mathfrak{M}$. Because each NeuOS is a $Neu^{sg}OS$, we get $NeuCl(\mathfrak{P}) \sqsubseteq \mathfrak{M}$. Consequently, \mathfrak{P} is a $Neu^{g}CS$.

The reverse of the above theorem is inaccurate, as displayed in the subsequent instances.

Example 3.3:

Suppose that $\mathfrak{U} = \{u_1, u_2\}$ is a set and assume that $\zeta = \{0_{Neu}, \mathfrak{P}_1, \mathfrak{P}_2, 1_{Neu}\}$ is a Neu^T defined on \mathfrak{U} . Suppose that have $\mathfrak{P}_1 = \langle u, (0.6, 0.7), (0.1, 0.1), (0.4, 0.2) \rangle$ we the sets and $\mathfrak{P}_2 = \langle u, (0.1, 0.2), (0.1, 0.1), (0.8, 0.8) \rangle$ Then are given. the neutrosophic set $\mathfrak{P}_3 = \langle u, (0.2, 0.2), (0.1, 0.1), (0.6, 0.7) \rangle$ is a *Neu*^{gsg}*CS*. However, this latter set is not a *NeuCS*.

Example 3.4:

Suppose that $\mathfrak{U} = \{u_1, u_2, u_3\}$ is a set and assume that $\zeta = \{0_{Neu}, \mathfrak{P}_1, \mathfrak{P}_2, \mathbf{1}_{Neu}\}$ is a Neu^T defined on \mathfrak{U} . Suppose that we have the following sets $\mathfrak{P}_1 = \langle u, (0.5, 0.5, 0.4), (0.7, 0.5, 0.5), (0.4, 0.5, 0.5) \rangle$ and $\mathfrak{P}_2 = \langle u, (0.5, 0.5, 0.4), (0.7, 0.5, 0.5), (0.4, 0.5, 0.5) \rangle$ $\langle u, (0.3, 0.4, 0.4), (0.4, 0.5, 0.5), (0.3, 0.4, 0.6) \rangle$ are given. Then the neutrosophic set $\mathfrak{P}_3 = \langle u, (0.4, 0.6, 0.5), (0.4, 0.3, 0.5), (0.5, 0.6, 0.4) \rangle$ is a *Neu[#]CS*. However, this latter set is not a *Neu^{#S#}CS*.

Theorem 3.5:

In a *Neu*^{TS} (\mathfrak{U}, ζ) , the subsequent arguments are valid:

(i) Each $Neu^{gsg}CS$ is a $Neu^{\alpha g}CS$.

(ii) Each $Neu^{gsg}CS$ is a $Neu^{g\alpha}CS$.

(iii) Each *Neu^{gsg}CS* is a *Neu^{sg}CS*.

(iv) Each *Neu*^{gsg}CS is a *Neu*^{gs}CS.

Proof:

(i) Let $Neu^{gsg}CS \mathfrak{P}$ and $NeuOS \mathfrak{M}$ be in a $Neu^{\mathcal{TS}}(\mathfrak{U},\zeta)$ where $\mathfrak{P} \subseteq \mathfrak{M}$. Because each NeuOS is a $Neu^{\alpha g}CS$, we get $Neu^{\alpha}Cl(\mathfrak{P}) \subseteq NeuCl(\mathfrak{P}) \subseteq \mathfrak{M}$. The latter implies $Neu^{\alpha}Cl(\mathfrak{P}) \subseteq \mathfrak{M}$. Consequently, \mathfrak{P} is a $Neu^{\alpha g}CS$. (ii) Let $Neu^{gsg}CS \mathfrak{P}$ and $Neu^{\alpha}OS \mathfrak{M}$ be in a $Neu^{\mathcal{TS}}(\mathfrak{U},\zeta)$ where $\mathfrak{P} \subseteq \mathfrak{M}$. Because each $Neu^{\alpha}OS$ is a $Neu^{\alpha g}CS$, which is a $Neu^{sg}OS$, we get $Neu^{\alpha}Cl(\mathfrak{P}) \subseteq NeuCl(\mathfrak{P}) \subseteq \mathfrak{M}$. The latter implies $Neu^{\alpha}Cl(\mathfrak{P}) \subseteq \mathfrak{M}$. Consequently, \mathfrak{P} is a $Neu^{\beta \alpha}CS$.

(iii) Let $Neu^{gsg}CS \mathfrak{P}$ and $Neu^{s}OS \mathfrak{M}$ be in a $Neu^{\mathcal{TS}}(\mathfrak{U},\zeta)$ where $\mathfrak{P} \sqsubseteq \mathfrak{M}$. Because each $Neu^{s}OS$ is a $Neu^{sg}OS$, we get $Neu^{s}Cl(\mathfrak{P}) \sqsubseteq NeuCl(\mathfrak{P}) \sqsubseteq \mathfrak{M}$. The latter implies $Neu^{s}Cl(\mathfrak{P}) \sqsubseteq \mathfrak{M}$. Consequently, \mathfrak{P} is a $Neu^{sg}CS$. (iv) Let $Neu^{gsg}CS \mathfrak{P}$ and $NeuOS \mathfrak{M}$ be in a $Neu^{\mathcal{TS}}(\mathfrak{U},\zeta)$ where $\mathfrak{P} \sqsubseteq \mathfrak{M}$. Because each NeuOS is a $Neu^{sg}OS$, we get $Neu^{s}Cl(\mathfrak{P}) \sqsubseteq NeuCl(\mathfrak{P}) \sqsubseteq \mathfrak{M}$. That implies $Neu^{s}Cl(\mathfrak{P}) \sqsubseteq \mathfrak{M}$. Consequently, \mathfrak{P} is a $Neu^{gs}CS$. The reverse of the above theorem is inaccurate, as displayed in the subsequent instances.

