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Abstract

The problem of non-equilibrium heat conduction in a semi-infinite medium subjected to a step change in

temperature is analyzed thermodynamically using the extended irreversible thermodynamic approach. The

results show clearly the wave nature of the dimensionless temperature distribution, Stanton number and the
dimensionless entropy change profiles. The non-equilibrium profiles approach the equilibrium profiles as

the speed of wave propagation is increased. The results also show that the non-equilibrium temperature is

higher than the equilibrium temperature but the difference decreases as the wave propagation speed in-

creases.

� 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Heat conduction; Thermodynamics; Temperature; Non-equilibrium

1. Introduction

A great deal of research has been devoted to developing theories dealing with non-equilibrium
thermodynamics and non-Fourier heat conduction. These researches help to understand the
connection between the two different subjects. Three different approaches are developed, which
are the classical irreversible thermodynamics (CIT), the rational thermodynamics (RT) and the
extended irreversible thermodynamics (EIT) approaches.
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The most popular approach is the CIT approach, which depends on the hypothesis of local
equilibrium [1]. Local equilibrium implies:

Nomenclature

c thermal wave speed (m/s)
Cp specific heat at constant pressure (J/kgK)
erf( ) error function
erfc( ) complementary error function
In modified Bessel function of first kind of order n
ierfc( ) imaginary complementary error function
J s entropy flux (W/m3 K)
k thermal conductivity (W/mK)
q heat flux (W/m3)
St conduction Stanton number
s specific entropy per unit volume (J/kgKm3)
T temperature (K)
t time (s)
u specific internal energy per unit volume (J/kgm3)
u( ) unit step function
v specific volume (m3/kg)
X generalized thermodynamic force (K/m)
x distance (m)

Greek symbols

a thermal diffusivity (m2/s)
b dimensionless time
d dimensionless distance
h dimensionless temperature distribution
q density (kg/m3)
rs rate of entropy production per unit volume (W/m3 K)
Ds entropy change (J/kgK)
s phase lag or relaxation time of heat flux (s)

Subscripts

eq equilibrium
f Fourier
nf non-Fourier
0 initial
w wall

Superscripts
� dimensionless
� time derivative
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1. Equilibrium is stable.
2. Variables used in the local equilibrium case are the same as those used in classical thermody-
namics, such as entropy and temperature.

3. The relationships between the state variables used in classical thermodynamics remain valid in
the case of local equilibrium.

The basic thermodynamic equations used in this approach are the energy balance equation and
Gibbs equation [1].

qu� ¼ �r � q ð1Þ

ds ¼ T�1 du ð2Þ

qs� ¼ T�1qu� ð3Þ

) qs� ¼ �T�1r � q ð4Þ

T�1r � q ¼ r � ðT�1qÞ þ T�2ðq � rT Þ ð5Þ

) qs� ¼ �r � ðT�1qÞ � T�2ðq � rT Þ ð6Þ

The following entropy balance equation is also used [2].

qs� ¼ �r � Js þ rs P 0 ð7Þ

where Js is the entropy flux vector and rs is the entropy production per unit volume per unit time,
which is a positive definite quantity (rs P 0).
By comparing Eqs. (6) and (7), it is seen that

Js ¼ T�1q

and

rs ¼ �T�2ðq � rT Þ ¼ �q � ðT�2rT Þ

According to Onsagers law, q is the thermodynamic flux and (T�2rT ) is the thermodynamic force
[3]. A linear relationship between the flux and the force is assumed [4].

q ¼ �eT�2rT ð8Þ

Comparing Eq. (8) with Fourier’s law (q ¼ �KrT ) yields that

e ¼ KT 2 ð9Þ
The second approach is the RT [3] approach, which is based on the assumption that the internal

energy depends on the physical fluxes in addition to the to the classical variables and that the
constitutive equations are time functional [5]. Also, the approach depends on the Clausius–
Duhem inequality of the second law of thermodynamics [2].

qs� Pr � ðT�1qÞ ð10Þ
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The third approach is the EIT approach, which is based on the following assumptions [1]:

1. The entropy is a function of the classical variables and the physical fluxes.
2. The entropy flux is equal to the heat flux divided by temperature.
3. The phenomenological laws of EIT are unsteady and non-linear.
4. In EIT, a signal propagates at a finite speed.

