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Abstract
Through the concept of local function, we were able to define new boundaries for 

the set that we called **-frontier. There is a closed and important relationship between this 
concept and y-operator, as has been highlighted in this paper.
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1. Introduction

In every research or paper, we try to find definitions, relationships and 
mathematical concepts that make it easier for us to solve some mathematical 
problems or be an introduction to building important mathematical models 
with a clear impact, through the use of some mathematical concepts with 
multiple uses especially in the subject of topology. Among among these 
concepts is the local function, and the exploitation of its highly flexible 
properties in modification and maneuvering. This drew our attention 
as well as of many other researches, as we enriched this function with a 
number of researches, whether by studying it in traditional, ambiguous or 
flexible spaces. For more information, it is possible to use the papers [1,2,3].

2. The Main Ideas

Definition 2.1 : [4] Let ( , , )IK t  be a ideal

1. For any subset K,y * **= - - ( ) ( ) .k kK K  
2. Í k K is called Iw -dense iff ** = k K.

Theorem 2.2 : [5,6] Let ( , , )IK t is ideal, the statement, are equivalents:

1. j= .It

2. If Î ,I so int j=( ) .

3. *Ì " Í, .H H H �

4. *= K K .

So, Hayashi-Samuel space, for any Ì ,H t * **= .H H  If we have any 
ideal topological spaces ( , , ),IK t  we have three functions of any subset C
of K  as follows: * *Í( )Fr C t  - Í( )Fr C t - ( )Fr C where =( )Fr C -cl ( )CKt

*
cl ( ).Ct t - =( )Fr C * cl ( )C

t * -cl ( )CK
t

 and * =( )Fr r C * *- ( ) .C CK

Definition 2.3 : Let ( , , )IK t  be an ideal, then operator **( ) :Fr k ®( )K


( ),K  defined by ** =( )Fr k **
k **-( ) ,KK  is called *-boundary of k.

Example 2.4 : Let = ^ ^ ^
1 2 3{ , ,, }a a aK = Æ { , ,Kt ^ ^ ^

1 3 2, { , }},}a a a = Æ ^
2{ , { ,}I a

^ ^ ^
3 3 2{ , { ,} }}.a a a  Then ** ^ ^

1 2({ , }, )Fr a a = ^
1{ ,}a  so, we see that ** Í( )Fr k *( ).Fr k  

For any Î  ,a K = Í { ,I K
X

C Î - }a K C is an ideal on  ,K  so, j** =( ) .Fr k  For 
any Í  ,k K  because j** =k if Ï ,a k if Î ,a k  then j**- =( ) .kK  Now for, 
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= Æ{ },I  we get that all frontiers of any set are equal. But if = ( )I K  then 
** =( )Fr a j* =( ) .Fr C

Proposition 2.5: Let ( , , )IK t  is ideal space. For any subset , of ,¥ f K  the 
following are carried:

1. **Î ( )k Fr ¥ iff y** *Î - ( ).k ¥
2. j=( )Fr ¥ iff y** *Í ( ).¥ ¥
3. ** **= -( ) ( )Fr ¥ ¥K iff y** *- Í ( ).¥ ¥K

4. If ¥  is Iw -dense, then ** **= -( ) ( ) .Fr ¥ ¥K

Proof of (1) : **Î ( )k Fr ¥  iff **Î ( )k ¥  and iff **Î -( )k ¥K iff **Î ( )k ¥ and 
y *Ï ( )k ¥ iff **Îk ¥ y *- ( ).¥

Proof of (4) : ¥ is Iw -dense, then ** =  ,¥ K  so, ** =( )Fr ¥ ** **- ( )¥ ¥K
**= -( ) .¥K  By Proposition 2.5 part (1)[5], y * **Í( )¥ ¥ for any subset ¥  in 

the Hayashi-Samuel space. There are some properties that connect y * -
operator with **-Frontier in the Hayashi -Samuel space.

Proposition 2.6 : Let ( , , )IK t is Hayashi-Samuel space, the following 
statements are correct.

1. j** =( )Fr k iff y** *= ( ).k k
2. For each closed set k ** **= Í( ) int ( ).Fr k k k

Proof : Let k be closed subset of  ,K ** =( )Fr k ** **- ( )k kK **=  clk
-( ),kK  by using Theorem 2.2. , - =cl( )kK **- =( )kK *-( ) ,kK so, 

** =( )Fr k **
k -( int ( ))kK **= Ík int ( ).k There are multiple properties 

and characteristics to **-boundary set, as in the following proposition.

Proposition 2.7 : For any subset k1, k2 in ideal ( , , ),IK t  the properties are 
true.

1. j j** **= =( ) ( ) .Fr Fr K

2.  For any j**Î =, ( ) .J I Fr J
3. **

1 2( )Fr k k = ** **
1 2( () )Fr k Fr k

4. **
1 )(Fr k = y *** -1 1( ).k k

5. ** ** **Í

1 1))( ( ( .)Fr F r k Fr k
6. **

1 )(Fr k = y** *- - - 

1 1( () ).k kK K
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7. ** **=

1 1)( ( ).Fr k Fr kK-

8. y y** * *- = - 

1 1) ( ).( ) (Fr k k kK K

9. y y *** *= - 

 



1 1 1( () ) .( )F rk k kK K

Proof of (6) : **
1 )(Fr k  = ** **-1 1( )k kK  = ** -1k K  

**- - 

1( ( ))kK K =
y *** -



1 ( ).k kK

Proof of (8) : **- 1 )(Fr kK  = -K ** **-1 1( ( ))k kK  = **- 1 )( kK -

(K
**- 1( ) )kK = - - (K K **- 1( )kK y *

 1( )k =y * - 1 )( kK y *
 1( ).k

Proof of (9) : y * - 1 )( kK  y *
 1( )k  

**
 1 )(Fr k  = - - (K K **- 1( ) )kK  -(K

**- 1( )kK **
1 )(Fr k  = **- 1( )kK -

(K  
**- 1( )kK **

1 )(Fr k  = **


 1 )(Fr kK =
 .K  For the Definition 2.1. it is simple to show that for any open set ,

** Í( )Fr  - 

** . �

Proposition 2.8 : For any subset 1 ,L  2L  in ideal ( , , ),IK t  the following are 
correct.

