International Journal of Mathematics and Computer Science, **18**(2023), no. 1, 29–35

Semiprime Hollow *R*-modules

Ali Abd Alhussein Zyarah^{1,2}, Ahmed Hadi Hussain³

¹General Directorate of Education for the Holy Karbala Iraqi Ministry of Education Karbala, Iraq

> ²College of Engineering University of Warith Al-Anbiyaa Karbala, Iraq

³Department of Automobile Engineering College of Engineering Al-Musayab University of Babylon Babil, Iraq

email: aliziara107@gmail.com, met.ahmed.hadi@uobabylon.edu.iq

(Received August 1, 2022, Revised September 5, 2022, Accepted October 22, 2022)

Abstract

The idea of uniform modules was utilized to create what is now known as the uniform dimension of a module (also known as the Goldie dimension). Some characteristics of the idea of the dimension of a vector space are generalized by uniform dimension. Let R be an identity commutative ring and let Z be an R-module. We examine some main properties of Semiprime Hollow R-Modules, as well as the relationship between them and hollow modules and other modules like semihollow, abundantly supplemented, and lifting modules.

Key words and phrases: Hollow modules, Small submodule, semiprime submodule, Multiplication module.

AMS (MOS) Subject Classifications: 16P70. ISSN 1814-0432, 2023, http://ijmcs.future-in-tech.net

1 Introduction

Assume R is an identity commutative ring and Z is an R-module. Q is called a small submodule of Z and denoted by $Q \ll Z$, if Q + U = Z for any proper submodule U of Z implies U = Z [1,2]. Any proper submodule Q of Z is called a semiprime submodule, if $r^k x \in Q$ where $r \in R, k \in Z^+$ and $x \in Z$, then $rx \in Q$ [3]. A non-zero R-module Z is called hollow (H-R-M), if every proper submodule of Z is small [1]. Any submodule S of Z is called coclosed if for each submodule $L \leq Z$ with $L \subseteq S$, then $\frac{S}{L} \ll \frac{Z}{L}$, then S = Z [4]. An R-module Z is called a small cover for an R-module T, if there exists a small epimorphism $\phi: T \to Z$ [5]. The R-module Z is projective, if for any epimorphism $\alpha: H_1 \to H_2$ where H_1 and H_2 are R-modules, and for any homomorphism $\beta: Z \to H_2$ there exists a homomorphism $\theta: Z \to H_1$ such that $\alpha \circ \theta = \beta$ [6]. The R-module Z is C.P module if every cyclic submodule of Z is projective [7].

2 Semiprime Hollow *R*-Modules

This section introduces and investigates certain features and characterizations of a newly SP-H-R-M generalization:

Definition 2.1 The *R*-module Z is semiprime hollow (SP-H-R-M) if for any semiprime submodule of Z is small.

Remarks and Examples 2.2

- 1. In general, any H-R-M is SP-H-R-M. However, the opposite is not true. A Z-module Q is known to be not H-R-M [15].
- 2. In general, any prime H-R-M is also a SP-H-R-M, but that isn't always the case. A Z-module Q is known to be not H-R-M [15].
- 3. Z-module Z is not SP-H-Z-M. Since every semiprime submodule of Z is form (p), where p a prime number, but (p) isnt a small submodule of Z.
- 4. The module Z_9 as Z-module is semiprime hollow module. The only semiprime submodule of Z_9 is $E = (\bar{3})$ which is small submodule of Z_9 and there is no proper submodule K of Z_9 such that $E + K = Z_9$.

Proposition 2.3 Every SP-H-R-M created finitely generated is H-R-M. **Proof:** Let Z be a finitely generated R-module. Then any proper submodule S of Z is contained within a maximal submodule W. Since Z is SP-H-R-M, $W \ll Z$. Hence $S \ll Z$. Thus Z is H-R-M.

Proposition 2.4 Let Z_1, Z_2 be any *R*-modules also $\psi : Z_1 \to Z_2$ be an *R*-epimorphism. If Z_1 is a SP-H-R-M, then Z_2 is also SP-H-R-M.

Proof: It is clear that $\psi(Z_1) = Z_2$, since ψ is an *R*-epimorphism. Let *S* be a semiprime submodule of Z_2 . We prove that $S \ll Z_2$. Since $\psi^{-1}(S) \leq Z_2$, $\psi - 1(S)$ is semiprime submodule of Z_1 [15] and also Z_1 is a SP-H-R-M. Then $\psi - 1(S) \ll Z_2$. Now, $\psi(\psi^{-1}(S)) \ll \psi(Z_1) = Z_2$, [6] and hence $S \ll Z_2$. Thus Z_2 is SP-H-R-M.