This approach depends on the Cattaneos equation and a generalized Gibbs equation, Eqs. (11)
and (12), respectively [6].

sq� þ q ¼ �KrT ð11Þ

s� ¼ T�1u� þ srT�1q� ð12Þ

2. The present work

The present work aims at examining the entropy change during non-Fourier heat conduction in
a semi-infinite medium subjected to a step change in temperature using the EIT approach. It also
aims at predicting the temperature distribution and the heat flux.
The non-Fourier heat conduction in an isotropic solid is described in the EIT approach in terms

of the heat flux q and the classical variable u or T [2,6]. It is defined by the Cattaneos equation:

sq� þ q ¼ �KrT ð11Þ

q� ¼ � 1
s
½qþ KrT 
 ð13Þ

The entropy variation during non-Fourier heat conduction is described by the following state
equation:

s ¼ sðu; qÞ ð14Þ

ds ¼ os
ou

� �
q

duþ os
oq

� �
u

dq ð15Þ

In analogy with CIT, the first partial derivative of Eq. (15) can be written as

os
ou

� �
q

¼ T�1ðu; qÞ ð16Þ

where T�1ðu; qÞ is the non-equilibrium temperature.
The second partial derivative is defined as [6]

os
oq

� �
u

¼ c
q
T�1ðu; qÞ ð17Þ

The parameter c is given as [6]

c ¼ c�q ð18Þ
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where c� is a function of the specific internal energy or the local equilibrium temperature as will be
indicated later.

) ds ¼ T�1 duþ c�

q
T�1qdq ð19Þ

qds ¼ qT�1 duþ c�T�1qdq ð20Þ
By integrating Eq. (20) and taking the time derivative of the resulting equation, the following
equation is obtained.

qs� ¼ qT�1u� þ c�T�1qq� ð21Þ

Since qu� ¼ �r � q, hence,

) qs� ¼ �T�1r � qþ c�T�1qq� ð22Þ

Substituting Eq. (5) in Eq. (22) gives

qs� ¼ �r � ðT�1qÞ � T�2ðq � rT Þ þ c�T�1qq� ð23Þ

By comparing Eqs. (7) and (23), it is seen that

rs ¼ �T�2ðq � rT Þ þ c�T�1qq� P 0 ð24Þ

rs ¼ qðc�T�1q� � T�2rT ÞP 0 ð25Þ
According to Onsager, the term q in Eq. (25) is the thermodynamic flux, and the term
ðc�T�1q� � T�2rT Þ is the thermodynamic force (X) [3].

rs ¼ X � qP 0 ð26Þ
A linear relationship between flux and force is assumed [4].

X ¼ l � q ð27Þ
where l is a phenomenological coefficient dependent only on u or T.

rs ¼ lq2 P 0 ð28Þ
Equating Eqs. (25) and (28) and re-arranging the resulting equation gives

q� ¼ T ðc�Þ�1flqþ T�2rTg ð29Þ
For steady state heat conduction (q� ¼ 0), Eq. (29) becomes

q ¼ �l�1T�2rT ð30Þ
By comparing Eq. (30) with Fourier’s law, it is seen that

l ¼ ðKT�2Þ�1 ð31Þ
Substituting Eq. (31) in Eq. (29) and re-arranging the resulting equation gives

q� ¼ 1

KT c�
½qþ KrT 
 ð32Þ
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Comparison of Eq. (32) with Eq. (13) shows that

c� ¼ �sðKT Þ�1 ð33Þ
Substituting Eq. (33) in Eq. (19) leads to

ds ¼ T�1 du� s
qKT 2

qdq ð34Þ

Depending on the local equilibrium assumption, Eq. (34) can be written in terms of the local
equilibrium temperature as

ds ¼ T�1
eq du�

s
qKT 2eq

qdq ð35Þ

The integration of Eq. (35) leads to the general non-equilibrium entropy equation for non-Fourier
heat conduction.

sðT ; qÞ ¼ seqðT Þ �
s

2qKT 2eq
q2 ð36Þ

For equilibrium conditions, ðsÞ equals zero, and Eq. (36) reduces to the equilibrium entropy
equation.
Let,

Ds ¼ seqðT Þ � sðT ; qÞ ð37Þ
Therefore,

Ds ¼ s
2qKT 2eq

q2 ð38Þ

Lebon and Casas-Vazquez [7] indicate that the following stability criteria can be used if the
physical properties are independent of temperature.