1. ** ** **Í 1 2 1 2( () ) ).(Fr Fr FrL L L L

2. ** ** **Í- 1 2 1 2( () ) ).(Fr Fr FrL L L L

3. ** **
1 2( () )Fr FrL L = ** -1 2( )Fr L L ** - 2 1( )Fr L L **

Fr 1 2( ).L L

Proof of (1) : By Proposition 2.7 part (3,7) we get that **
1 2( )Fr L L =

** - 1(Fr K L  2 )L = ** - 1(Fr K L -



2 )K L **Í Fr - 1( )K L ** - 2( )Fr K L =
**

1 )(Fr r L **
 2( ).Fr L

Proof of (2) : By part (1) and Proposition 2.7 part (3,7) we get that 
** -1 2( )Fr L L = **

1(Fr L - 2( ))K L **Í 1 )(Fr L **
Fr - 2( )K L = **

1 )(Fr L
**

 2( ).Fr L
The concept of symmetric difference of 1 ,L  2L  usually denoted by 

D1 2L L  and equal to -1 2L L  union to - 12 ,L L also equal to -1 2( )L L
1 2( )L L and the important property is D 1 2 )(H L L =  1( )H L D  2( ).H L

Through these observations, there are important properties that relate 
symmetric difference and -* * boundary, as shown by the following 
properties.

Proposition 2.9 : For any subset 1 ,L 2L  in ideal ( , , ),IK t the properties are 
true.

1. ** **
 21( () )Fr FrL L = **

1 2( )Fr L L ** - 1 2( )Fr L L **
 1 2( )Fr L L
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2. ** **
 21( () )Fr FrL L = **

1 2( )Fr L L ** - 2 1( )Fr L L **
 1 2( ).Fr L L

3. ** **
 21( () )Fr FrL L = ** -1 2( )Fr L L ** - 2 1( )Fr L L **

 1 2( ).Fr L L

4. ** ** D1 1 2( () )Fr FrL L L = ** -1 2( )Fr L L **
 1 2( )Fr L L ** - 2 1( ).Fr L L

5. ** ** D2 1 2( () )Fr FrL L L = ** -1 2( )Fr L L **
 1 2( )Fr L L ** - 2 1( ).Fr L L

Proof of (1) : By using Proposition 2.5 part (2, 5) we get that

**
1( )Fr L ** =2( )Fr L **

1( )Fr L ** - 2( )Fr K L = ** -1(Fr L - 2( ))K L

**
 1(Fr L - 2( ))K L ** - 2(( )Fr K L - 1 )L

= **
1 2( )Fr L L ** - 1 2( )Fr L L ** - (Fr  1 2( ))L L =

**
1 2( )Fr L L ** - 1 2( )Fr L L **

Fr 1 2( ).L L

Proof of (2) : By using proposition 2.5 part (2,6) we have:

**
1 )(Fr L **
 2 )(Fr L = **

2( )Fr L ** - 1( )Fr K L = ** - 1(( )Fr K L **- 2 ) FrL

- 1(( )K L  2 )L ** -2(Fr L - 1( ))K L = ** -(Fr K 1 2( ))L L **
 1(Fr L - 2 )L

**
1(Fr L  2 )L = **

1 2( ))Fr L L **
 2(Fr L - 1 )L **

2(Fr L  1 ).L

Proof of (4) : By using Proposition (2.8) we get **
1 )(Fr L **
Fr D1 2( )L L =

** -1(Fr L D1 2( ))L L **
Fr 1(L D1 2( ))L L **

Fr D1 2(( )L L - 2 )L …(1). 
Since - D1 1 2 )(L L L  = 1 1[(L L   2 )cL  1 2 ])( c cL L  = 1 1[( cL L

 2 )L 1 2 ])( c cL L  =  1 1 2( )cL L L  = 1 2 .L L  Then ** -1(Fr L D1 2( ))L L
= **

1 2( ).Fr L L  But - D1 1 2 )(L L L  = 1 1L L D  22L L  = D 1 1 2( )L L L =
-1 1[ (L K L  -



2 )]K L   1 2[(L L -



1( )]K L  = -1 2( )L K L = - -

1 2 )( .K L L  
Then,  **

1(Fr L D1 2( ))L L  = ** -(Fr K -1 2( ))L L = ** -1 2( ).Fr L L  Finally, 
since D -1 2 2( )L L L = D1 2( )L L -



2( )K L = -1 2( )[ ]L K L D 2[L - 1( )]K L
= j- D1 2( )L L  = -1 2 ,L L so ** D1((Fr L -2 2) ))L L = ** -1 2( ).Fr L L

3. Discussion and Conclusion

1.  By using Proposition 2.7 part (9) we see that space is divided into 
three parts: y y* * -( ), ( )k kK and **( ),Fr k for any subset k in  .K

2.  We any modify the **-frontier set by change open set tow -open, 
through it, the concepts are modified by papers [1,6,7].
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