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Summary

In the modern world, it will be necessary to deploy a large number of sensor

devices to sense everything around us in order to detect changes, risks, and

hazards and to mitigate them. This increasing number of sensor devices repre-

sents an essential data provider in the Internet of Things (IoT). The devices

generate and transmit a huge amounts of data which requires a large amount

of storage and high processing power to come real-time processing and speed

up the network. It also leads to an increase in high energy consumption. Thus,

it is important to remove redundant data to reduce the data transmission

before sending it to the gateway while maintaining a good level of data quality.

In this paper, a distributed energy-efficient data reduction (DEDaR) approach

based on prediction and compression to minimize the data transmission in IoT

Networks is proposed. The DEDaR is used in periods to make decision. In each

period, the autoregressive prediction (ARP) is used to predict the data of the

next period and make a decision on whether to send the data of the current

period to the gateway or not. In the case of data transmission, the redundant

data are eliminated using an efficient compression approach based on adaptive

piecewise constant approximation (APCA), symbolic aggregate approximation

(SAX), and finally fixed code dictionary (FCD) based on Huffman encoding.

The simulation results based on real-sensed data show that the proposed

DEDaR approach outperforms the other recent methods in terms of data

reduction percentage, transmitted data size, energy consumption, and data

accuracy.
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1 | INTRODUCTION

The fundamental aspect of the Internet of Things (IoT) is to allow the communication of virtual and physical things
with each other.1 IoT systems include embedded intelligence, wireless sensor networks, and cloud computing. Sensors,
cameras, radio frequency identifier (RFID), and other devices are used by IoT systems to gather environmental data.2

These systems are capable of providing sophisticated services such as remote management, online analytics, and real-
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time remote monitoring. The IoT is used a range of remote monitoring applications, including healthcare, smart
manufacturing, smart homes, smart cities, and smart agriculture, with the objective of improving productivity and
decreasing costs.3,4 In the future, periodic sensor networks (PSNs) will be one of the most critical parts of the Internet
of Things (IoT), and they will play a key part in people's lives due to their extensive use in a variety of applications.

These types of networks have received a lot of attention from researchers in the past 4 years. The characteristics of
these PSNs differentiate it from other ad hoc wireless networks. Furthermore, several limitations due to these character-
istics are imposed and lead to many challenges in the PSNs. Some of these challenges are routing, data aggregation,
topology control, security, and coverage. One of the most fundamental research challenges in PSNs is to gather and con-
solidate huge amounts of data in an energy-efficient manner on a regular basis, then transport them to the sink to
extend the network lifetime. Because sensor batteries have a limited lifetime, energy-efficient data collection and data
reduction methods for frequent data gathering are required for energy optimization.

Transmitting/receiving the data by sensor devices is an expensive process, while in-network computations are much
less expensive from the energy consumption point of view and are sometimes ignored as insignificant.5,6 However, as
shown in Figure 1,6 the computation requires much less energy than the data transmission/receiving. The energy
required to transmit a 1 KB data message over a distance of 100 m, for instance, is nearly similar to the execution of
nearly three million instructions on a normal microprocessor. As a result, any extra processing that lowers the data size
even by one data bit would save energy. This dramatic difference between transmitting/receiving and computation
highlights the importance of in-network data processing in reducing consumed energy in the network.5 This paper
introduces the following contributions:

i. A Distributed Energy-efficient Data Reduction (DEDaR) Approach based on prediction and compression to reduce
data transmission and save energy in IoT networks is proposed.

ii. The proposed DEDaR approach executes the autoregressive prediction model to predict the data for the next period
and then make a decision about sending or not the current collected data to the gateway.

iii. An efficient compression approach is proposed and implemented by the DEDaR approach to compress the data
before sending them to the gateway. This approach is based on APCA, SAX, and fixed code dictionary based on
Huffman encoding to minimize the size of the data that have been sent to the gateway and to preserve the power of
sensor batteries thus extending the network's life span.

iv. A custom simulator based on the Python programming language and based on real observed data from sensor
nodes put at the Intel Berkeley Research Lab7 is used to run several simulation experiments. The suggested DEDaR
technique is compared against DPDR,8 DP LSTM,9 DRR-IoT,10 and LMS,11 which are all recent existing methodolo-
gies. The DEDaR technique outperforms other methods in terms of data reduction, data accuracy, transferred data
size, and consumption of energy, according to the comparison results.

The rest of the paper is laid out as follows: The related works are presented in Section 2, and various data reduction
methods are also discussed. The theoretical background is introduced in Section 3. In Section 4, the suggested DEDaR
approach is presented. Section 5 introduces the simulation results and findings. Section 6 presents the conclusion as
well as some recommendations for further research.

FIGURE 1 Energy consumption inside sensor device
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2 | RELATED WORKS

WSN-based IoT data reduction has received much interest in recent years. Some of the most often used fundamental
data reduction technologies include clustering, scheduling, compressive sensing, multi-channel multi-paths, data com-
pression, data aggregation, and prediction. In this section, certain a number of those alternatives will be presented
details explains and one will explain why they work.

In a previous study,12 the authors suggest to combine a Gaussian process for robust prediction with a wavelet multi-
resolution transform. The wavelet domain is handles data and allowing the transform to capture geometric information
and break them down it into smaller signals or subbands. For each subband of the wavelet, the deconstructed signal is
estimated using a Gaussian process, allowing the processing of Gaussian to pick up a much simpler signal. Using diffi-
cult time series generated by several types of sensors,13 built a multi-dimensional attribute selection model and a predic-
tion model of sensor data reactive. This methodology enhances the accuracy and consistency of IoT sensor data long-
term prediction results when compared with existing data prediction models. The prediction model was set to the test
with sensor data from Intel Berkeley Research Lab, which have an accuracy of more than 98%, and weather and water
data from the Chicago Park District, which have an accuracy of 92%.