Ds > 0 for spontaneous change

Ds ¼ 0 for equilibrium

Ds < 0 criteria of stability

The solution of Eq. (38) requires knowledge of the heat flux q and the equilibrium temperature
distribution. In order to obtain the temperature distribution, the damped wave equation of the
temperature distribution (Eq. (39)) must be solved with the following assumptions:

1. The system is one dimensional.
2. Non-equilibrium convection and radiation are negligible.
3. The physical properties are constant and independent of temperature.
4. The heat pulse is uniformly distributed.

1

c2
o2T
o2t

þ 1
a
oT
ot

¼ r2T ð39Þ

The solution was developed by Baumeister and Hamill [8] using a Laplace transform technique
for the following initial and boundary conditions.
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T ¼ T0 and oT
ot ¼ 0 when t ¼ 0; x > 0

T ¼ Tw when t > 0; x ¼ 0
T ! T0 when t > 0; x ! 1

The solution is

T ðx; tÞ � T0
Tw � T0

¼ uðct � xÞ exp
�

8>><
>>:

� cx
2a

�
þ
Z t

x=c

cx
2a

� �
exp

�2
664 � c2/

2a

� I1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4/2

4a2 � c2a2
4a2

q� �

2a
c2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4/2

4a2 � c2a2
4a2

q
2
664

3
775
3
775d/

9>>=
>>;

ð40Þ
where / is a dummy variable and uðct � xÞ is the unit step function defined as [8]

uðct � xÞ ¼
1 for ctP tx

0 for ct < x

�

and I1 represents the solution of the modified Bessel function [8].
To simplify the analysis, Eq. (39) and its solution are written in dimensionless form using the

following dimensionless parameters:

h ¼ T ðx; tÞ � T0
Tw � T0

ð41Þ

b ¼ c2t
2a

ð42Þ

d ¼ cx
2a

ð43Þ

The dimensionless form of Eq. (39) is

o2h

ob2
þ 2 oh

ob
¼ o2h

od2
ð44Þ

The dimensionless initial and boundary conditions are

h ¼ 0 and oh
ob ¼ 0 when b ¼ 0; d > 0

h ¼ 1:0 when b > 0; d ¼ 0

h ! 0 when b > 0; d ! 1
The dimensionless form of Eq. (40) is

h ¼ uðb � dÞ exp½

8>><
>>:

� d
 þ d
Z ffiffiffiffiffiffiffiffiffi

b2�d2
p

0

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ d2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ d2

q I1ðgÞdg

9>>=
>>;

ð45Þ
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g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � d2

q

uðb � dÞ ¼
1 for b P d

0 for b < d

� ð46Þ

The non-Fourier heat flux is obtained by solving Cattaneos equation (Eq. (11)) using the ex-
ponential integrating factor method [9], and the solution becomes

qðx; tÞ ¼ � c2K
a
exp

�
� c2t

a

�Z t

0

oT
ox

� �
exp

c21
a

� �
d1 ð47Þ

where 1 ¼ t=s.
The solution is made dimensionless using the same dimensionless parameters (d and b).

qðd;bÞ ¼ � cK
a

ðTw � T0Þ exp½�2b

Z b

0

oh
od

� �
expð2gÞdg ð48Þ

The term ðoh=odÞ is obtained by differentiating the temperature distribution equation (Eq. (45)).
At d ¼ 0, the heat flux becomes

qð0;bÞ ¼ cK
a

ðTw � T0Þ expð�bÞI0ðbÞ ð49Þ

If the conduction Stanton number is defined as

St ¼ q
qCpcðTw � T0Þ

ð50Þ

Then, the non-Fourier–Stanton number when d ¼ 0 becomes
Stnf ¼ expð�bÞI0ðbÞ ð51Þ

Similarly, for d > 0, the non-Fourier–Stanton number becomes

Stnf ¼ � expð2bÞ
Z b

0

oh
od

� �
expð2gÞdg ð52Þ

The Stanton number based on Fourier’s law (equilibrium case) is

Stf ¼
1ffiffiffiffiffiffiffiffi
2pb

p ð53Þ

Having known the heat flux, the entropy change during the non-Fourier heat conduction is
calculated from Eq. (38).
Let Ds� ¼ Ds=Cp,