Example 3.6:

Let $\mathfrak{U} = \{u_1, u_2\}$ be a set and assume that $\zeta = \{0_{Neu}, \mathfrak{P}_1, \mathfrak{P}_2, 1_{Neu}\}$ is a $Neu^{\mathcal{T}}$ defined on \mathfrak{U} . Suppose that we have the following sets $\mathfrak{P}_1 = \langle u, (0.5, 0.6), (0.3, 0.2), (0.4, 0.1) \rangle$ and $\mathfrak{P}_2 = \langle u, (0.4, 0.4), (0.4, 0.3), (0.5, 0.4) \rangle$ are given. Then the neutrosophic set $\mathfrak{P}_3 = \langle u, (0.5, 0.4), (0.4, 0.4), (0.4, 0.5) \rangle$ is a $Neu^{\alpha \varphi}CS$ and hence $Neu^{\varphi \alpha}CS$ but not a $Neu^{\varphi s \varphi}CS$.

Example 3.7:

Let $\mathfrak{U} = \{u_1, u_2\}$ and let $\zeta = \{0_{Neu}, \mathfrak{P}_1, 1_{Neu}\}$ be a Neu^T on \mathfrak{U} . Take $\mathfrak{P}_1 = \langle u, (0.3, 0.4, 0.6), (0.6, 0.6, 0.4) \rangle$. Then the neutrosophic set $\mathfrak{P}_2 = \langle u, (0.3, 0.2, 0.5), (0.6, 0.6, 0.8) \rangle$ is a $Neu^{sg}CS$ but not a $Neu^{gsg}CS$.

Example 3.8:

Let $\mathfrak{U} = \{u_1, u_2\}$ and let $\zeta = \{0_{Neu}, \mathfrak{P}_1, 1_{Neu}\}$ be a Neu^T on \mathfrak{U} . Where $\mathfrak{P}_1 = \langle u, (0.3, 0.2, 0.3), (0.8, 0.6, 0.7) \rangle$. Then the neutrosophic set $\mathfrak{P}_2 = \langle u, (0.3, 0.2, 0.6), (0.8, 0.9, 0.8) \rangle$ is a $Neu^{gs}CS$. However, this latter set is not a $Neu^{gsg}CS$.

Remark 3.9:

The $Neu^{gsg}CS$ are independent of $Neu^{\alpha}CS$ and $Neu^{s}CS$.

Definition 3.10:

A neutrosophic subset \mathfrak{P} of a $Neu^{TS}(\mathfrak{U},\zeta)$ is called a neutrosophic generalized sg-open set (in short, $Neu^{gsg}OS$) iff $1_{Neu} - \mathfrak{P}$ is a $Neu^{gsg}CS$. The collection of entire $Neu^{gsg}OSs$ of a $Neu^{TS}(\mathfrak{U},\zeta)$ is signified by $Neu^{gsg}O(\mathfrak{U})$.

Proposition 3.11:

Let \mathfrak{P} be a *NeuOS* in *Neu*^{TS}(\mathfrak{U}, ζ), then this set \mathfrak{P} is *Neu*^{gsg}OS in the space (\mathfrak{U}, ζ).

DOI: <u>https://doi.org/10.54216/IJNS.18030101</u> Received: March 02, 2022 Accepted: May 30, 2022

Proof:

Let \mathfrak{P} be a *NeuOS* in a *Neu*^{TS}(\mathfrak{U}, ζ), then $1_{Neu} - \mathfrak{P}$ is a *NeuCS* in (\mathfrak{U}, ζ). According to theorem (3.2), point (i), $1_{Neu} - \mathfrak{P}$ is a *Neu*^{gsg}*CS*. Therefore, \mathfrak{P} is a *Neu*^{gsg}*OS* in (\mathfrak{U}, ζ).

Proposition 3.12:

Let \mathfrak{P} be a $Neu^{gsg}OS$ in $Neu^{\mathcal{T}S}(\mathfrak{U},\zeta)$, then this set \mathfrak{P} is $Neu^{g}OS$ in the space (\mathfrak{U},ζ) .

Proof:

Let \mathfrak{P} be a $Neu^{\mathfrak{gsg}}OS$ in a $Neu^{\mathcal{TS}}(\mathfrak{U},\zeta)$, then $1_{Neu} - \mathfrak{P}$ is a $Neu^{\mathfrak{gsg}}CS$ in (\mathfrak{U},ζ) . According to theorem (3.2), point (ii), $1_{Neu} - \mathfrak{P}$ is a $Neu^{\mathfrak{g}}CS$. Therefore, \mathfrak{P} is a $Neu^{\mathfrak{g}}OS$ in (\mathfrak{U},ζ) .

Theorem 3.13:

In a $Neu^{TS}(\mathfrak{U}, \zeta)$, the subsequent arguments are valid:

(i) Each $Neu^{gsg}OS$ is a $Neu^{\alpha g}OS$ and $Neu^{g\alpha}OS$.

(ii) Each *Neu*^{gsg}OS is a *Neu*^{sg}OS and *Neu*^{gs}OS.

Proof:

Similar to above proposition.

Proposition 3.14:

If \mathfrak{P} and \mathfrak{Q} are $Neu^{gsg}CSs$ in a $Neu^{\mathcal{TS}}(\mathfrak{U},\zeta)$, then $\mathfrak{P}\sqcup\mathfrak{Q}$ is a $Neu^{gsg}CS$.