As a solution for reducing IoT data, the use of in-networking data filtering and fusion is proposed in Ismael et al.10

The suggested method is split into two levels, each of which may be adjusted on a single or two tiers. The data change
detection and the divergence of true observations from their predicted values are two methods that refer to the initial
layer of data filtering layer which was introduced by the proposed method. The second layer uses a least square error
criteria to merge the data in the same certain region at the same time domain for individual sensors.

To decrease the data size, an adaptive method called AMDR was presented. This method works on two levels: the
first level is represented by the sensor node and the second level is represented by the gateway.14 This method is used
to reconstruct the data based on the threshold determined by the user in advance to maintain the accuracy of the data.
In some cases, AMDR gets as good a result as 92% for data reduction while maintaining good forecast accuracy,
according to real-world data. AMDR offers realization of all energy saving possibilities.

Some proposed prediction algorithms15–18 examine the relationship between gathered data to create a model that
compares historical and future values. Liazidet al.16 recommend modifying the dual prediction scheme (DPS) mecha-
nism. Rather than updating the historical data table, the new version applies a series of models for data prediction dur-
ing earlier DPS algorithm runs. In reality, the improved model of prediction is generated in (SN) and sent to the
gateway, or vice versa. Russo et al17 propose an unsupervised machine learning system based on self-organized maps to
predicting data from sensor nodes. They demonstrate a new predictive method that puts the sensor into hibernation to
reduce data transmission based on a self-organizing map. In Karjee and Kleinsteuber,18 to track faulty data gathered at
the sink, an online data tracking and estimation (ODTE) system is proposed. The data prediction system (DPS) and the
distortion factor are the two basic systems used in ODTE (DF). DPS is used at the sensor level to decrease transmission
by setting a limit, whereas DF estimates the best data are collected at the sink node. Compression and aggregation tech-
niques are used in several of the suggested works to minimize data transmission. For periodic sensor applications based
on clusters, the authors offer a structure fidelity data collection (SFDC) method in Wwu et al.19 SFDC searches for spa-
tial correlation between sensors using a distance function and temporal correlation using a similarity index. The
authors then present a scheduling strategy to provide power to the sensor in wake/sleep nodes in clusters. Similarly,
Dhimal and Sharma20 use a similarity method to search the sensor nodes for spatio-temporal correlation to switch the
associated nodes to sleep mode to reduce power in the network. The authors demonstrate that, when compared to alter-
native similarity metrics, PPMC provides the greatest results in terms of network energy conservation.

Previous studies21,22 proposed a modified k-nearest neighbor algorithm for data redundancy removal in the sensor
node to save energy and extend the lifespan of the network. Then, they extend their work to include the data redun-
dancy elimination on the second level of the network (gateway). The received data vectors of sensor nodes are gathered
into groups of similar data vectors and then one representative vector is sent for each group. In Idrees et al,23 the
authors introduce a new data reduction method for saving energy in the IoT network. They implemented two algo-
rithms to remove the redundant data at both sensor and aggregator level. The divide and conquer method is
implemented at the aggregator level while the clustering is used with the sensor nodes. The proposed work in Idrees
and Al-Qurabat24 presents an energy-aware data transmission reduction in fog computing-based IoT networks. The
method is activated at both sensor nodes and the fog gateway. In the sensor devices, they implement combined group-
ing and easy encoding methods to remove the unnecessary data before forwarding them to the fog gateway. In the fog
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gateway, they proposed a clustering algorithm based on the “dynamic time warping” (DTW) that combine with the sim-
ple encoding method to further remove the redundant data before transmitting them toward the cloud data center.

Wang et al8 suggest two phases of dual prediction to decrease the amount of data which are (DPP) which refer to
the data prediction phase and (DRP) which refer to the data reduction phase which decrease the volume of data sent to
the gateway, and save power in the network, while DPP processed on gateway in synchronization with previous level
(SN) to predicted non-transmitted data in previous level. Jarwan et al,9 producing two variant algorithms: data com-
pression (DC) which use to minimize the traffic between gateway and based station and gateway and dual prediction
(DP) which utilize to decrease transform of data to the gateway, they proposed NN network and long short-term mem-
ory networks (LSTMs) for runs the prediction. AM-DR proposed by Fathy et al11 which depended on merge two decou-
ple LMS of filtering of window that has variant size to find the measurement for two level (SN) and (GW), which make
(SN) send just the immediate value that considered irregular value.