Corollary 2.5 If S is a proper submodule in SP-H-R-M Z, then $\frac{Z}{S}$ is SP-H-R-M.

Corollary 2.6 The direct summand of SP-H-R-M is SP-H-R-M.

Proof: Let Z be a SP-H-R-M and $E, F \leq Z$ such that $E \oplus F = Z$. The projections $P_E : Z \to E$ and $P_F : Z \to F$ are *R*-epimorphism *R*-modules. By Proposition(2.4), we get E and F are semiprime hollow.

Proposition 2.7 If Z is semiprime finitely generated H-R-M, then it is a cyclic R-module.

Proof : By Proposition(2.3), Z is H-R-M and hence Z is cyclic R-module.

Proposition 2.8 If S is a semiprime submodule of SP-H-R-M and Z also $\frac{Z}{S}$ is finitely generated, then Z is H-R-M.

Proof: Now to show that Z is finitely generated, as $\frac{Z}{S}$ is finitely generated, there exist $x_1, x_2, ..., x_n \in Z$ and $\frac{Z}{S} = Rx_1, Rx_2, ..., Rx_n + S$. Let $x \in Z, x + S \in \frac{Z}{S}$ and there exist $a_1, a_2, ..., a_n \in Z$ such that $x + S = a_1x_1, a_2x_2, ..., a_nx_n + S$. Then $x - a_1x_1, a_2x_2, ..., a_nx_n = s, s \in S$. Hence $Z = Rx_1, Rx_2, ..., Rx_n + S$. Since Z is SP-H-R-M and $\frac{Z}{S}$ is finitely generated also by Proposition(2.3). Thus Z is H-R-M.

Proposition 2.9 Let Z be SP-H-R-M. If a proper submodule is semiprime in Z, then any non-zero coclosed submodule of Z is SP-H-R-M.

Proof: Assume S is non-zero coclosed submodule of Z and K is a proper submodule of S. Then $K \subset S$. Since Z is SP-H-R-M and K is prime submodule of Z also $K \ll Z$. But S is coclosed submodule of Z. Thus $K \ll Z$, see [4, P.27].

Proposition 2.10 Let V be a small cover of an R-module Z. If V is SP-H-R-M, then Z is SP-H-R-M.

Proof: Let $\phi: V \to Z$ be a small cover of Z and V is a SP-H-R-M. By the first isomorphism theorem $\frac{V}{Ker(\phi)} \cong Z$ and by **Corollary(2.5)**. Thus Z is SP-H-R-M.

Corollary 2.11 If Z is SP-H-R-M and is a finitely generated C.P module, then Z is projective.

Proof: By Proposition 2.7, Z is cyclic. But Z is a C.P module and thus Z is projective module.

3 More About Semiprime Hollow *R*-Modules

SP-H-R-M is studied in this section. An *R*-module *Z* is indeed a multiplication *R*-module (M-R-M) if for each submodule *Q* of *Z* there exists an ideal *J* of *R* such that Q = JZ [11].

Proposition 3.1 Let Z be M-R-M containing a finitely generated semiprime submodule of an R-module Z. If Z is SP-H-R-M, then Z is H-R-M. **Proof:** Since Z is M-R-M containing a finitely generated semiprime submodule, Z is finitely generated [12], and by **Proposition 2.3**, we get the result.

Corollary 3.2 If Z is a M-R-M with a semiprime annihilator and SP-H-R-M, then Z is H-R-M.

Proof: Since Z is a M-R-M. with semiprime annihilator, Z is finitely generated [12] and hence Z is H-R-M.

Theorem 3.3 If R is semiprime hollow ring and Z is multiplication finitely generated and faithful module over R, then Z is semiprime hollow module.

Proof: Assume that Q is a semiprime submodule of Z. As Z is M-R-M, there exists a semiprime ideal J in R so that Q = JZ [13]. But R is semiprime hollow ring. Thus J is small ideal in R. As Z is faithful finitely generated and M-R-M, Q is a small submodule of Z [14].

Recall that the *R*-module *Z* is cancellation *R*-module, if whenever JZ = LZ where *J* and *L* be two ideals of *R*, then J = L. Also *Z* is called weak cancellation, if whenever JZ = LZ, where *J* and *L* be two ideals of *R* then

32

Semiprime Hollow R-modules

J + ann(Z) = L + ann(Z). Also Z is called quasi-cancellation module, if whenever JZ = LZ where J and L be two finitely generated ideals of R then J = L [12]. In [12], Mijbass proved that if Z is multiplication and cancellation R-module (M-C-R-M), then Z is finitely generated and faithful. **Corollary (3.4):** Let Z be a weak cancellation and multiplication R-module. If Z is SP-H-R-M, then Z is H-R-M.