Proof:

Let \mathfrak{P} and \mathfrak{Q} be two $Neu^{gsg}CSs$ in a $Neu^{TS}(\mathfrak{U},\zeta)$ and let \mathfrak{M} be any $Neu^{sg}OS$ in \mathfrak{U} such that $\mathfrak{P} \sqsubseteq \mathfrak{M}$ and $\mathfrak{Q} \sqsubseteq \mathfrak{M}$. Then we have $\mathfrak{P} \sqcup \mathfrak{Q} \sqsubseteq \mathfrak{M}$. Since \mathfrak{P} and \mathfrak{Q} are $Neu^{gsg}CSs$ in \mathfrak{U} , $NeuCl(\mathfrak{P}) \sqsubseteq \mathfrak{M}$ and $NeuCl(\mathfrak{Q}) \sqsubseteq \mathfrak{M}$. Now, $NeuCl(\mathfrak{P} \sqcup \mathfrak{Q}) = NeuCl(\mathfrak{P}) \sqcup NeuCl(\mathfrak{Q}) \sqsubseteq \mathfrak{M}$ and so $NeuCl(\mathfrak{P} \sqcup \mathfrak{Q}) \sqsubseteq \mathfrak{M}$. Hence $\mathfrak{P} \sqcup \mathfrak{Q}$ is a $Neu^{gsg}CS$ in \mathfrak{U} .

Proposition 3.15:

If \mathfrak{P} is a $Neu^{\mathfrak{gsg}}CS$ in a $Neu^{\mathcal{TS}}(\mathfrak{U},\zeta)$, then $NeuCl(\mathfrak{P}) - \mathfrak{P}$ does not include non-empty NeuCS in (\mathfrak{U},ζ) . **Proof:**

Let \mathfrak{P} be a $Neu^{\mathfrak{gsg}}CS$ in a $Neu^{\mathfrak{TS}}(\mathfrak{U},\zeta)$ and let \mathfrak{F} be any NeuCS in (\mathfrak{U},ζ) such that $\mathfrak{F} \sqsubseteq NeuCl(\mathfrak{P}) - \mathfrak{P}$. Since \mathfrak{P} is a $Neu^{\mathfrak{gsg}}CS$, we have $NeuCl(\mathfrak{P}) \sqsubseteq 1_{Neu} - \mathfrak{F}$. This implies $\mathfrak{F} \sqsubseteq 1_{Neu} - NeuCl(\mathfrak{P})$. Then $\mathfrak{F} \sqsubseteq NeuCl(\mathfrak{P}) \sqcap (1_{Neu} - NeuCl(\mathfrak{P})) = 0_{Neu}$. Thus, $\mathfrak{F} = 0_{Neu}$. Hence $NeuCl(\mathfrak{P}) - \mathfrak{P}$ does not include non-empty NeuCS in (\mathfrak{U},ζ) .

Proposition 3.16:

A neutrosophic set \mathfrak{P} is $Neu^{gsg}CS$ in a $Neu^{TS}(\mathfrak{U},\zeta)$ iff $NeuCl(\mathfrak{P}) - \mathfrak{P}$ does not include non-empty $Neu^{sg}CS$ in (\mathfrak{U},ζ) .

Proof:

Let \mathfrak{P} be a $Neu^{g_{sg}}CS$ in a $Neu^{TS}(\mathfrak{U},\zeta)$ and let \mathfrak{R} be any $Neu^{sg}CS$ in (\mathfrak{U},ζ) such that $\mathfrak{R} \sqsubseteq NeuCl(\mathfrak{P}) - \mathfrak{P}$. Since \mathfrak{P} is a $Neu^{g_{sg}}CS$, we have $NeuCl(\mathfrak{P}) \sqsubseteq 1_{Neu} - \mathfrak{R}$. This implies $\mathfrak{R} \sqsubseteq 1_{Neu} - NeuCl(\mathfrak{P})$. Then $\mathfrak{R} \sqsubseteq NeuCl(\mathfrak{P}) \sqcap (1_{Neu} - NeuCl(\mathfrak{P})) = 0_{Neu}$. Thus, \mathfrak{R} is empty.

Conversely, suppose that $NeuCl(\mathfrak{P}) - \mathfrak{P}$ does not include non-empty $Neu^{s_{\mathscr{P}}}CS$ in (\mathfrak{U}, ζ) . Let $\mathfrak{P} \subseteq \mathfrak{M}$ and \mathfrak{M} is $Neu^{s_{\mathscr{P}}}OS$. If $NeuCl(\mathfrak{P}) \subseteq \mathfrak{M}$ then $NeuCl(\mathfrak{P}) \sqcap (1_{Neu} - \mathfrak{M})$ is non-empty. Since $NeuCl(\mathfrak{P})$ is NeuCS and $1_{Neu} - \mathfrak{M}$ is $Neu^{s_{\mathscr{P}}}CS$, we have $NeuCl(\mathfrak{P}) \sqcap (1_{Neu} - \mathfrak{M})$ is not empty $Neu^{s_{\mathscr{P}}}CS$ of $NeuCl(\mathfrak{P}) - \mathfrak{P}$, which is a contradiction. Therefore $NeuCl(\mathfrak{P}) \not \equiv \mathfrak{M}$. Hence \mathfrak{P} is a $Neu^{\mathfrak{gs}}CS$.

Proposition 3.17:

If \mathfrak{P} is a $Neu^{gsg}CS$ in a $Neu^{TS}(\mathfrak{U},\zeta)$ and $\mathfrak{P} \subseteq \mathfrak{Q} \subseteq NeuCl(\mathfrak{P})$, then \mathfrak{Q} is a $Neu^{gsg}CS$ in (\mathfrak{U},ζ) . **Proof:**

Assume the set \mathfrak{P} is a $Neu^{\mathfrak{gsg}}CS$ in a $Neu^{\mathcal{TS}}(\mathfrak{U},\zeta)$. Suppose the set \mathfrak{M} is a $Neu^{\mathfrak{gg}}OS$ in (\mathfrak{U},ζ) where $\mathfrak{Q} \subseteq \mathfrak{M}$. So, $\mathfrak{P} \subseteq \mathfrak{M}$. Because \mathfrak{P} is a $Neu^{\mathfrak{gsg}}CS$, it observes that $NeuCl(\mathfrak{P}) \subseteq \mathfrak{M}$. Currently, $\mathfrak{Q} \subseteq NeuCl(\mathfrak{P})$ suggests $NeuCl(\mathfrak{Q}) \subseteq NeuCl(NeuCl(\mathfrak{P})) = NeuCl(\mathfrak{P})$. Thus, $NeuCl(\mathfrak{Q}) \subseteq \mathfrak{M}$. Hence \mathfrak{Q} is a $Neu^{\mathfrak{gsg}}CS$.