Several data reduction algorithms based on clustering techniques have been proposed in the past few years.25–33 The
PFF strategy is used in the sensor and aggregator devices.25 The Jaccard similarity is used by researchers in the sensor
node to lower the redundancy of data, and set similarity in the aggregator node to minimize duplicated sets of data.
Harb et al26 describe an approach called ATP that was implemented in the sensor device. It lowers the amount of data
before transferring them to the base station. They eliminate the redundancy of data at the sensor node, then use a vari-
ety of techniques to lessen spatially similar data in the gateway. The authors in Zhu et al27 suggest a deredundancy
algorithm that works at two levels. The first level produces a dual-metric distance, and to obtain clusters of similar
nodes, the enhanced k-means method first identifies redundant nodes. At the second step, a Gaussian hybrid clustering
classification technique is provided, which is used to build data similarity clusters for edge sensing data. The clustered
data is randomly weighted in the third step to deduplicate the spatial correlation data. The EK-means strategy pres-
ented by Rida et al28 is a two-step approach. First, it uses a Euclidean distance-based data aggregation approach to
reduce similar data collected at the sensor level. Then, it uses an improved k-means clustering algorithm to aggregate
similar data sets generated by surrounding nodes into the same clusters, reducing the quantity of data transmitted to
the sink even more. Loganathan et al29 proposed a data reduction method based on aggregation and re-scheduling
using clustering techniques to save energy in sensor networks. The cluster formation and cluster head selection are
implemented in an energy-efficient way. This model contributes to reducing the transmitted data and increasing the
lifetime of the network. Alam et al30 proposed an in-network data lowering approach at the cluster head using an error-
aware data clustering scheme. This approach allows the user to select the suitable model that satisfies their require-
ments and quality of data. The temporal data is clustered into groups, and the data redundancy is removed from each
group. The random outliers are detected to introduce an error-aware data clustering that maintains the level of data
error under a predefined threshold. For data gathering, a correlation clustering strategy is applied, in which sensor
nodes with similar data are grouped as a cluster. Then, using independent component analysis on cluster head IoT
devices, an algorithm is developed to gather the data. The data gathering phase is carried out on clusters with higher
data correlation.31 Previous study33 suggests an integrated divide and conquer with improved K-means strategy for data
gathering with power saving in WSNs. It gathers the data at two different levels: node and cluster head. At the sensor
node, a divide and conquer technique is being used to eliminate data redundancy from the gathered data before trans-
ferring it to the head of the cluster. The head of the cluster uses an improved K-means strategy to group obtained data
sets from IoT devices into groups of near-identical data sets and then sends the best representative set from each group
to the sink.

The comprehensive resume of related literature mentioned above indicates many methods for data reduction using
different techniques. Nevertheless, the proposed methods in existence cannot adequately eliminate redundant data
while keeping a high level of data accuracy. Furthermore, some of these methods are more complicated and require
high time and memory complexities, and they cannot be implemented inside the constrained resources sensor devices.
Consequently, this paper proposed a new method that integrates the prediction and compression methods to highly
reduce the data before sending them to the gateway by eliminating the redundant data while preserving a suitable level
of accuracy. A distributed energy-efficient data reduction (DEDaR) approach is proposed, based on prediction and com-
pression to lower data transmission and preserve energy in IoT networks. First, the lightweight autoregressive predic-
tion algorithm is used to predict the data for the next period and perform a decision related to transmitting the data
toward the gateway. The DEDaR approach compresses these transmitted data before sending them to gateway using
APCA, SAX, and Huffman encoding to decrease the size of sent data to the gateway and saves the energy of sensor bat-
teries thus enhancing the lifetime of the network.
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3 | THEORETICAL BACKGROUND

This study focus on the data reduction problem, in which saving energy is the essential condition. To address this prob-
lem, this paper suggests one level data reduction approach for reducing the data redundancy and reducing the power
consumed while keeping a good data accuracy in the gateway. In this section, some theoretical background about some
employed technique will be presented.

3.1 | Autoregressive prediction (ARP)

The autoregressive prediction (ARP) prediction technique is main aim is to predict the data in the next period in sensor
nodes. Autoregressive statistical models predict following values by the history of previous values. An autoregressive
model may attempt to stock market prices based on its previous performance for example:34

• Autoregressive models estimate future values based on historical values and are commonly employed in technical
analysis to forecast future security prices.

• The underlying assumption in autoregressive models is that the future will be similar to the past. As a result, they
may be wrong under specific market scenarios, such as financial crises or rapid technological growth.

Because they work on the principle that prior values have an influence on present values, autoregressive models are
helpful for analyzing nature, economics, and other time-varying systems. Autoregressive models use an accumulation of the
variable's prior values, whereas multiple regression procedures use a linear combination of predictors to predict a variable.34

The AR(1) autoregressive process's current value is determined by the value immediately preceding it, whereas an
AR(2) processes current value is determined by the previous two values. For electronic noise, an AR(0) process with no
term dependency is used. There are many various techniques to determine the coefficients suitable calculations used,
such as the least squares method, in addition to these variations. Technical analysts use these concepts and methodolo-
gies to forecast security prices. However, because autoregressive models rely solely on historical data to predict future
values, they implicitly presume that the fundamental forces that drove past prices will remain constant over time. If the
underlying dynamics at stake are fluctuate, for example if a particular industry is undergoes rapid and unprecedented
technological development, this might lead to unexpected and incorrect forecasts. To create forecasts, an autoregressive
model uses a linear combination of the target's past values. Naturally, the regression is performed against the target. An
AR(p) model is mathematically stated as35

xt ¼ cþ
Xp
i¼1

� ixt�iþϵt ð1Þ

where p is an order, c is a constant, and ϵ noise The AR(p) model is extremely adaptable, and it may be used to
describe a wide range of time series patterns. Autoregressive models are often used only on stationary time series.

