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Abstract

The idea of uniform modules was utilized to create what is now
known as the uniform dimension of a module (also known as the Goldie
dimension). Some characteristics of the idea of the dimension of a vec-
tor space are generalized by uniform dimension. Let R be an identity
commutative ring and let Z be an R-module. We examine some main
properties of Semiprime Hollow R-Modules, as well as the relationship
between them and hollow modules and other modules like semihollow,
abundantly supplemented, and lifting modules.
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1 Introduction

Assume R is an identity commutative ring and Z is an R-module. Q is called
a small submodule of Z and denoted by Q≪ Z, if Q+U = Z for any proper
submodule U of Z implies U = Z [1,2]. Any proper submodule Q of Z is
called a semiprime submodule, if rkx ∈ Q where r ∈ R, k ∈ Z+ and x ∈ Z,
then rx ∈ Q [3]. A non-zero R-module Z is called hollow (H-R-M), if every
proper submodule of Z is small [1]. Any submodule S of Z is called coclosed
if for each submodule L ≤ Z with L ⊆ S, then S

L
≪

Z
L
, then S = Z [4].

An R-module Z is called a small cover for an R-module T , if there exists a
small epimorphism φ : T → Z [5]. The R-module Z is projective, if for any
epimorphism α : H1 → H2 where H1 and H2 are R-modules, and for any
homomorphism β : Z → H2 there exists a homomorphism θ : Z → H1 such
that α ◦ θ = β [6]. The R-module Z is C.P module if every cyclic submodule
of Z is projective [7].

2 Semiprime Hollow R-Modules

This section introduces and investigates certain features and characteriza-
tions of a newly SP-H-R-M generalization:

Definition 2.1 The R-module Z is semiprime hollow (SP-H-R-M) if for
any semiprime submodule of Z is small.

Remarks and Examples 2.2

1. In general, any H-R-M is SP-H-R-M. However, the opposite is not true.
A Z-module Q is known to be not H-R-M [15].

2. In general, any prime H-R-M is also a SP-H-R-M, but that isn’t always
the case. A Z-module Q is known to be not H-R-M [15].

3. Z-module Z is not SP-H-Z-M. Since every semiprime submodule of Z
is form (p), where p a prime number, but (p) isnt a small submodule
of Z.

4. The module Z9 as Z-module is semiprime hollow module. The only
semiprime submodule of Z9 is E = (3̄) which is small submodule of Z9

and there is no proper submodule K of Z9 such that E +K = Z9.
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Proposition 2.3 Every SP-H-R-M created finitely generated is H-R-M.
Proof: Let Z be a finitely generated R-module. Then any proper submodule
S of Z is contained within a maximal submodule W . Since Z is SP-H-R-M,
W ≪ Z. Hence S ≪ Z. Thus Z is H-R-M.

Proposition 2.4 Let Z1, Z2 be any R-modules also ψ : Z1 → Z2 be an
R-epimorphism. If Z1 is a SP-H-R-M, then Z2 is also SP-H-R-M.
Proof: It is clear that ψ(Z1) = Z2, since ψ is an R-epimorphism. Let S be
a semiprime submodule of Z2. We prove that S ≪ Z2. Since ψ−1(S) ≤ Z2,

ψ−1(S) is semiprime submodule of Z1 [ 15 ] and also Z1 is a SP-H-R-M. Then
ψ−1(S) ≪ Z2 . Now, ψ(ψ

−1(S)) ≪ ψ(Z1) = Z2, [6] and hence S ≪ Z2. Thus
Z2 is SP-H-R-M.
Corollary 2.5 If S is a proper submodule in SP-H-R-M Z, then Z

S
is SP-H-

R-M.
Corollary 2.6 The direct summand of SP-H-R-M is SP-H-R-M.
Proof : Let Z be a SP-H-R-M and E, F ≤ Z such that E ⊕ F = Z. The
projections PE : Z → E and PF : Z → F are R-epimorphism R-modules.
By Proposition(2.4), we get E and F are semiprime hollow.

Proposition 2.7 If Z is semiprime finitely generated H-R-M, then it is
a cyclic R-module.
Proof : By Proposition(2.3), Z is H-R-M and hence Z is cyclic R-module.

Proposition 2.8 If S is a semiprime submodule of SP-H-R-M and Z also
Z
S
is finitely generated, then Z is H-R-M.

Proof: Now to show that Z is finitely generated, as Z
S

is finitely gener-
ated, there exist x1, x2, ..., xn ∈ Z and Z

S
= Rx1, Rx2, ..., Rxn + S . Let

x ∈ Z, x + S ∈
Z
S

and there exist a1, a2, ..., an ∈ Z such that x + S =
a1x1, a2x2, ..., anxn + S. Then x − a1x1, a2x2, ..., anxn = s, s ∈ S. Hence
Z = Rx1, Rx2, ..., Rxn+S . Since Z is SP-H-R-M and Z

S
is finitely generated

also by Proposition(2.3). Thus Z is H-R-M.