Proposition 3.18:

Let $\mathfrak{P} \sqsubseteq \mathfrak{D} \sqsubseteq \mathfrak{U}$ and if \mathfrak{P} is a $Neu^{\mathfrak{gsg}}CS$ in \mathfrak{U} then \mathfrak{P} is a $Neu^{\mathfrak{gsg}}CS$ relative to \mathfrak{D} .

Proof:

 $\mathfrak{P} \sqsubseteq \mathfrak{D} \sqcap \mathfrak{M}$ where \mathfrak{M} is a $Neu^{s_{\mathcal{P}}}OS$ in \mathfrak{U} . Then $\mathfrak{P} \sqsubseteq \mathfrak{M}$ and hence $NeuCl(\mathfrak{P}) \sqsubseteq \mathfrak{M}$. This implies that $\mathfrak{D} \sqcap NeuCl(\mathfrak{P}) \sqsubseteq \mathfrak{D} \sqcap \mathfrak{M}$. Thus \mathfrak{P} is a $Neu^{g_{\mathcal{S}}g}CS$ relative to \mathfrak{D} .

Proposition 3.19:

If \mathfrak{P} is a *Neu^{sg}OS* and a *Neu^{gsg}CS* in a *Neu^{TS}*(\mathfrak{U}, ζ), then \mathfrak{P} is a *NeuCS* in (\mathfrak{U}, ζ).

Proof:

Suppose that \mathfrak{P} is a $Neu^{s_{\mathscr{G}}}OS$ and a $Neu^{\mathscr{G}}CS$ in a $Neu^{\mathcal{T}S}(\mathfrak{U},\zeta)$, then $NeuCl(\mathfrak{P}) \sqsubseteq \mathfrak{P}$ and since $\mathfrak{P} \sqsubseteq NeuCl(\mathfrak{P})$. Thus, $NeuCl(\mathfrak{P}) = \mathfrak{P}$. Hence \mathfrak{P} is a NeuCS.

Theorem 3.20:

For each $u \in \mathfrak{U}$ either $\langle u, (0.1, 0.1) \rangle$ is a $Neu^{s \notin} CS$ or $1_{Neu} - \langle u, (0.1, 0.1) \rangle$ is a $Neu^{\mathfrak{gs}} CS$ in \mathfrak{U} . **Proof:**

If $\langle u, (0.1, 0.1) \rangle$ is not a $Neu^{s_{\#}}CS$ in \mathfrak{U} then $1_{Neu} - \langle u, (0.1, 0.1) \rangle$ is not a $Neu^{s_{\#}}OS$ and the only $Neu^{s_{\#}}OS$ containing $1_{Neu} - \langle u, (0.1, 0.1) \rangle$ is the space \mathfrak{U} itself. Therefore $NeuCl(1_{Neu} - \langle u, (0.1, 0.1) \rangle) \equiv 1_{Neu}$ and so $1_{Neu} - \langle u, (0.1, 0.1) \rangle$ is a $Neu^{g_{s_{\#}}}CS$ in \mathfrak{U} .

Proposition 3.21:

If \mathfrak{P} and \mathfrak{Q} are $Neu^{gsg}OSs$ in a $Neu^{\mathcal{TS}}(\mathfrak{U},\zeta)$, then $\mathfrak{P} \sqcap \mathfrak{Q}$ is a $Neu^{gsg}OS$.

Proof:

Let \mathfrak{P} and \mathfrak{Q} be $Neu^{gsg}OSs$ in a $Neu^{TS}(\mathfrak{U},\zeta)$. Then $1_{Neu} - \mathfrak{P}$ and $1_{Neu} - \mathfrak{Q}$ are $Neu^{gsg}CSs$. By proposition (3.14), $(1_{Neu} - \mathfrak{P}) \sqcup (1_{Neu} - \mathfrak{Q})$ is a $Neu^{gsg}CS$. Since $(1_{Neu} - \mathfrak{P}) \sqcup (1_{Neu} - \mathfrak{Q}) = 1_{Neu} - (\mathfrak{P} \sqcap \mathfrak{Q})$. Hence $\mathfrak{P} \sqcap \mathfrak{Q}$ is a $Neu^{gsg}OS$.

Theorem 3.22:

A neutrosophic set \mathfrak{P} is $Neu^{\mathfrak{gsg}}OS$ iff $\mathfrak{S} \sqsubseteq NeuInt(\mathfrak{P})$ where \mathfrak{S} is a $Neu^{\mathfrak{gsg}}CS$ and $\mathfrak{S} \sqsubseteq \mathfrak{P}$. **Proof:**

Suppose that $\mathfrak{S} \sqsubseteq NeuInt(\mathfrak{P})$ where \mathfrak{S} is a $Neu^{\mathfrak{gsg}}CS$ and $\mathfrak{S} \sqsubseteq \mathfrak{P}$. Then $1_{Neu} - \mathfrak{P} \sqsubseteq 1_{Neu} - \mathfrak{S}$ and $1_{Neu} - \mathfrak{S}$ is a $Neu^{\mathfrak{sg}}OS$ by theorem (3.13) part (ii). Now, $NeuCl(1_{Neu} - \mathfrak{P}) = 1_{Neu} - NeuInt(\mathfrak{P}) \sqsubseteq 1_{Neu} - \mathfrak{S}$. Then $1_{Neu} - \mathfrak{P}$ is a $Neu^{\mathfrak{gsg}}CS$. Hence \mathfrak{P} is a $Neu^{\mathfrak{gsg}}OS$.