3.2 | Adaptive piecewise constant approximation (APCA)

The APCA segments of time series can be obtaining from separate time series into sets of varying value segments (with
a limited reconstruction error) by using APCA with different lengths depending on the data, with the purpose of reduc-
ing individual reconstruction mistakes. In more technical terms, jRðSAPÞ�Sj< ϵ,RðSAPÞ is the reinitialized function,
and ϵ is an error threshold. One of the basic components of data analysis is data sorting. It enhances the search and
combines the sequences more effectively. As a result, sorting the detected humidity values in descending order
improves the efficiency of APCA by grouping the same (or nearly identical) signals together. Long segments represent
low-activity data regions, whereas short segments represent high-activity data regions.36 The ðSAPÞ is given as follows:

SAP ¼fðdm1,dr1Þ,…,ðdmm,drmÞg, dr0 ¼ 0 ð2Þ
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SAPj is given by a pair of numbers ðdmj,drjÞ, where a mean value of humidity measurements is dmj in the j th seg-
ment, which is given:37

dmj ¼
Pdrj

k¼drj�1þ1S
k

drj�drj�1
ð3Þ

where right endpoint of the j th segment is drj.

3.3 | Symbolic aggregate approximation (SAX) representation

SAX refers to a method of representation of data of time series. By using symbols set to refer to a time series of length p
into q, where the length of a time series is qp. To begin, the time series is normalized, converting the standard deviation
to unity and the mean to zero. This process ensures that input data are transformed to output series with a mean
approximating 0, and a standard deviation approximating 1. This normalization is required so that the data reduction
algorithm can focus on structural similarities and differences rather than amplitude. The following formula is used to
calculate this normalization:

μ¼
Pp

i¼1Si
p

ð4Þ

σ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

i¼1Si�μ

p�1

s
ð5Þ

S0i ¼
Si�μ

σ
ð6Þ

where σ, μ, and S0i are the standard deviation, mean, and normalized data readings.
The SAX is regarded as a pioneer in lowering time series dimensionality and numerosity. It is divided into two parts:

the adaptive piecewise constant approximation (APCA) transformation and the numerical data transformation into a
set of symbols. A finite alphabet determines the value of each symbol.38 The following steps are used to convert the
APCA considering SP is the subset of the original time series S into the SAX ðSXÞ:

1. Divide the series of reading values into w parts.
2. For each component of the readings, calculate mean.
3. From N-letter in alphabet, draw mean value quantized into symbols.

The APCA representation is used in the first two steps. In step 3, employment of quantization (N-1) breakpoints to
divide the Gaussian distribution's domain into proportionate regions equal α. A list of sorted numbers β1,…,βα�1 known
as Breakpoints. The region from βi to βiþ1 ¼ 1=α under a N (0, 1) Gaussian curve, where βα and β0 refer to and �
respectively. By searching a table of statistical of them can find Breakpoints. For example, by searching in the table of
breakpoints, it is possible to find α values ranging from 3 to 10,39 as shown in Table 1.

The APCA coefficients can be quantified as follows once the breakpoints have been defined. Every APCA value is
converted to “a” if it is larger than or equal to the smallest breakpoint. The other values are less than the second
smallest breakpoint are changed to “b,” and so on.

3.4 | Huffman encoding

Huffman encoding is a binary tree-based technique that leverages the frequency (or probability) property of symbols. It
entails the following three steps:40 probability calculation and symbol ordering, transformation of a binary tree, and
assigning symbols with codes. In probability calculation and symbol ordering, the number of each symbol in the entire
data is counted, then the count is divided by the total number of letters in the data to get the “probability” of each sym-
bol. One of the advantages of Huffman encoding relies on the fact that it is a probability-based method. The most
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common symbols—the once with the highest probabilities—are often represented with fewer bits than least common
symbols.40 For example, we have the probabilities as has been shown in Figure 2 for the following data with five differ-
ent symbols: A, B, C, D, E.

Then, by modeling each symbol as a node and calling it our “collection,” one can easily organize the symbols
according to their probabilities. Now ready to go on to the next step (see Figure 3).

The binary tree transformation can be achieved as follows (see Figure 4):

1. Select the two nodes with the shortest sum of probabilities from the collection. Then, merge the two nodes with a
root includes the probability equal to the sum of probabilities of these two selected nodes.

2. Reintroduce the new tree to the collection.
3. Repeat this process until the tree that encompasses all of the input probabilities.

To assign the codes to symbols, the only thing that need to be done is to assign 1 for each time go right child and
0 for each time go left child (see Figure 5). Then, the binary tree is obtained that known as Huffman tree.40 Finally,
using Huffman encoding, the symbols and their codes can be retrieved.

Even if the difference between compressed and non-compressed data is only 21 characters, which this difference
can be seen as significant. The number of bits calculation before and after compression can be shown in Figure 6.

4 | PROPOSED DEDAR APPROACH

A distributed energy-efficient data reduction (DEDaR) approach based on prediction and compression is proposed to decrease
data transmission in IoT networks. The DEDaR approach is implemented on each sensor device. It is regarded as an effective

TABLE 1 Breakpoint's values

α 3 4 5 6 7 8 9 10

β1 0.43 �0.67 �0.84 �0.97 �1.07 �1.15 �1.22 �1.28

β2 0.43 0 �0.25 �0.43 �0.57 �0.67 �0.76 �0.84

β3 0.67 0.25 0 �0.18 �0.32 �0.43 �0.52

β4 0.84 0.43 0.18 0 �0.14 �0.25

β5 0.97 0.57 0.32 0.14 0

β6 1.07 0.67 0.43 0.25

β7 1.15 0.76 0.52

β8 1.22 0.84

β9 1.28

FIGURE 2 Example of probabilities of five symbols A, B, C, D, E

FIGURE 3 The organized symbols according to their probability
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FIGURE 4 Binary tree transformation

FIGURE 5 Assigning codes to symbols

FIGURE 6 Number of bits calculation before and after compression

8 of 23 HUSSEIN ET AL.



method to save power and reduce the amount of transferred data, and thus extends the lifetime of the network while
maintaining the accuracy of received data at the gateway. Figure 7 depicts the flowchart of the proposed DEDaR approach.

