Semiprime Hollow R-modules

Ali Abd Alhussein Zyarah ${ }^{1,2}$, Ahmed Hadi Hussain ${ }^{3}$
${ }^{1}$ General Directorate of Education for the Holy Karbala
Iraqi Ministry of Education
Karbala, Iraq
${ }^{2}$ College of Engineering
University of Warith Al-Anbiyaa
Karbala, Iraq
${ }^{3}$ Department of Automobile Engineering
College of Engineering Al-Musayab
University of Babylon
Babil, Iraq
email: aliziara107@gmail.com, met.ahmed.hadi@uobabylon.edu.iq
(Received August 1, 2022, Revised September 5, 2022, Accepted October 22, 2022)

Abstract

The idea of uniform modules was utilized to create what is now known as the uniform dimension of a module (also known as the Goldie dimension). Some characteristics of the idea of the dimension of a vector space are generalized by uniform dimension. Let R be an identity commutative ring and let Z be an R-module. We examine some main properties of Semiprime Hollow R-Modules, as well as the relationship between them and hollow modules and other modules like semihollow, abundantly supplemented, and lifting modules.

Key words and phrases: Hollow modules, Small submodule, semiprime submodule, Multiplication module.
AMS (MOS) Subject Classifications: 16P70.
ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net

1 Introduction

Assume R is an identity commutative ring and Z is an R-module. Q is called a small submodule of Z and denoted by $Q \ll Z$, if $Q+U=Z$ for any proper submodule U of Z implies $U=Z[1,2]$. Any proper submodule Q of Z is called a semiprime submodule, if $r^{k} x \in Q$ where $r \in R, k \in Z^{+}$and $x \in Z$, then $r x \in Q$ [3]. A non-zero R-module Z is called hollow (H-R-M), if every proper submodule of Z is small [1]. Any submodule S of Z is called coclosed if for each submodule $L \leq Z$ with $L \subseteq S$, then $\frac{S}{L} \ll \frac{Z}{L}$, then $S=Z$ [4]. An R-module Z is called a small cover for an R-module T, if there exists a small epimorphism $\phi: T \rightarrow Z$ [5]. The R-module Z is projective, if for any epimorphism $\alpha: H_{1} \rightarrow H_{2}$ where H_{1} and H_{2} are R-modules, and for any homomorphism $\beta: Z \rightarrow H_{2}$ there exists a homomorphism $\theta: Z \rightarrow H_{1}$ such that $\alpha \circ \theta=\beta[6]$. The R-module Z is C.P module if every cyclic submodule of Z is projective [7].

2 Semiprime Hollow R-Modules

This section introduces and investigates certain features and characterizations of a newly SP-H-R-M generalization:

Definition 2.1 The R-module Z is semiprime hollow (SP-H-R-M) if for any semiprime submodule of Z is small.

Remarks and Examples 2.2

1. In general, any H-R-M is SP-H-R-M. However, the opposite is not true. A Z-module Q is known to be not H-R-M [15].
2. In general, any prime H-R-M is also a SP-H-R-M, but that isn't always the case. A Z-module Q is known to be not H-R-M [15].
3. Z-module Z is not SP-H-Z-M. Since every semiprime submodule of Z is form (p), where p a prime number, but (p) isnt a small submodule of Z.
4. The module Z_{9} as Z-module is semiprime hollow module. The only semiprime submodule of Z_{9} is $E=(\overline{3})$ which is small submodule of Z_{9} and there is no proper submodule K of Z_{9} such that $E+K=Z_{9}$.

Proposition 2.3 Every SP-H-R-M created finitely generated is H-R-M.
Proof: Let Z be a finitely generated R-module. Then any proper submodule S of Z is contained within a maximal submodule W. Since Z is SP-H-R-M, $W \ll Z$. Hence $S \ll Z$. Thus Z is H-R-M.

Proposition 2.4 Let Z_{1}, Z_{2} be any R-modules also $\psi: Z_{1} \rightarrow Z_{2}$ be an R-epimorphism. If Z_{1} is a SP-H-R-M, then Z_{2} is also SP-H-R-M.
Proof: It is clear that $\psi\left(Z_{1}\right)=Z_{2}$, since ψ is an R-epimorphism. Let S be a semiprime submodule of Z_{2}. We prove that $S \ll Z_{2}$. Since $\psi^{-1}(S) \leq Z_{2}$, $\psi-1(S)$ is semiprime submodule of $Z_{1}[15]$ and also Z_{1} is a SP-H-R-M. Then $\psi-1(S) \ll Z_{2}$. Now, $\psi\left(\psi^{-1}(S)\right) \ll \psi\left(Z_{1}\right)=Z_{2},[6]$ and hence $S \ll Z_{2}$. Thus Z_{2} is SP-H-R-M.
Corollary 2.5 If S is a proper submodule in SP-H-R-M Z, then $\frac{Z}{S}$ is SP-H-R-M.
Corollary 2.6 The direct summand of SP-H-R-M is SP-H-R-M.
Proof : Let Z be a SP-H-R-M and $E, F \leq Z$ such that $E \oplus F=Z$. The projections $P_{E}: Z \rightarrow E$ and $P_{F}: Z \rightarrow F$ are R-epimorphism R-modules. By Proposition(2.4), we get E and F are semiprime hollow.