Conversely, let \mathfrak{P} be a $Neu^{\mathfrak{gsg}}OS$ and \mathfrak{S} be a $Neu^{\mathfrak{gsg}}CS$ and $\mathfrak{S} \sqsubseteq \mathfrak{P}$. Then $1_{Neu} - \mathfrak{P} \sqsubseteq 1_{Neu} - \mathfrak{S}$. Since $1_{Neu} - \mathfrak{P}$ is a $Neu^{\mathfrak{gsg}}CS$ and $1_{Neu} - \mathfrak{S}$ is a $Neu^{\mathfrak{gsg}}OS$, we have $NeuCl(1_{Neu} - \mathfrak{P}) \sqsubseteq 1_{Neu} - \mathfrak{S}$. Then $\mathfrak{S} \sqsubseteq NeuInt(\mathfrak{P})$.

Theorem 3.23:

If $\mathfrak{P} \sqsubseteq \mathfrak{Q} \sqsubseteq \mathfrak{U}$ where \mathfrak{P} is a *Neu*^{gsg}*OS* relative to \mathfrak{Q} and \mathfrak{Q} is a *Neu*^{gsg}*OS* in \mathfrak{U} , then \mathfrak{P} is a *Neu*^{gsg}*OS* in \mathfrak{U} .

Proof:

Let \mathfrak{F} be a $Neu^{s\varphi}CS$ in \mathfrak{U} and suppose that $\mathfrak{F} \sqsubseteq \mathfrak{P}$. Then $\mathfrak{F} = \mathfrak{F} \sqcap \mathfrak{Q}$ is a $Neu^{s\varphi}CS$ in \mathfrak{Q} . But \mathfrak{P} is a $Neu^{qs\varphi}OS$ relative to \mathfrak{Q} . Therefore $\mathfrak{F} \sqsubseteq NeuInt_{\mathfrak{Q}}(\mathfrak{P})$. Since $NeuInt_{\mathfrak{Q}}(\mathfrak{P})$ is a NeuOS relative to \mathfrak{Q} . We have $\mathfrak{F} \sqsubseteq \mathfrak{M} \sqcap \mathfrak{Q} \sqsubseteq \mathfrak{P}$, for some $NeuOS \mathfrak{M}$ in \mathfrak{U} . Since \mathfrak{Q} is a $Neu^{qs\varphi}OS$ in \mathfrak{U} , we have $\mathfrak{F} \sqsubseteq NeuInt(\mathfrak{Q}) \sqsubseteq \mathfrak{Q}$. Therefore $\mathfrak{F} \sqsubseteq NeuInt(\mathfrak{Q}) \sqsubseteq \mathfrak{P}$. It follows that $\mathfrak{F} \sqsubseteq NeuInt(\mathfrak{P})$. Thus, \mathfrak{P} is a $Neu^{qs\varphi}OS$ in \mathfrak{U} .

Theorem 3.24:

If \mathfrak{P} is a $Neu^{\mathfrak{gsg}}OS$ in a $Neu^{\mathcal{TS}}(\mathfrak{U},\zeta)$ and $NeuInt(\mathfrak{P}) \subseteq \mathfrak{Q} \subseteq \mathfrak{P}$, then \mathfrak{Q} is a $Neu^{\mathfrak{gsg}}OS$ in (\mathfrak{U},ζ) . **Proof:**

Suppose that \mathfrak{P} is a $Neu^{\mathfrak{gsg}}OS$ in a $Neu^{\mathcal{TS}}(\mathfrak{U},\zeta)$ and $NeuInt(\mathfrak{P}) \subseteq \mathfrak{Q} \subseteq \mathfrak{P}$. Then $1_{Neu} - \mathfrak{P}$ is a $Neu^{\mathfrak{gsg}}CS$ and $1_{Neu} - \mathfrak{P} \subseteq 1_{Neu} - \mathfrak{Q} \subseteq NeuCl(1_{Neu} - \mathfrak{P})$. Then $1_{Neu} - \mathfrak{Q}$ is a $Neu^{\mathfrak{gsg}}CS$ by proposition (3.17). Hence, \mathfrak{Q} is a $Neu^{\mathfrak{gsg}}OS$.

Theorem 3.25:

For a neutrosophic subset \mathfrak{P} of a $Neu^{TS}(\mathfrak{U}, \zeta)$, the following statements are equivalent:

(i) \mathfrak{P} is a $Neu^{gsg}CS$.

(ii) $NeuCl(\mathfrak{P}) - \mathfrak{P}$ contains no non-empty $Neu^{s_{\mathcal{P}}}CS$.

(iii) $NeuCl(\mathfrak{P}) - \mathfrak{P}$ is a $Neu^{gsg}OS$.

Proof:

Follows from proposition (3.16) and proposition (3.18).

Remark 3.26:

The subsequent illustration reveals the relative among the diverse kinds of *NeuCS*:

4. Neutrosophic gsg-Closure and Neutrosophic gsg-Interior

We present neutrosophic *gsg*-closure and neutrosophic *gsg*-interior and obtain some of its properties in this section.

Definition 4.1:

The intersection of all $Neu^{gsg}CSs$ in a $Neu^{TS}(\mathfrak{U},\zeta)$ containing \mathfrak{P} is called neutrosophic gsg-closure of \mathfrak{P} and is denoted by $Neu^{gsg}Cl(\mathfrak{P})$.

Definition 4.2:

The union of all $Neu^{gsg}OSs$ in a $Neu^{TS}(\mathfrak{U},\zeta)$ contained in \mathfrak{P} is called neutrosophic gsg-interior of \mathfrak{P} and is denoted by $Neu^{gsg}Int(\mathfrak{P})$.

Proposition 4.3:

Let \mathfrak{P} be any neutrosophic set in a *Neu*^{TS} (\mathfrak{U}, ζ). Then the following properties hold:

(i) $Neu^{gsg}Int(\mathfrak{P}) = \mathfrak{P}$ iff \mathfrak{P} is a $Neu^{gsg}OS$.