4.1 | Collection of IoT sensor data

The data collection is periodic, where the new reading is collected from sensor node i at slot time s. The node i then cre-
ates a new data vector (i.e., time series vector) from the captured readings R¼ ½r1,r2,…,yT� at each period, where T is
the total amount of readings in each period. The IoT sensor node will capture the (same or very similar) measurements,
especially when s is very short or when there is no change in the monitored area for a long time. This will allow to the
IoT sensor node to send large volume of data to the gateway at each period.

FIGURE 7 Flowchart of proposed DEDaR approach
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4.2 | APCA technique

At the beginning, the first period will be sent to the gateway. The data of this period and the other periods that need to
be sent to the gateway will be processed to remove the redundancy at the sensor node's level before sending them to
the gateway. Therefore, the dimensionality reduction based on segmentation and APCA are to segment the data into m
segments of data readings with different lengths depending on their activities, where the long segments represent the
low activities and the short segments represent the high activities. The algorithm 1 shows the dimensionality reduction
based segmentation and APCA.
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4.3 | SAX representation

Many different ways to represent time series using symbolic representations have been introduced in recent decades.
This approach converts from a numerical form of time series to a sequential series of discrete symbols using
predefined mapping rules. Symbolic techniques are more noise resistant. SAX is the most extensively used symbolic
representation approach for time series data mining. A large reduction in dimensions ensures this representation
method as well as a reduced bounding property, improving the efficiency of algorithm. It is necessary to transform
time series, which contain data readings from sensor nodes, into suitable forms for further analysis. To deal with
time series, it is recommend to use two different representation techniques: a normalization and a symbolic
representation.

After applying the APCA method, which divides the data into a set of segments, the normalization method was used
on the data of each segment as shown in Algorithm 2. Then, the SAX method was used to convert the data into symbols
by using a breakpoints value whose alphabet range is 3–10 symbols as shown in Table 1. Note that the number of char-
acters used determines the breakpoints values. In our method, the number of symbols that are used is 10. Every APCA
value will be converted to the suitable representation using the SAX algorithm. Algorithm 3 demonstrates the SAX
algorithm.

A symbolic representation of data readings for IoT sensor nodes from a normalized one by using the SAX approach.
The SAX can be generated the quantification does this conversion by dividing the area under the Gaussian distribution
into an equal proportional area using (N - 1) breakpoints. The breakpoints can be found by searching for them in a sta-
tistical table, as illustrated in Table 1.

DISTRIBUTED ENERGY-EFFICIENT DATA REDUCTION APPROACH 11 of 23



4.4 | Huffman encoding

The proposed DEDaR approach employs a static alphabet dictionary derived from the implementation of the Huffman
algorithm on the data of the sensor 1 in the dataset and we named these fixed alphabet as fixed code dictionary (FCD)
that based on Huffman encoding. The FCD is constructed as a fixed dictionary to avoid frequent sending for dictionary
of variable codes with transmitted encoded data to the gateway to decode received data. The fixed alphabet must
achieve two conditions: the absence of ambiguity in the code, and the code must be as minimal as possible.

The FCD will be static for all periods with a variable bit of code for each symbol. The gateway will receive this FCD
dictionary only once. Table 2 shows the fixed code dictionary (FCD). In this table, the first column represents the sym-
bols were generated by the SAX representation (Algorithm 3). The second column refers to the code of the symbols.
The third column represents the number of required bits of each code to represent the symbols.

4.5 | Autoregressive prediction model

Autoregression predicts the value at future time steps by using data from prior time steps as input to a regression equa-
tion. It is a simple method that can produce reliable forecasts for a variety of time series issues. The DEDaR approach
employs a model for time series forecasting based on an autoregressive prediction method. A linear regression model
forecasts the result using a linear combination of input values and can be formulated as

TABLE 2 Fixed code dictionary (FCD)

Symbol Code No. of Bit

a 00 2

b 0100 4

c 0101 4

d 0110 4

e 0111 4

f 1000 4

g 1001 4

h 10100 5

i 10101 5

j 10110 5
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yhat ¼ b0þb1 ∗X1 ð7Þ

where yhat is the forecast, b0 and b1 are parameters discovered by model optimization on training data, and X is an
input value. This approach can be applied to time series when the input parameters, referred to as lag parameters, are
observations from prior time steps.

For instance, he value of the next time step (t + 1) can be estimated based on the data from the previous two-time
steps t � 1 and t � 2. This might be represented as a predictive model as follows:

Xtþ1 ¼ b0þb1 ∗Xt�1þb2 ∗Xt�2 ð8Þ

The regression model is known as an autoregression because it uses the same input variable as data at earlier time
steps. An autoregression model is a linear regression model using lagged data as input variables. Manually design the
linear regression model and the lag input parameters could use the linear regression. Alternatively, the statistical model
package offers an autoregression model that requires a lag value and trains a linear regression model. It is part of the
AutoReg class. This model can be used by first generating the AutoReg() model and then training it on our dataset with
fit(). An AutoRegResults object is returned. Once the model is fit, it can used it to generate predictions by using the pre-
dict() method for a set of future data.