Proposition 2.9 Let Z be SP-H-R-M. If a proper submodule is semiprime
in Z, then any non-zero coclosed submodule of Z is SP-H-R-M.
Proof: Assume S is non-zero coclosed submodule of Z and K is a proper
submodule of S. Then K ⊂ S. Since Z is SP-H-R-M and K is prime sub-
module of Z also K ≪ Z. But S is coclosed submodule of Z. Thus K ≪ Z,
see [4, P.27].
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Proposition 2.10 Let V be a small cover of an R-module Z. If V is
SP-H-R-M, then Z is SP-H-R-M.
Proof: Let φ : V → Z be a small cover of Z and V is a SP-H-R-M. By the
first isomorphism theorem V

Ker(φ)
∼= Z and by Corollary(2.5). Thus Z is

SP-H-R-M.

Corollary 2.11 If Z is SP-H-R-M and is a finitely generated C.P mod-
ule, then Z is projective.
Proof: By Proposition 2.7, Z is cyclic. But Z is a C.P module and thus Z
is projective module.

3 More About Semiprime Hollow R-Modules

SP-H-R-M is studied in this section. An R-module Z is indeed a multiplica-
tion R-module (M-R-M) if for each submodule Q of Z there exists an ideal
J of R such that Q = JZ [11].

Proposition 3.1 Let Z beM-R-M containing a finitely generated semiprime
submodule of an R-module Z. If Z is SP-H-R-M, then Z is H-R-M.
Proof: Since Z is M-R-M containing a finitely generated semiprime sub-
module, Z is finitely generated [12], and by Proposition 2.3, we get the
result.

Corollary 3.2 If Z is a M-R-M with a semiprime annihilator and SP-H-
R-M, then Z is H-R-M.
Proof: Since Z is a M-R-M. with semiprime annihilator, Z is finitely gen-
erated [12] and hence Z is H-R-M.

Theorem 3.3 If R is semiprime hollow ring and Z is multiplication
finitely generated and faithful module over R, then Z is semiprime hollow
module.
Proof: Assume thatQ is a semiprime submodule of Z. As Z is M-R-M, there
exists a semiprime ideal J in R so that Q = JZ [13]. But R is semiprime
hollow ring. Thus J is small ideal in R. As Z is faithful finitely generated
and M-R-M, Q is a small submodule of Z [14].
Recall that the R-module Z is cancellation R-module, if whenever JZ = LZ

where J and L be two ideals of R, then J = L. Also Z is called weak can-
cellation, if whenever JZ = LZ, where J and L be two ideals of R then
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J + ann(Z) = L + ann(Z) . Also Z is called quasi-cancellation module, if
whenever JZ = LZ where J and L be two finitely generated ideals of R then
J = L [12]. In [12], Mijbass proved that if Z is multiplication and cancella-
tion R-module (M-C-R-M), then Z is finitely generated and faithful.
Corollary (3.4): Let Z be a weak cancellation and multiplication R-module.
If Z is SP-H-R-M, then Z is H-R-M.

Proposition 3.5 Let Z be M-C-R-M. If Z is SP-H-R-M, then Z is cyclic
R-module.
Proof: Since Z is M-C-R-M, Z is finitely generated (12)and Z is SP-H-R-M.
By Corollary (2.11), Z is cyclic.

Recall that with a submodule Q of an R-module Z and I an ideal in R,
Q is pure in Z, if IZ

⋂
Q = IQ [15].

Corollary 3.6 Let Z be an M-R-M. such that Z contains a pure weak
cancellation submodule T with ann(Z) = ann(T ) . If Z is SP-H-R-M, then
Z is H-R-M.

Corollary 3.7 Let Z be an M-R-M such that Z contains a pure cancel-
lation submodule. If Z is SP-H-R-M, then Z is H-R-M.

Proposition 3.8 Let Z be multiplication faithful over integral domain
R. If Z is SP-H-R-M., then Z is H-R-M.
Proof: Since Z is multiplication faithful over integral domain R, Z is finitely
generated [12], and by Proposition 2.3, Z is H-R-M.

Proposition 3.9 Let Z be M-R-M which has a finitely generated faithful
submodule Q. If Z is SP-H-R-M, then Z is H-R-M.
Proof: Since Z is M-R-M and the submodule Q of Z is finitely generated
faithful, Z is finitely generated [12]. Hence Z is H-R-M.

Proposition 3.10 Every finitely generated SP-H-R-M is lifting R-module.

Remark 3.11 In general, the opposite of Proposition(3.10) is not true;
for example, the Z-module Z = Z2

⊕
Z4 is a lifting Z-module. But it is

not SP-H-Z-M, since there exists a semiprime submodule Q = Z2

⊕
(0) of

Z2

⊕
Z4 which is not a small submodule of Z2

⊕
Z4.
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Proposition 3.12 Let Z be a faithful multiplication over an integral do-
main R. If Z is SP-H-R-M, then Z is a lifting R-module.
Proof: Since Z is a faithful multiplication R-module over an integral do-
main, Z is finitely generated [12]. Since Z is SP-H-R-M, by Proposition 3.10,
Z is a lifting R-module.

Corollary 3.13 Let Z be a non-zero M-R-M with a semiprime annihila-
tor. If Z is SP-H-R-M, then Z is lifting R-module.

Proposition 3.14 If an R-module Z is finitely generated faithful and
multiplication over a semiprime hollow ring, then Z is lifting R-module.
Proof: Since Z is a finitely generated faithful and multiplication module
over an integral domain, by Theorem(3.3) and Proposition 3.10, Z is lifting
R-module.
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