Proposition 2.7 If Z is semiprime finitely generated $H-R-M$, then it is a cyclic R-module.
Proof : By Proposition(2.3), Z is $\mathrm{H}-\mathrm{R}-\mathrm{M}$ and hence Z is cyclic R-module.

Proposition 2.8 If S is a semiprime submodule of SP-H-R-M and Z also $\frac{Z}{S}$ is finitely generated, then Z is H-R-M.
Proof: Now to show that Z is finitely generated, as $\frac{Z}{S}$ is finitely generated, there exist $x_{1}, x_{2}, \ldots, x_{n} \in Z$ and $\frac{Z}{S}=R x_{1}, R x_{2}, \ldots, R x_{n}+S$. Let $x \in Z, x+S \in \frac{Z}{S}$ and there exist $a_{1}, a_{2}, \ldots, a_{n} \in Z$ such that $x+S=$ $a_{1} x_{1}, a_{2} x_{2}, \ldots, a_{n} x_{n}+S$. Then $x-a_{1} x_{1}, a_{2} x_{2}, \ldots, a_{n} x_{n}=s, s \in S$. Hence $Z=R x_{1}, R x_{2}, \ldots, R x_{n}+S$. Since Z is SP-H-R-M and $\frac{Z}{S}$ is finitely generated also by Proposition(2.3). Thus Z is H-R-M.

Proposition 2.9 Let Z be SP-H-R-M. If a proper submodule is semiprime in Z, then any non-zero coclosed submodule of Z is SP-H-R-M.
Proof: Assume S is non-zero coclosed submodule of Z and K is a proper submodule of S. Then $K \subset S$. Since Z is SP-H-R-M and K is prime submodule of Z also $K \ll Z$. But S is coclosed submodule of Z. Thus $K \ll Z$, see [4, P.27].

Proposition 2.10 Let V be a small cover of an R-module Z. If V is SP-H-R-M, then Z is SP-H-R-M.
Proof: Let $\phi: V \rightarrow Z$ be a small cover of Z and V is a SP-H-R-M. By the first isomorphism theorem $\frac{V}{\operatorname{Ker}(\phi)} \cong Z$ and by Corollary(2.5). Thus Z is SP-H-R-M.

Corollary 2.11 If Z is SP-H-R-M and is a finitely generated C.P module, then Z is projective.
Proof: By Proposition 2.7, Z is cyclic. But Z is a C.P module and thus Z is projective module.

3 More About Semiprime Hollow R-Modules

SP-H-R-M is studied in this section. An R-module Z is indeed a multiplication R-module (M-R-M) if for each submodule Q of Z there exists an ideal J of R such that $Q=J Z[11]$.

Proposition 3.1 Let Z be M-R-M containing a finitely generated semiprime submodule of an R-module Z. If Z is SP-H-R-M, then Z is $\mathrm{H}-\mathrm{R}-\mathrm{M}$.
Proof: Since Z is M-R-M containing a finitely generated semiprime submodule, Z is finitely generated [12], and by Proposition 2.3, we get the result.

Corollary 3.2 If Z is a M-R-M with a semiprime annihilator and SP-H-$\mathrm{R}-\mathrm{M}$, then Z is $\mathrm{H}-\mathrm{R}-\mathrm{M}$.
Proof: Since Z is a M-R-M. with semiprime annihilator, Z is finitely generated [12] and hence Z is $\mathrm{H}-\mathrm{R}-\mathrm{M}$.

Theorem 3.3 If R is semiprime hollow ring and Z is multiplication finitely generated and faithful module over R, then Z is semiprime hollow module.
Proof: Assume that Q is a semiprime submodule of Z. As Z is M-R-M, there exists a semiprime ideal J in R so that $Q=J Z$ [13]. But R is semiprime hollow ring. Thus J is small ideal in R. As Z is faithful finitely generated and M-R-M, Q is a small submodule of Z [14].
Recall that the R-module Z is cancellation R-module, if whenever $J Z=L Z$ where J and L be two ideals of R, then $J=L$. Also Z is called weak cancellation, if whenever $J Z=L Z$, where J and L be two ideals of R then
$J+\operatorname{ann}(Z)=L+\operatorname{ann}(Z)$. Also Z is called quasi-cancellation module, if whenever $J Z=L Z$ where J and L be two finitely generated ideals of R then $J=L$ [12]. In [12], Mijbass proved that if Z is multiplication and cancellation R-module (M-C-R-M), then Z is finitely generated and faithful.
Corollary (3.4): Let Z be a weak cancellation and multiplication R-module. If Z is $\mathrm{SP}-\mathrm{H}-\mathrm{R}-\mathrm{M}$, then Z is $\mathrm{H}-\mathrm{R}-\mathrm{M}$.