The DEDaR approach collects the data inside the sensor node periodically. The collected data of the first period are
used by the autoregressive prediction technique to predict the data of the next period. The sensed data of the first period
will always be transmitted to the gateway after compressing them using steps B, C, and D. The similarity algorithm (see
Algorithm 5) will be applied between the predicted data and new collected data of the next period. If the results are
greater than or equal to a predefined threshold Sim_th, they are considered as similar and they will not be transmitted
to the gateway. Otherwise, if the result of similarity function less than Sim_th, the sensed data are considered dissimilar
and should be transmitted to the gateway. The techniques in B, C, and D are applied on the data before sending them
to the gateway. Algorithm 4 shows the autoregressive prediction algorithm is used by the proposed DEDaR approach.
Every time the similarity between the actual collected data and the predicted data is less than Sim_th, the prediction
model will be trained with actual collected data to produce the new predicted data set that will be used for the following
periods.

The AutoReg() method in Algorithm 4 gets data from the sensor as well as the number of lags to include in the
model (if an integer) or a list of lag indices to be included. For example, [1, 4], includes only lags 1 and 4, whereas lags
= 4 includes lags 1, 2, 3, and 4. None of the AR lags respond in the same way as 0. Then, using the fit() function, fit the
model. Model fitting is a statistic for determining how well a machine learning model generalizes to data that is compa-
rable to the data it was trained on. A model that is well-fitted produces more accurate results. After training the model,
the following step is usually to make predictions on the testing set. To do so, we must use the predict() function, which
will effectively use the learnt parameters from fit() to make predictions on fresh, unknown test data points. Predict(), in
essence, will make a forecast for each test instance, and it normally only requires a single parameter (X). The predicted
value for classifiers and regressors will be in the same space as the one observed in the training set.
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Algorithm 5 illustrates the similarity between actual data readings sets and prediction data readings sets using
Euclidean distance measurement.

4.6 | Illustrate example of proposed system

This section illustrates an illustrative example for applying the steps in B, C, and D on the data set of size 20 data read-
ings (19.98, 19.98, 19.98, 19.3, 19.3, 19.17, 19.14, 19.16, 19.11, 19.06, 19.03, 19.02, 19.01, 19, 18.98, 18.97, 18.96, 18.94,
18.92, 18.91). Table 3 presents an illustrative example.

Algorithm 1 is applied on the data set of readings. After the segmentation, seven segments are created ([19.98,
19.98, 19.98], [19.3, 19.3], [19.17, 19.14, 19.16], [19.11, 19.06], [19.03, 19.02, 19.01, 19, 18.98], [18.97, 18.96, 18.94, 18.92],
[18.91]). Then these segments are processed by the APCA method to produce a set of seven elements (19.98, 19.3, 19.16,
19.09, 19.008, 18.94, 18.91). These elements in the produced set are normalized using Algorithm 2 to produce the fol-
lowing set (4.719, 1.129, 0.41, 0.154, �0.563, �0.871, �0.871). The SAX representation is applied on the produced

TABLE 3 Illustrative example

Data readings APCA Segment Normalization SAX representation Huffman encoding

19.98

19.98 19.98 4.719 j 10110

19.98

19.3

19.3 19.3 1.129 i 10101

19.17

19.14 19.16 0.41 g 1001

19.16

19.11

19.06 19.09 0.154 f 1000

19.03

19.02

19.01 19.008 �0.563 c 0101

19

18.98

18.97

18.96

18.94 18.94 �0.871 b 0100

18.92

18.91 18.91 �0.871 b 0100
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normalized set using Algorithm 4 to give a set of symbols (j, i, g, f, c, b, b) depending on breakpoints table and alphabet
table (each index value in breakpoints table refer to index symbol in alphabet table). Finally, these set of symbols are
encoded based on fixed code dictionary derived from the Huffman encoding method that presented in Table 2 where
the resulted codes are introduced in the following list (10110, 10101, 1001, 1000, 0101, 0100, 0100).

4.7 | Computational complexity

This section provides the analytical study of the computational complexity for the proposed DEDAR approach. Each
sensor node i collects a series of data during each period, which is represented by R, where the total amount of readings
during one period is T. The time complexity of the Algorithm 1, which is responsible for dimensionality reduction based
on segmentation and APCA is OðMAXðLenðSoDÞLog2LenðSoDÞ,LenðSoDÞ∗Lenðset_bf r

����!ÞÞÞ. The space requirement for
Algorithm 1 is ΘðLenðSoGÞ∗mþLenðSegLenÞþLenðSoDÞþLenðset_bf r����!ÞÞ. The time requirement for Algorithm 2 is
ΘðSegLenxÞ, while it requires storage equal to ΘðLenðSoGxÞþLenðSoNxÞÞ. Algorithm 3 requires time and storage equal
to ΘðSegLenx ∗LenðBÞÞ and ΘðLenðSoNxÞþLenðβÞþSegLenxÞ respectively. The time and space complexities are
required by Algorithm 4 are ΘðLenðDFÞ∗ lagsÞ and ΘðLenðDFÞþLenðPDÞÞ respectively. Algorithm 5 requires
ΘðLenðPDÞÞ of time complexity, while it requires storage equal to ΘðLenðPDÞþLenðADÞÞ. The Huffman Encoding uses
a fixed code dictionary (FCD) that includes the used symbols and their codes. The FCD will be saved at both sender
(sensor node) and receiver (gateway). It is simple and requires a very small size of memory (121 bits). The encoding
requires ΘðLenðSAXx

smÞÞ of time complexity. Hence, the time complexity for DEDaR approach is
OðMAXðLenðSoDÞLog2LenðSoDÞ,LenðSoDÞ∗Lenðset_bf r

����!ÞÞÞ and the storage requirement is
ΘðLenðSoGÞ∗mþLenðSegLenÞþLenðSoDÞþLenðset_bf r����!ÞÞ. This computational complexity analysis shows the imple-
mentation cost of the proposed DEDaR approach from the time and storage requirements point of view.

