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Abstract: In recent years, novel strategies to control insects have been based on protease inhibitors
(PIs). In this regard, molecular docking and molecular dynamics simulations have been extensively
used to investigate insect gut proteases and the interactions of PIs for the development of resistance
against insects. We, herein, report an in silico study of (disodium 5′-inosinate and petunidin 3-
glucoside), (calcium 5′-guanylate and chlorogenic acid), chlorogenic acid alone, (kaempferol-3,7-di-O-
glucoside with hyperoside and delphinidin 3-glucoside), and (myricetin 3′-glucoside and hyperoside)
as potential inhibitors of acetylcholinesterase receptors, actin, α-tubulin, arginine kinase, and histone
receptor III subtypes, respectively. The study demonstrated that the inhibitors are capable of forming
stable complexes with the corresponding proteins while also showing great potential for inhibitory
activity in the proposed protein-inhibitor combinations.

Keywords: protein inhibitors; Liriomyza trifolii; molecular docking; inhibitory activity; protein-ligand
interactions; yeast extraction; bean-leaf extraction

1. Introduction

A concerning problem that threatens food security around the world is the emergence
of insects capable of developing resistance to insecticides [1]. Excessive use of many
of these insecticides is associated with various health and environmental issues [2–4].
Liriomyza trifolii is a highly polyphagous pest in crop fields and greenhouses that has
detrimental economic impacts [5]. Both larvae and adults selectively eat only the layers
with the least amount of plant cellulose [6]. Stippling is one example of the damage in
crop plants caused by the sap-sucking female fly; internal mining caused by larvae is
another such example. These various types of damage allow pathogenic fungi to enter

Int. J. Mol. Sci. 2022, 23, 12791. https://doi.org/10.3390/ijms232112791 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms232112791
https://doi.org/10.3390/ijms232112791
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-3260-4162
https://orcid.org/0000-0001-5153-8247
https://orcid.org/0000-0003-0723-5622
https://orcid.org/0000-0002-6530-1504
https://orcid.org/0000-0001-7579-5432
https://orcid.org/0000-0002-8653-362X
https://orcid.org/0000-0002-5199-1145
https://orcid.org/0000-0003-2548-3507
https://orcid.org/0000-0001-6599-9204
https://doi.org/10.3390/ijms232112791
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms232112791?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 12791 2 of 22

the leaves through feeding holes. These types of damage also facilitate the mechanical
transmission of some plant viruses [7,8]. Both leaf mining and leaf spotting can greatly
reduce the level of photosynthesis in a plant [9], resulting in lower crop quality and
yield. In this work, the study of the interactions between proteins and ligand inhibitors
is proposed as for potential defense for increased resistance in crop plants [10]. The
biological role of PIs is based on the inhibition of the proteins present in the guts of
insects, which in turn reduces the availability of amino acids necessary for their growth
and development [11]. The harmful effects of synthetic insecticides on the environment
and on human health have drawn the attention of researchers to develop safer alternatives.
In recent years, many studies investigated the chemical composition of plants and the
possibility of using their extracts as bioinsecticides. In particular, these studies focused
on probing the possibility of inhibiting the action of a number of enzymes that are found
in common pests. Our work is complementary to the experimental results obtained by
Mashamaite et al. [12], which showed that some chemicals extracted from natural materials
such as plants can be effective compounds as biopesticides. Their work also suggested
that compounds such as the (disodium 5′-inosinate and petunidin 3-glucoside), (calcium
5′-guanylate and chlorogenic acid), chlorogenic acid alone, (kaempferol-3,7-di-O-glucoside
with hyperoside and delphinidin 3-glucoside), and (myricetin 3′-glucoside and hyperoside),
can be used for the development of multitarget bioinsecticides. To confirm and reproduce
the results obtained by the work of Mostafa et al. [13], it is necessary to perform structural
modeling, binding site interaction prediction, molecular docking free energy calculations,
binding pose analysis, dynamic stability and conformational perturbation analyses, radius
of gyration analysis, hydrogen bond analysis, and molecular mechanics PBSA free energy
calculations. The goal is to confirm, computationally, that these compounds could exert
their bioactivities by altering the activities of acetylcholinesterase receptors, actin, α-tubulin,
arginine kinase, and histone receptor III subtypes. Reproducing these results would also
confirm the importance and versatility of the computational methods employed in this
work in studying protein-ligand interactions.