Proposition 3.5 Let Z be M-C-R-M. If Z is SP-H-R-M, then Z is cyclic R-module.

Proof: Since Z is M-C-R-M, Z is finitely generated (12) and Z is SP-H-R-M. By Corollary (2.11), Z is cyclic.

Recall that with a submodule Q of an R-module Z and I an ideal in R, Q is pure in Z, if $IZ \bigcap Q = IQ$ [15].

Corollary 3.6 Let Z be an M-R-M. such that Z contains a pure weak cancellation submodule T with ann(Z) = ann(T). If Z is SP-H-R-M, then Z is H-R-M.

Corollary 3.7 Let Z be an M-R-M such that Z contains a pure cancellation submodule. If Z is SP-H-R-M, then Z is H-R-M.

Proposition 3.8 Let Z be multiplication faithful over integral domain R. If Z is SP-H-R-M., then Z is H-R-M.

Proof: Since Z is multiplication faithful over integral domain R, Z is finitely generated [12], and by **Proposition 2.3**, Z is H-R-M.

Proposition 3.9 Let Z be M-R-M which has a finitely generated faithful submodule Q. If Z is SP-H-R-M, then Z is H-R-M. **Proof:** Since Z is M-R-M and the submodule Q of Z is finitely generated faithful, Z is finitely generated [12]. Hence Z is H-R-M.

Proposition 3.10 Every finitely generated SP-H-R-M is lifting *R*-module.

Remark 3.11 In general, the opposite of Proposition(3.10) is not true; for example, the Z-module $Z = Z_2 \bigoplus Z_4$ is a lifting Z-module. But it is not SP-H-Z-M, since there exists a semiprime submodule $Q = Z_2 \bigoplus (0)$ of $Z_2 \bigoplus Z_4$ which is not a small submodule of $Z_2 \bigoplus Z_4$. **Proposition 3.12** Let Z be a faithful multiplication over an integral domain R. If Z is SP-H-R-M, then Z is a lifting R-module. **Proof:** Since Z is a faithful multiplication R-module over an integral domain, Z is finitely generated [12]. Since Z is SP-H-R-M, by Proposition 3.10, Z is a lifting R-module.

Corollary 3.13 Let Z be a non-zero M-R-M with a semiprime annihilator. If Z is SP-H-R-M, then Z is lifting R-module.

Proposition 3.14 If an *R*-module *Z* is finitely generated faithful and multiplication over a semiprime hollow ring, then *Z* is lifting *R*-module. **Proof:** Since *Z* is a finitely generated faithful and multiplication module over an integral domain, by Theorem(3.3) and Proposition 3.10, *Z* is lifting *R*-module.

4 Acknowledgments:

The authors wish to thank the referee for his/her helpful suggestions which improved the presentation of the paper.

References

- P. Fleury, Hollow modules and local endomorphism rings, Pacific Journal of Mathematics, 53, no. 2, (1974).379–385.
- B. Saraç, On semiprime submodules, Communications in Algebra, 37, no. 7, (2009), 2485-2495.
- [3] D. Keskí Tütüncü, On coclosed submodules, Indian J. Pure Appl. Math., 36, no. 3,(2005), 135–144.
- [4] C. Lomp, On semilocal rings and modules, Comm. Algebra, 27, no. 4, (1999), 1921-1935.
- [5] K. Goodearl, Ring theory: Nonsingular rings and modules, CRC Press, 1976.
- [6] A. G. Naoum, M. A. Al-Aubaidy, CF modules and CP modules, Iraqi J. Sci., 42, no. 1, (2001), 159–173..

34

- [7] A. A. Zyarah, N. S. Al-Mothafar, On primary radical *R*Γ-submodules of *R*Γ-modules, Journal of Discrete Mathematical Sciences and Cryptography, 23, no. 5, (2020), 1001-1007.
- [8] A. A. Zyarah, N. S. Al-Mothafar, Semiprime RÎ"-Submodules of Multiplication RÎ"-Modules, Iraqi J. Sci., (2020), 1104-1114.
- [9] A. A. A. Zyarah, A. H. Hussain, H. K. Zghair, Z-prime gamma submodule of gamma modules, International Journal of Nonlinear Analysis and Applications, 13, no. 1, (2022), 97–102.
- [10] A. S. Mijbass, On cancellation Modules, M. Sc. Thesis, Baghdad University, 1992.