5 | PERFORMANCE EVALUATION

The simulation results, analysis, and discussion in this part are used to assess and demonstrate the performances of the
proposed DEDaR technique. The simulation experiments are carried out with the help of a custom simulator written in
Python. In these simulation experiments, actual data from sensor nodes deployed at the Intel Berkeley Research Lab
are used.7 As illustrated in Figure 8, the Berkeley database contains data on humidity, temperature, voltage, and light

FIGURE 8 Intel Berkeley Research Lab
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acquired every 31 s from 54 sensors. We will employ 10,000 sensed data measures from three sensors in this work, and
the focus will be met on one type of sensor measurements: humidity, for the purpose of simplicity (Sensor 1, Sensor
2, and Sensor 3). The sink (gateway) is in the middle of the building.

The energy consumption model called the “first order radio model,” proposed by Heinzelman.41 was used. Figure 9
presents the first order radio model.

The captured reading is of length 64 bits; therefore, the size of the packet is the number of readings multiplied by
64 bits. Table 4 presents the simulation parameters.

In order to show the high efficiency of the proposed DEDaR approach, it is compares with some related recent exis-
ting methods such as DPDR,8 DP LSTM,9 DRR-IoT,10 and LMS.11 The comparison is achieved based on some perfor-
mance metrics such as the percentage of data reduction, data accuracy, transmitted data size, energy consumption, and
network lifetime.

The threshold Sim_th is selected after achieving several experiments by the proposed DEDaR approach and by using
different Sim_th ratios. Figures 10, 11, and 12 show the transmitted data, energy consumption, and accuracy for Sensor
1, Sensor 2, and Sensor 3, respectively.

It can be seen from the results in the Figures 10,11, and 12 that the suitable ratio for the threshold Sim_th is 70%
because the DEDaR approach introduces better results from the energy consumption and accuracy point of view. The
other ratios sometimes provide a sightly lower energy consumption but with lower accuracy. In this paper, the similar-
ity threshold Sim_th ratio was selected, which balances between energy consumption, and data accuracy. In real world
applications, this similarity threshold Sim_th ratio will be selected according to the application's need.

FIGURE 9 First order radio model

TABLE 4 The simulation parameters values

Parameter Value

T 10000

e_max 0.03, 0.05, 0.07, and 0.09

Eelec 50 * 10�9

ϵ amp 100 *10�12

Λ 2

Sim_th 70%

FIGURE 10 Transmitted data
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5.1 | Data reduction

This experiment investigates the efficiency of the proposed DEDaR approach in removing redundant data and com-
pressing sensed data before sending it to the gateway.The data reduction percentage can be calculated as in
Equation (9).

TTR¼TCR�NTR ð9Þ

FIGURE 11 Energy consumption

FIGURE 12 Data accuracy

FIGURE 13 Data reduction percentage
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DPR¼ TTR
TCR

∗100
� �

�100

����
���� ð10Þ

Where TTR, TCR, NTR, and DPR refer to the total collected readings, total transmitted readings, non-transmitted
readings, and the data reduction percentage respectively. Figure 9 shows the data reduction percentage for different
methods on the sensed data of sensors 1, 2, and 3 using different e_max values. Figure 13 shows the reduction
percentage.

It can be seen from the results of Figure 13 that the proposed DEDaR approach increased the percentage of reduc-
tion from 92.48% up to 97.58%, while the other methods introduced a percentage of reduction from 23.42% up to
75.75%, from 16.04% up to 54.99%, from 13.41% up to 53.39%, and from 3.33% up to 45.34% for DPDR, DP_LSTM, DDR-
IoT, and LMS, respectively. The proposed DEDaR approach achieves better performances compared to other
approaches, and it reduces the sensed data efficiently by removing the redundant data before sending it to the gateway.

5.2 | Number of sent readings

In this experiment, the volume of sent data readings to the gateway is studied. Figure 14 introduces the number of sent
readings to the gateway after applying the proposed DEDaR approach.

From the results in Figure 10, it can be observed that the proposed DEDaR approach reduces the transmitted data
to the gateway from 2.42% up to 7.52% compared with other approaches. The DPDR, DP_LSTM, DDR-IoT, and LMS
reduced the transmission to the gateway from 24.25% up to 76.58%, from 45.01% up to 83.96%, from 46.61% up to
86.59%, and from 53.66% up to 96.67%, respectively. This can ensure that the proposed DEDaR approach is more power-
ful in removing the redundant data before sending it to the gateway.

5.3 | Energy consumption

Due to the limited resources of sensor nodes, energy consumption is critical in these devices of IoT networks. Figure 15
refers to the consumed energy inside each sensor node.

It can be noticed from the results in Figure 11 that the proposed DEDaR approach decreased the consumed energy
from 90% up to 90.3%, from 91.1% up to 94.74%, from 91.4% up to 94.94%, and from 92.33% up to 95.56% in comparison
with DPDR, DP_LSTM, DDR-IoT, and LMS, respectively. It can be concluded from the results that the proposed
DEDaR approach saves more energy than other methods due to transmitting as little as few data as possible readings to
the gateway. This improves the performances of the network and extends its lifetime.