(ii) $Neu^{gsg}Cl(\mathfrak{P}) = \mathfrak{P}$ iff \mathfrak{P} is a $Neu^{gsg}CS$.

(iii) $Neu^{gsg}Int(\mathfrak{P})$ is the largest $Neu^{gsg}OS$ contained in \mathfrak{P} .

(iv) *Neu*^{gsg}*Cl*(𝔅) is the smallest *Neu*^{gsg}*CS* containing 𝔅.

Proof:

(i), (ii), (iii) and (iv) are obvious.

Proposition 4.4:

Let \mathfrak{P} be any neutrosophic set in a $Neu^{TS}(\mathfrak{U},\zeta)$. Then the following properties hold: (i) $Neu^{g_{S}g}Int(1_{Neu} - \mathfrak{P}) = 1_{Neu} - (Neu^{g_{S}g}Cl(\mathfrak{P})),$ (ii) $Neu^{g_{S}g}Cl(1_{Neu} - \mathfrak{P}) = 1_{Neu} - (Neu^{g_{S}g}Int(\mathfrak{P})).$ **Proof:** (i) By definition, $Neu^{g_{S}g}Cl(\mathfrak{P}) = \Pi\{\mathfrak{Q}: \mathfrak{P} \sqsubseteq \mathfrak{Q}, \mathfrak{Q} \text{ is a } Neu^{g_{S}g}CS\}$ $1_{Neu} - (Neu^{g_{S}g}Cl(\mathfrak{P})) = 1_{Neu} - \Pi\{\mathfrak{Q}: \mathfrak{P} \sqsubseteq \mathfrak{Q}, \mathfrak{Q} \text{ is a } Neu^{g_{S}g}CS\}$ $= \sqcup\{1_{Neu} - \mathfrak{Q}: \mathfrak{P} \sqsubseteq \mathfrak{Q}, \mathfrak{Q} \text{ is a } Neu^{g_{S}g}CS\}$ $= \sqcup\{\mathfrak{M}: \mathfrak{M} \sqsubseteq 1_{Neu} - \mathfrak{P}, \mathfrak{M} \text{ is a } Neu^{g_{S}g}OS\}$ $= Neu^{g_{S}g}Int(1_{Neu} - \mathfrak{P}).$

(ii) The evidence is analogous to (i).

Theorem 4.5:

Let \mathfrak{P} and \mathfrak{Q} be two neutrosophic sets in a $Neu^{TS}(\mathfrak{U},\zeta)$. Then the following properties hold: (i) $Neu^{gsg}Cl(0_{Neu}) = 0_{Neu}$, $Neu^{gsg}Cl(1_{Neu}) = 1_{Neu}$. (ii) $\mathfrak{P} \subseteq Neu^{gsg}Cl(\mathfrak{P})$.

(iii) $\mathfrak{P} \sqsubseteq \mathfrak{Q} \Longrightarrow Neu^{\mathfrak{gsg}}Cl(\mathfrak{P}) \sqsubseteq Neu^{\mathfrak{gsg}}Cl(\mathfrak{Q}).$

(iv) $Neu^{gsg}Cl(\mathfrak{P} \sqcap \mathfrak{Q}) \sqsubseteq Neu^{gsg}Cl(\mathfrak{P}) \sqcap Neu^{gsg}Cl(\mathfrak{Q}).$

(v) $Neu^{gsg}Cl(\mathfrak{P}\sqcup\mathfrak{Q}) = Neu^{gsg}Cl(\mathfrak{P})\sqcup Neu^{gsg}Cl(\mathfrak{Q}).$

(vi) $Neu^{gsg}Cl(Neu^{gsg}Cl(\mathfrak{P})) = Neu^{gsg}Cl(\mathfrak{P}).$

Proof:

(i) and (ii) are obvious.

(iii) By part (ii), $\mathbb{Q} \subseteq Neu^{gsg}Cl(\mathbb{Q})$. Since $\mathfrak{P} \subseteq \mathbb{Q}$, we have $\mathfrak{P} \subseteq Neu^{gsg}Cl(\mathbb{Q})$. But $Neu^{gsg}Cl(\mathbb{Q})$ is a $Neu^{gsg}CS$. Thus $Neu^{gsg}Cl(\mathbb{Q})$ is a $Neu^{gsg}CS$ containing \mathfrak{P} . Since $Neu^{gsg}Cl(\mathfrak{P})$ is the smallest $Neu^{gsg}CS$ containing \mathfrak{P} , we have $Neu^{gsg}Cl(\mathfrak{P}) \subseteq Neu^{gsg}Cl(\mathfrak{Q})$.

(iv) We know that $\mathfrak{P} \square \mathfrak{Q} \sqsubseteq \mathfrak{P}$ and $\mathfrak{P} \square \mathfrak{Q} \sqsubseteq \mathfrak{Q}$. Therefore, by part (iii), $Neu^{gsg}Cl(\mathfrak{P} \square \mathfrak{Q}) \sqsubseteq Neu^{gsg}Cl(\mathfrak{P})$ and $Neu^{gsg}Cl(\mathfrak{P} \square \mathfrak{Q}) \sqsubseteq Neu^{gsg}Cl(\mathfrak{Q})$. Hence $Neu^{gsg}Cl(\mathfrak{P} \square \mathfrak{Q}) \sqsubseteq Neu^{gsg}Cl(\mathfrak{P}) \square Neu^{gsg}Cl(\mathfrak{Q})$.