Ds� ¼ s
2qCpKT 2eq

q2 ð54Þ

Since s ¼ a=c2, qCp ¼ K=a and hence, s ¼ K=qCpc2

) Ds� ¼ q2

2ðqCpcÞ2T 2eq
ð55Þ
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or,

Ds� ¼ 1
2

q
qCpcðTw � T0Þ

� �2 ðTw � T Þ2

T 2eq
ð56Þ

Let heq ¼ Teq=ðTw � T0Þ,

) Ds� ¼ 0:5 Stnf
heq

� �2
ð57Þ

3. Results and discussion

The unsteady conduction heat transfer in a semi-infinite medium subjected to a step change in
temperature is analyzed thermodynamically using the EIT theory. A relationship to calculate the
entropy change during the unsteady heat conduction is derived.
Because of the wave nature of the non-Fourier temperature distribution, the medium is divided

into two regions, namely the disturbed or thermal wave region and the undisturbed region, as
shown in Fig. 1. The line where d ¼ b separates the two regions. The effect of a temperature
change at the boundary (x ¼ 0) is felt within the disturbed or thermal wave region only. The
thermal wave region is characterized by short distances from the boundary (x ¼ 0) and long times,
while the undisturbed region is characterized by long distance and short times.

Fig. 1. Map of undisturbed and thermal wave regions.
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Figs. 2 and 3 show a comparison between the dimensionless temperature distribution predicted
by the Fourier (diffusion) theory and that predicted by the non-Fourier (wave) theory. The
wavefront is clearly shown and occurs at d ¼ b where the distribution drops sharply to zero. The
wave propagates at a finite speed through the medium. The diffusion theory predicts a continuous
profile where the dimensionless temperature decreases gradually along the medium. The maxi-
mum difference between the two profiles occurs at the wavefront. It is clear that the wave theory
gives a higher temperature than the diffusion theory due to the irreversibility associated with the
actual unsteady heat conduction.

Fig. 2. Temperature distribution in a semi-infinite solid with a step change in temperature (short time behavior).

Fig. 3. Temperature distribution in a semi-infinite solid with a step change in temperature (short time behavior).
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Fig. 4 shows the same comparison for large values of b, i.e. long times after the temperature
change is imposed. It is seen that the temperature distribution predicted by the wave theory
approaches that predicted by the diffusion theory as the value of b is increased. Large values of b
mean greater thermal wave speed. It is also seen that as b increases, the wavefront travels further
through the medium while its amplitude diminishes greatly.

Fig. 4. Temperature distribution in a semi-infinite solid with a step change in temperature (long time behavior).

Fig. 5. Variation of dimensionless Stanton number with dimensionless distance for different values of b (short time
behavior).
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Figs. 5 and 6 show the variation of Stanton number, or in other words, the heat flux, with
dimensionless distance for short and long time behaviors, respectively. These figures show clearly
the disturbed and the undisturbed regions and the wavefront which occurs at b ¼ d where the

Fig. 6. Variation of dimensionless Stanton number with dimensionless distance for different values of b (long time
behavior).

Fig. 7. Variation of dimensionless entropy change with dimensionless distance for different values of b (short time
behavior).
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Stanton number drops sharply to zero. Fig. 6 shows that the Stanton number profiles become
closer as the dimensionless time is increased and finally approach the equilibrium profiles. This
finding agrees with the results of Vazquez et al. [10] for the same conditions.
The same wavefront phenomenon is noticed when plotting the dimensionless entropy change

against the dimensionless distance for different values of b, as shown in Figs. 7 and 8. The entropy
change increases as is b increased and finally approaches the equilibrium profile as b approaches
infinity, since the heat flux profile approaches that of equilibrium.

4. Conclusions

1. The local temperature predicted by the non-Fourier theory is higher than that predicted by the
Fourier theory.

2. The difference between the non-Fourier and Fourier temperature decreases as the wave prop-
agation speed is increased.

3. The dimensionless entropy change exhibits a wave-like behavior.
4. The profiles of the dimensionless temperature, Stanton number and dimensionless entropy
change relax to equilibrium profiles as the speed of wave propagation approaches infinity.
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