We herein report the results of our structural modeling, binding site interaction predic-
tion, molecular docking free energy calculations, binding pose analysis, dynamic stability
and conformational perturbation analyses, radius of gyration analysis, hydrogen bond
analysis, and molecular mechanics PBSA free energy calculations.

2. Results and Discussion
2.1. Database Search, Structural Modeling, and Model Validation

The homology modeling search of the query proteins sequences with the target Liri-
omyza trifolii proteins, namely acetylcholinesterase, α-tubulin, actin, arginine kinase, histone
subunit III, Hsp90, and elongation factor 1-alpha, was performed using Blast on the NCBI
server. The query coverage of proteins sequences showed (96%, 100%, 100%, 98%, 100%,
31% and 97%) with (54%, 61%, 60%, 58%, 59%, 56% and 55%) identity with the template
proteins (1dx4.1.A, 5kx5.1.C, 4cbu.1.A, 4bg4.1.A, 4zux.1.A, 4cwr.1.A., and 5o8w.1.A), re-
spectively. These were used as template proteins for the homology modeling of our target
proteins. The Swissmodel server (https://Swissmodel.expasy.org/, accessed on 10 August
2022) generated (25, 35, 56, 58, 30, and 31) predictive models for Liriomyza trifolii proteins
(acetylcholinesterase, α-tubulin, actin, arginine kinase, histone subunit III Hsp90, and elon-
gation factor 1-alpha) with identity and Qualitative Model Energy Analysis (QMEAN)
score values [14]. The models with low values of QMEAN scores were selected as the final
models for in silico characterization and docking studies.

2.2. Structural Modeling, In Silico Characterization, and Model Validation

The selected models were verified for their stereochemical quality assessment. Fur-
thermore, in each case of qualitative assessment, a comparative study was done with
experimentally solved crystal structures to check the quality, reliability, accuracy, stabil-
ity, and compatibility of the computationally predicted protein through a Ramachandran
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plot, the ERRAT score which is a so-called “overall quality factor” for nonbonded atomic
interactions, with higher scores indicating higher quality [15], and the QMEAN score. The
Ramachandran plot obtained through the PROCHECK module of the PDBSum server justi-
fied the stereochemical suitability of the predicted proteins. Acetylcholinesterase, α-tubulin,
actin, arginine kinase, histone subunit III Hsp90, and elongation factor 1-alpha had 92.3 %,
94.3%, 94.6%, 94.2%, 96.4%, 93.5%, and 94.0% residues, respectively, accommodating in the
most favored regions (A, B, and L). They also only had 7.7 %, 5.5%, 5.4%, 5.0%, 0.3%, 0.6%,
and 5.2% residues occupied in the additionally allowed regions (a, b, l, and p), respectively
(Table 1, Figure S1). Residues in generously allowed regions (a, b, l, and p) are (0.0%, 0.3%,
0.0%, 0.8%, 0.0%, 0.0%, and 0.4%) and residues in disallowed regions are (0.0%, 0.0%, 0.0%,
0.0%, 0.0%, 0.5% and 0.4%), respectively. The ERRAT scores for the modeled structure
were found to be (100%, 89.3519%, 95.9596%, 93.1298%, 100%, 96.4824%, 92.5373%, and
81.7204%), respectively. The QMEAN score values of the models were (−0.11, −1.00, 0.13,
0.43, 0.25, 0.28, and 0.66), respectively. The three parameters suggested that the predicted
model had satisfactory stereochemical quality and was close to the template structure.

Table 1. Ramachandran plot values obtained through PROCHECK. Structurally and energetically
favored regions are classified into allowed, generously allowed, and disallowed categories.