(v) Since $\mathfrak{P} \sqsubseteq \mathfrak{P} \sqcup \mathfrak{Q}$ and $\mathfrak{Q} \sqsubseteq \mathfrak{P} \sqcup \mathfrak{Q}$, it follows from part (iii) that $Neu^{gsg}Cl(\mathfrak{P}) \sqsubseteq Neu^{gsg}Cl(\mathfrak{P} \sqcup \mathfrak{Q})$ and $Neu^{gsg}Cl(\mathfrak{Q}) \sqsubseteq Neu^{gsg}Cl(\mathfrak{P} \sqcup \mathfrak{Q})$. Hence $Neu^{gsg}Cl(\mathfrak{P}) \sqcup Neu^{gsg}Cl(\mathfrak{Q}) \sqsubseteq Neu^{gsg}Cl(\mathfrak{P} \sqcup \mathfrak{Q})$(1)

Since $Neu^{gsg}Cl(\mathfrak{P})$ and $Neu^{gsg}Cl(\mathfrak{Q})$ are $Neu^{gsg}CSs$, $Neu^{gsg}Cl(\mathfrak{P}) \sqcup Neu^{gsg}Cl(\mathfrak{Q})$ is also $Neu^{gsg}CS$ by (3.14). proposition $\mathfrak{P} \sqsubseteq Neu^{\mathfrak{gsg}}Cl(\mathfrak{P})$ $\mathfrak{Q} \sqsubseteq Neu^{gsg}Cl(\mathfrak{Q})$ Also and implies that $\mathfrak{P} \sqcup \mathfrak{Q} \sqsubseteq Neu^{gsg} Cl(\mathfrak{P}) \sqcup Neu^{gsg} Cl(\mathfrak{Q})$. Thus $Neu^{gsg} Cl(\mathfrak{P}) \sqcup Neu^{gsg} Cl(\mathfrak{Q})$ is a $Neu^{gsg} CS$ containing $\mathfrak{P} \sqcup \mathfrak{Q}$. Since Neu^{gsg}Cl(𝒫⊔𝒫) is the smallest Neu^{gsg}CS containing ₽∐Q, we have $Neu^{gsg}Cl(\mathfrak{P}\sqcup\mathfrak{Q}) \sqsubseteq Neu^{gsg}Cl(\mathfrak{P}) \sqcup Neu^{gsg}Cl(\mathfrak{Q}).....(2)$

From (1) and (2), we have $Neu^{gsg}Cl(\mathfrak{P}\sqcup\mathfrak{Q}) = Neu^{gsg}Cl(\mathfrak{P})\sqcup Neu^{gsg}Cl(\mathfrak{Q})$.

(vi) Since $Neu^{gsg}Cl(\mathfrak{P})$ is a $Neu^{gsg}CS$, we have by proposition (4.3) part (ii), $Neu^{gsg}Cl(Neu^{gsg}Cl(\mathfrak{P})) = Neu^{gsg}Cl(\mathfrak{P})$.

Theorem 4.6:

Let \mathfrak{P} and \mathfrak{Q} be two neutrosophic sets in a $Neu^{TS}(\mathfrak{U},\zeta)$. Then the following properties hold: (i) $Neu^{gsg}Int(\mathfrak{0}_{Neu}) = \mathfrak{0}_{Neu}$, $Neu^{gsg}Int(\mathfrak{1}_{Neu}) = \mathfrak{1}_{Neu}$. (ii) $Neu^{gsg}Int(\mathfrak{P}) \subseteq \mathfrak{P}$. (iii) $\mathfrak{P} \subseteq \mathfrak{Q} \Longrightarrow Neu^{gsg}Int(\mathfrak{P}) \subseteq Neu^{gsg}Int(\mathfrak{Q})$. (iv) $Neu^{gsg}Int(\mathfrak{P} \square \mathfrak{Q}) = Neu^{gsg}Int(\mathfrak{P}) \square Neu^{gsg}Int(\mathfrak{Q})$. (v) $Neu^{gsg}Int(\mathfrak{P} \square \mathfrak{Q}) \supseteq Neu^{gsg}Int(\mathfrak{P}) \square Neu^{gsg}Int(\mathfrak{Q})$. (vi) $Neu^{gsg}Int(\mathbb{P} \square \mathfrak{Q}) \supseteq Neu^{gsg}Int(\mathfrak{P}) \square Neu^{gsg}Int(\mathfrak{Q})$. (vi) $Neu^{gsg}Int(Neu^{gsg}Int(\mathfrak{P})) = Neu^{gsg}Int(\mathfrak{P})$. **Proof:**

(i), (ii), (iii), (iv), (v) and (vi) are obvious.

Definition 4.7:

A $Neu^{TS}(\mathfrak{U},\zeta)$ is called a neutrosophic $T_{\frac{1}{2}}$ -space (in short, $NeuT_{\frac{1}{2}}$ -space) if each $Neu^{\mathscr{G}}CS$ in this space is a *NeuCS*.

Definition 4.8:

A $Neu^{TS}(\mathfrak{U},\zeta)$ is called a neutrosophic T_{gsg} -space (in short, $NeuT_{gsg}$ -space) if each $Neu^{gsg}CS$ in this space is a *NeuCS*.

Proposition 4.9:

Every $NeuT_{\frac{1}{2}}$ -space is a $NeuT_{gsg}$ -space.

Proof:

Let (\mathfrak{U}, ζ) be a $NeuT_{\frac{1}{2}}$ -space and let \mathfrak{P} be a $Neu^{gsg}CS$ in \mathfrak{U} . Then \mathfrak{P} is a $Neu^{g}CS$, by theorem (3.2) part (ii). Since (\mathfrak{U}, ζ) is a $NeuT_{\frac{1}{2}}$ -space, then \mathfrak{P} is a NeuCS in \mathfrak{U} . Hence (\mathfrak{U}, ζ) is a $NeuT_{gsg}$ -space.

Theorem 4.10:

For a *Neu*^{TS}(\mathfrak{U}, ζ), the following statements are equivalent:

(i) (\mathfrak{U}, ζ) is a *NeuT*_{*asa*}-space.

