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Abstract
The research relied on two basic and new concepts, starting from the first concept 

of condensed, which is divided into four different types, where the relationships between 
them were studied, as well as their relationship to the concept of I-dense, I-irresolvable and 
other basic concepts in the ideal topological spaces. The second concept is the I-extremal 
disconnected, and we have shown relationship with the first concept.
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1. Introduction

The concepts defined here, in addition to their characteristics, 
depend primarily on the concept of ideal defined by K. Kuratowski [1], 
also the concept of local function defined by R. R.Vaidyanathswamy 
[2], where there is a constellation of researchers who have enriched this 
function, whether it is related to fuzzy sets or related with the soft sets 
[3,4]. An important concept that played a fundamental role in both pure 
and applied mathematics. The idea of proximity, known by Riesz [5]. 
So, the local function of any subset H of universal set X is H* = { ,x XÎ

( )k xt" Î  s.t k H  not number of ideal I} and ( )Hy = ( ) ,X X H *- - E. 
Hayashi [6], defined *- dense-in-itself if ,k k*Ì  also the *-prefect, if k k*=  
and the ideal space is called co-dense if .It j=  J. Dontchev [7], defined 
I-dense if ,k X* = and P. Samuels [8], also defined co-dense if ,X X* = but 
D. Jankovic and T. R. Hamlett [9], prove that the equivalent of It j= if 
X X* = and the ideal space satisfy, this is called Hayashi-Samuel spaces.

Proposition 1.2 : [9] Let ( , , )X It  be ideal, the following statement, are 
hold:

1. , ( ).V V Vt y" Î Ì

2.  If ( , , )X It  is Hayashi-Samuel space ( ) cl ( ),k ky Í for each .k XÍ

3. ( ) cl( ),H H Hy *Ì Ì  for any .H XÍ

2. Building Foundations

Definition 2.1 : Let ( , , )X It  be ideal and ,XÍA

1. Super condensed if ( ( ).)y y* ÌA A

2. Sub condensed if [ ( )] .y * *=A A

3. condensed if super condensed and sub condense.
4. non - condensed if * )( .y j=A

5. y - congruent if * )( .y =A A

Example 2.2 : Let { ; is finite},I R= ÍA A  be an ideal on the real number 
R, so ( (() ))IQy y* *=A a not non-condensed sets and for any ,r RÎ the 
singleton set { }r is non-condensed set.

Example 2.3 : Let { , },,a b cX x x x= { , , { },cX xt = Æ { , ,} }{ },b c bx x x { , { }}aI x= Æ
Then { }, ,a cx x  is super condensed but not sub condensed. 
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In the following proposition, the most important properties and 
relationships of the concepts of condensed.

Proposition 2.4 : Let ( , , )X It  is ideal. For any subset ,XÍA following are 
hold:

1. If A  is * - perfect, thenA is super condensed.
2. If A  is y - conguront thenA is sub condensed.
3. If A  is super condensed, then cA  is sub condensed.
4. If cA  is subcondensed, then cA  is super condensed.
5. If A  is condensed, if cA  is condensed.
6. If A  is super condensed, then cA  is I-dense.
7. If A  is sub condensed and cA  is non- condensed, then A  is I-dense.
8. If A  is y - conguront and cA  is non- condensed, then A  is I-dense.
9. If A  is non- condensed and perfect, then A  is I-dense.

Theorem 2.5 : Let ( , , )X It  be Hayashi-Samuel, the following statement are true 
for any closed set :A

1. A  is sub condensed if [ ( )] .y *ÌA A

2. A  is sub condensed if [ ( )] ( ).y y* * A A A

3. A  is super condensed if ( ).y *A A

Proposition 2.6 : In any Hayashi-Samuel space ( , , )X It  having the 
properties:

1. If A  is y - conguront thenA  isopen super condensed.
2. If A  is non- condensed and perfect, then ( )X *-A is I-dense.
3. If ,IÎA  then A  is non- condensed.
4. For any , ( ) .[ ( )]X y y* *Í ÍA A A

Proposition 2.7 : Let ( , , )X It  is ideal, the following are true. 
1.  If A  is non- condensed, then every subset of A  is also non- 

condensed.
2.  The intersection of any finite collection of non- condensed subset of 

X is non- condensed.
3.  If A  is non- condensed, then for any ,J IÎ  then J-A and JA are 

non- condensed subset of X.
4. For any ideal J IÌ and A  is non- condensed w.r.t. I.
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5.  If A  is non- condensed, then BÙA is non- condensed, for any subset 
B of X.

6. If A  is non- condensed, then )( cy A  is I-dense.
7. If A  is non- condensed, then *A  is non- condensed.

Proposition 2.8 : Let ( , , )X It  be a ideal, the following are correct. 
1. If A  is non- condensed if XX -A  is I-dense.
2. X – A is non- condensed if ( )y A  is I-dense.
3. If A  is non- condensed, then ( ),u xt" Î in ( )y x Xy$ ¹ -A

 s.t ( ) .xX uy j- ¹A

Proposition 2.9 : Let ( , , )X It  Hayashi-Samuel space 
1. For any , ), ( xu ut tÎ is irresoluble.
2.  For any u t *Î  is I-irresoluble and ( )x*ÎA  then cA  is non- 

condensed.

Definition 2.10 : [10] Let ( , , )X It  be ideal and ,XÍA then *-frontier set of 
A  is denoted by ( )F r* A  and ( ) ( ) .F r X* * *= -A A A

Through Example 2.2, we see that ( )F r Q R* = and in the Example 2.3, 
we see that ({ , } .)a cF r x x j* =

Proposition 2.11 : Let ( , , )X It ) is a ideal andA  is I-dense .XÍ  If 
( ( ))F ry j* =A  then cA  is non- condensed set.

Corollary 2.12 : In the Hayashi-Samuel space ,J I" Î  then Jc is non- condensed 
set.

Definition 2.13 : The ideal space is called I-extremely disconnected, if every 
open, the local function of it, is all open set. Through Example 2.3, we see 
that ( , , )X It  is not I-extremely disconnected, but If we take { , , { }}cX xt = Æ
and { , { }},aI x= Æ  we get that ( , , )X It is I-extremely disconnected.

Proposition 2.14 : Let ( , , )X It  is a ideal, if X is I-extremely disconnected 
then every pair of disjoint open sets having disjoint local function.

Corollary 2.15 : Let ( , , )X It  Hayashi-Samuel if X is I-extremely disconnected, 
then ,u v t" Î s.t ,u v j=  t u v is non-condensed set.
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3. Discussion and Conclusion

We not that these sets are flexible in the process of use, so that they can 
be used to defining new separation axiom, which is defined topological 
spaces as well as defined ideal spaces. On the other hand, the weakly open 
sets can be an defined by using condensed sets [11,12,13,14].
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