Proposition 3.5 Let Z be M-C-R-M. If Z is SP-H-R-M, then Z is cyclic R-module.
Proof: Since Z is M-C-R-M, Z is finitely generated (12)and Z is SP-H-R-M. By Corollary (2.11), Z is cyclic.

Recall that with a submodule Q of an R-module Z and I an ideal in R, Q is pure in Z, if $I Z \bigcap Q=I Q$ [15].

Corollary 3.6 Let Z be an M-R-M. such that Z contains a pure weak cancellation submodule T with $\operatorname{ann}(Z)=\operatorname{ann}(T)$. If Z is SP-H-R-M, then Z is $\mathrm{H}-\mathrm{R}-\mathrm{M}$.

Corollary 3.7 Let Z be an M-R-M such that Z contains a pure cancellation submodule. If Z is $\mathrm{SP}-\mathrm{H}-\mathrm{R}-\mathrm{M}$, then Z is $\mathrm{H}-\mathrm{R}-\mathrm{M}$.

Proposition 3.8 Let Z be multiplication faithful over integral domain R. If Z is SP-H-R-M., then Z is H-R-M.
Proof: Since Z is multiplication faithful over integral domain R, Z is finitely generated [12], and by Proposition 2.3, Z is $\mathrm{H}-\mathrm{R}-\mathrm{M}$.

Proposition 3.9 Let Z be M-R-M which has a finitely generated faithful submodule Q. If Z is SP-H-R-M, then Z is H-R-M.
Proof: Since Z is M-R-M and the submodule Q of Z is finitely generated faithful, Z is finitely generated [12]. Hence Z is $\mathrm{H}-\mathrm{R}-\mathrm{M}$.

Proposition 3.10 Every finitely generated SP-H-R-M is lifting R-module.
Remark 3.11 In general, the opposite of Proposition(3.10) is not true; for example, the Z-module $Z=Z_{2} \bigoplus Z_{4}$ is a lifting Z-module. But it is not SP-H-Z-M, since there exists a semiprime submodule $Q=Z_{2} \bigoplus(0)$ of $Z_{2} \bigoplus Z_{4}$ which is not a small submodule of $Z_{2} \bigoplus Z_{4}$.

Proposition 3.12 Let Z be a faithful multiplication over an integral domain R. If Z is SP-H-R-M, then Z is a lifting R-module.
Proof: Since Z is a faithful multiplication R-module over an integral domain, Z is finitely generated [12]. Since Z is SP-H-R-M, by Proposition 3.10, Z is a lifting R-module.

Corollary 3.13 Let Z be a non-zero M-R-M with a semiprime annihilator. If Z is SP-H-R-M, then Z is lifting R-module.

Proposition 3.14 If an R-module Z is finitely generated faithful and multiplication over a semiprime hollow ring, then Z is lifting R-module.
Proof: Since Z is a finitely generated faithful and multiplication module over an integral domain, by Theorem(3.3) and Proposition 3.10, Z is lifting R-module.

4 Acknowledgments:

The authors wish to thank the referee for his/her helpful suggestions which improved the presentation of the paper.

References

[1] P. Fleury, Hollow modules and local endomorphism rings, Pacific Journal of Mathematics, 53, no. 2, (1974).379-385.
[2] B. Saraç, On semiprime submodules, Communications in Algebra, 37, no. 7, (2009), 2485-2495.
[3] D. Keskí Tütüncü, On coclosed submodules, Indian J. Pure Appl. Math., 36, no. 3,(2005), 135-144.
[4] C. Lomp, On semilocal rings and modules, Comm. Algebra, 27, no. 4, (1999), 1921-1935.
[5] K. Goodearl, Ring theory: Nonsingular rings and modules, CRC Press, 1976.
[6] A. G. Naoum, M. A. Al-Aubaidy, CF modules and CP modules, Iraqi J. Sci., 42, no. 1, (2001), 159-173..
[7] A. A. A. Zyarah, N. S. Al-Mothafar, On primary radical $R \Gamma$-submodules of $R \Gamma$-modules, Journal of Discrete Mathematical Sciences and Cryptography, 23, no. 5, (2020), 1001-1007.
[8] A. A. A. Zyarah, N. S. Al-Mothafar, Semiprime $R \hat{I} "$-Submodules of Multiplication $R \hat{I}^{\prime \prime}$-Modules, Iraqi J. Sci., (2020), 1104-1114.
[9] A. A. A. Zyarah, A. H. Hussain, H. K. Zghair, Z-prime gamma submodule of gamma modules, International Journal of Nonlinear Analysis and Applications, 13, no. 1, (2022), 97-102.
[10] A. S. Mijbass, On cancellation Modules, M. Sc. Thesis, Baghdad University, 1992.