(ii) Every singleton of a $Neu^{TS}(\mathfrak{U}, \zeta)$ is either $Neu^{S\#}CS$ or NeuOS.

Proof:

(i) \Rightarrow (ii) Assume that for some $u \in \mathfrak{U}$ the neutrosophic set $\langle u, (0.1, 0.1) \rangle$ is not a $Neu^{s_{\mathscr{G}}}CS$ in a $Neu^{TS}(\mathfrak{U}, \zeta)$. Then the only $Neu^{s_{\mathscr{G}}}OS$ containing $1_{Neu} - \langle u, (0.1, 0.1) \rangle$ is the space \mathfrak{U} itself and $1_{Neu} - \langle u, (0.1, 0.1) \rangle$ is a $Neu^{\mathscr{GS}}CS$ in (\mathfrak{U}, ζ) . By assumption $1_{Neu} - \langle u, (0.1, 0.1) \rangle$ is a NeuCS in (\mathfrak{U}, ζ) or equivalently $\langle u, (0.1, 0.1) \rangle$ is a NeuOS. (ii) \Rightarrow (i) Let \mathfrak{P} be a $Neu^{\mathfrak{gsg}}CS$ in (\mathfrak{U},ζ) and let $u \in NeuCl(\mathfrak{P})$. By assumption $\langle u, (0.1,0.1) \rangle$ is either $Neu^{\mathfrak{gg}}CS$ or NeuOS.

Case(1). Suppose $\langle u, (0.1, 0.1) \rangle$ is a $Neu^{s_{\#}}CS$. If $u \notin \mathfrak{P}$ then $NeuCl(\mathfrak{P}) - \mathfrak{P}$ contains a non-empty $Neu^{s_{\#}}CS$ $\langle u, (0.1, 0.1) \rangle$ which is a contradiction to proposition (3.18). Therefore $u \in \mathfrak{P}$.

Case(2). Suppose $\langle u, (0.1, 0.1) \rangle$ is a *NeuOS*. Since $u \in NeuCl(\mathfrak{P})$, $\langle u, (0.1, 0.1) \rangle \Box \mathfrak{P} \neq 0_{Neu}$ and therefore $NeuCl(\mathfrak{P}) \sqsubseteq \mathfrak{P}$ or equivalently \mathfrak{P} is a *NeuCS* in a *Neu^{TS}*(\mathfrak{U}, ζ).

5. Conclusion

The concept of $Neu^{gsg}CS$ identified utilizing $Neu^{sg}CS$ constructs a neutrosophic topology and sits between the concept of NeuCS and the concept of $Neu^{gsg}CS$ can be used to derive a new decomposition of Neu^{gsg} -continuity and new Neu^{gsg} -separation axioms.

Funding: This research received no external funding.

Acknowledgements: The authors are highly grateful to the Referees for their constructive suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. F. Smarandache, A unifying field in logics: neutrosophic logic, neutrosophy, neutrosophic set, neutrosophic probability. American Research Press, Rehoboth, NM, (1999).
- 2. F. Smarandache, Neutrosophy and neutrosophic logic, first international conference on neutrosophy, neutrosophic logic, set, probability, and statistics, University of New Mexico, Gallup, NM 87301, USA (2002).
- 3. A. Salama and S. A. Alblowi, Neutrosophic set and neutrosophic topological spaces. IOSR Journal of Mathematics, 3(2012), 31-35.
- 4. Q. H. Imran, F. Smarandache, R. K. Al-Hamido and R. Dhavaseelan, On neutrosophic semi-*α*-open sets. Neutrosophic Sets and Systems, 18(2017), 37-42.
- 5. Md. Hanif PAGE and Q. H. Imran, Neutrosophic generalized homeomorphism. Neutrosophic Sets and Systems, 35(2020), 340-346.
- 6. R. Dhavaseelan and S. Jafari, Generalized Neutrosophic closed sets. New trends in Neutrosophic theory and applications, 2(2018), 261-273.
- 7. Q. H. Imran, R. Dhavaseelan, A. H. M. Al-Obaidi and M. H. Page, On neutrosophic generalized alpha generalized continuity. Neutrosophic Sets and Systems, 35(2020), 511-521.
- P. Iswarya and Dr. K. Bageerathi, On neutrosophic semi-open sets in neutrosophic topological spaces. International Journal of Mathematics Trends and Technology (IJMTT), Vol.37, No.3 (2016), 24-33.
- 9. I. Arokiarani, R. Dhavaseelan, S. Jafari and M. Parimala, On Some New Notions and Functions in Neutrosophic Topological Spaces. Neutrosophic Sets and Systems, 16(2017), 16-19.
- 10. A. Pushpalatha and T. Nandhini, Generalized closed sets via neutrosophic topological spaces. Malaya Journal of Matematik, 7(1), (2019), 50-54.
- D. Jayanthi, α Generalized Closed Sets in Neutrosophic Topological Spaces. International Journal of Mathematics Trends and Technology (IJMTT)- Special Issue ICRMIT March (2018), 88-91.

- 12. D. Sreeja and T. Sarankumar, Generalized Alpha Closed sets in Neutrosophic topological spaces. Journal of Applied Science and Computations, 5(11), (2018), 1816-1823.
- 13. P. Iswarya and Dr. K. Bageerathi, A study on neutrosophic semi generalized closed sets in neutrosophic topological spaces. Acta Ciencia Indica, Vol. XLIII M, No.4, (2017), 239-245.
- 14. V. K. Shanthi, S. Chandrasekar and K. Safina Begam, Neutrosophic generalized semi closed sets in neutrosophic topological spaces. International Journal of Research in Advent Technology, Vol.6, No.7, (2018), 1739-1743.
- 15. P. Iswarya and Dr. K. Bageerathi, A study on neutrosophic generalized semi closed sets in neutrosophic topological spaces. Journal of Emerging Technologies and Innovative Research (JETIR), Volume 6, Issue 2, (2019), 452-457.