FIGURE 14 Number of sent readings to gateway

18 of 23 HUSSEIN ET AL.



5.4 | Data accuracy

Data accuracy can be calculated by computing the deviation between the gathered (input data) and transmitted data
readings (obtained results) after employing the reduction algorithm, including the prediction algorithm. Equations (11)
and (12) are used to produce the percentage of accuracy.

DD¼
P

TCR� P
TTRþP

TERð Þ
TCR

����
����∗100 ð11Þ

DA¼ð1�DDÞ∗100 ð12Þ

The data deviation is DD, the total estimated readings of the sensor Si is TER, and the data accuracy is DA. The total
transmitted readings are denoted by TTR, while the total collected readings are denoted by TCR. Figure 16 shows the
data accuracy.

It can be seen from the results of Figure 16 that the proposed DEDaR approach introduces a suitable data accuracy
of 92.48% up to 99.74% compared with other methods introduced of 23.42% up to 75.75%, from 16.04% up to 54.99%,

FIGURE 15 Energy consumption

FIGURE 16 Data accuracy
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from 13.41% up to 53.39%, and from 3.33% up to 45.34% for DPDR, DP_LSTM, DDR-IoT, and LMS, respectively. This
will ensure that the proposed DEDaR approach provides a high reduction with suitable data accuracy at the gateway.

The proposed DEDaR produces this high ratio of data accuracy due to losing a lower number of data readings at the
sensor node. It uses efficient techniques to remove redundant data from the sensor node while maintaining adequate
data quality at the gateway. The DEDaR approach uses a fixed code dictionary based on lossless Huffman encoding to
compress the segments of the SAX technique, and this decreases the lost data and increases the accuracy of received
data at the gateway.

5.5 | Further results and discussion

This section presents further results, analysis, and discussions about the DEDaR approach, and the findings are com-
pared with some related works to show the efficiency of the proposed DEDaR approach. In the next experiments, the
DEDaR approach uses the temperature readings during the simulation. It uses different sizes per period such as T=
20, 50, and 100 readings per period. Moreover, the e_max uses different values like 0.03, 0.05, and 0.07. The DEDaR
approach is compared with DaReCA,23 prefix frequency filtering (PFF),25 and aggregation and transmission protocol
(ATP).26 Figure 17 shows the transmitted readings.

It can be observed from the results presented in Figure 17 that the DEDaR, DaReCA, ATP, and PFF approaches sent
data from 1.63% up to 6.06%, from 3.2% up to 5.9%, from 13.03% up to 31.68%, and 100% respectively. It can be seen
from Figure 17 that the proposed DEDaR approach reduced the transmitted data efficiently compared with other
approaches. These findings ensure the efficiency of combining the prediction and compression methods in decreasing
the volume of transmitted data by the sensor node.

Figure 18 refers to the energy consumed by the sensor node using the DEDaR approach compared with DaReCA,
ATP, and PFF approaches.

It can be seen from the results in Figure 18 that the proposed DEDaR approach lowered the consumed energy by
the sensor node from 92.82% up to 94.73%, from 97.77% up to 98.13%, and 98.15% up to 98.34% compared with DaReCA,
ATP, and PFF methods. The high performance of the suggested DEDaR in reducing this volume of energy due to its
use of an efficient data reduction method that reduces the sensed data before sending it by the sensor node (see
Figure 17). This contributes in decreasing the consumed energy inside the sensor node. The impact of decreased data
readings on the quality of collected readings at the fog gateway is investigated in this experiment. It is critical to lower
the size of transferred data before sending them to the gateway in order to save energy, but it is also important to ensure
an adequate rate of data quality at the gateway. The percentage of the data loss represents as an indicator for the data
accuracy. Figure 19 refers to the percentage of the data loss.

FIGURE 17 Transmitted readings
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It can be noted that the DEDaR approach decreased the lost data from 0.52% up to 3.09%, while the DaReCA, ATP
and PFF reduced the lost data from 0.03% up to 1.65%, from 1.93% up to 3.6% and from 2.06% up to 2.68% respectively.
The proposed DEDaR approach introduced better data accuracy in most cases compared with other methods in spite of
achieving higher data reduction at the sensor node. The DaReCA method introduces lower data loss in some cases
because it sends a larger volume of data when it is implemented at the sensor node that participates in reducing the lost
data. Hence, the proposed DEDaR could further decrease the sensed data and keep the energy of sensor nodes while
preserving a suitable level of data quality.

6 | CONCLUSION AND FUTURE WORKS

In this paper, a distributed energy-efficient data reduction (DEDaR) approach based on prediction and compression is
presented to decrease data transmission in IoT Networks. The DEDaR divides time into periods. At each period, the
autoregressive prediction (ARP) is used to forecast the data for the following period and decide whether or not to sub-
mit the current period's data to the gateway. When it comes to data transmission, redundant data are removed using an
effective compression method based on “adaptive piecewise constant approximation” (APCA), “symbolic aggregate
approximation” (SAX), and lastly fixed code dictionary based on Huffman Encoding. The suggested DEDaR approach

FIGURE 18 Energy consumption

FIGURE 19 Data loss percentage
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outperforms other previous approaches in terms of data reduction, transmitted data size, energy consumption, and data
accuracy, according to simulation findings based on real-world data. Future works will focus on reducing the transmit-
ted data from the gateway to the cloud using machine learning. In addition, we believe that it is possible to predict
missing data at the gateway in order to increase the accuracy of data so that it may be used in decision-making. Finally,
we want to apply the suggested approach on a real network.
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