Protein
Ramachandran Plot Values

Core % Allowed % Generously % Disallowed %

Acetylcholinesterase 92.3 7.7 0.0 0.0
α-tubulin 94.3 5.5 0.3 0.0

Actin 94.6 5.4 0.0 0.0
Arginine kinase 94.2 5.0 0.8 0.0

Histone subunit 3 96.4 0.3 0.0 0.0
Hsp90 93.5 0.6 0.0 0.5

Elongation factor 94.0 5.2 0.4 0.4
Carbamoyl phosphate synthase 85.6 13.2 0.0 1.1

2.3. Binding Site Prediction and Protein-Ligand Interaction

The putative ligand binding sites (both major and minor) for the predicted proteins
were identified through Discovery studio software and were visualized (Figure 1). All
target proteins (acetylcholinesterase, α-tubulin, actin, arginine kinase, histone subunit III,
Hsp90, elongation factor 1-alpha, and carbomoylphosphate synthase) were docked with
the ligands, most of which were phytochemicals derived from the leaves of Phaseolus
vulgaris [16,17] and the yeast extract. We evaluated the protein-ligand interaction through
SAMSON software [18]. It was found that the tool has discrepancies in results for accurate
pose prediction among the various putative docking poses.

2.4. Molecular Docking and Binding Free Energy Calculation

The prepared protein structures of (acetylcholinesterase, α-tubulin, actin, arginine
kinase, histone subunit III, Hsp90, elongation factor 1-alpha, and carbamoyl phosphate
synthase) were docked using SAMSON software with phytochemical compounds and
yeast extracted compounds listed in the supplementary data. The results of the docking
studies were provided in Table 2, and it was revealed that the phytochemical compounds
were superior to the yeast extract compounds based on the docking score. All docking
results were monitored by scoring functions that predict how well the ligand binds in
a particular docked pose. This scoring function gives the ranking of the ligands. In the
present study, the docking score was taken into consideration for the selection of the best
ligands. This allowed us to explain the mechanisms of insect death. A mathematical
empirical scoring function was used to approximately predict the binding affinity between
two molecules after they have been docked by approximating the ligand’s binding free
energy [20]. It includes various force field interactions such as electrostatic and van der
Waals contributions, which influence ligand binding. Subsequently, the docked structures
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were queried for binding free energy calculation. The results of binding free energy
calculation were provided in Table 2. It was found that binding energy values supported
the docking result well. Hesperidin, Naringin, and Rosmarinic acid have higher binding
energies than other compounds. All of the other values contribute to the ∆G values which
reflect the binding energy of the protein-ligand complex.
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Figure 1. (A) acetylcholinesterase, (B) α-tubulin, (C) actin, (D) arginine kinase, (E) histone subunit
III (F) Hsp90, (G) elongation factor 1-alpha, and (H) carbamoyl phosphate synthase of the Liriomyza
trifolii modeled proteins through homology modeling using the Swissmodel server and visualized
through the Discovery Studio 3.0 visualization tool [19]. The large red sphere represents the cavities
surrounding the active sites and was visualized using the visualization module of Discovery Studio
3.0 visualization.

Table 2. Protein Genbank sequences and modeling parameters for building with template ID,
sequences identities, the coverage of the protein, and quality mean estimation for validation of the
protein in quality.

Protein Genbank: Template Seq Identity Coverage QMEAN

Acetylcholinesterase CAI30732.1 1dx4.1.A 54% 96% −0.11
α-tubulin ARQ84036.1 5kx5.1.C 61% 100% −1.00

Actin ARQ84030.1 4cbu.1.A 60% 100% 0.13
Argenin Kinase ARQ84038.1 4bg4.1.A 58% 98% 0.43

Histone Subunit3 ARQ84034.1 4zux.1.A 59% 100% 0.25
Hsp90 AGI19327.1 4cwr.1.A 56% 31% 0.28

Elongation Factor ARQ84032.1 5o8w.1.A 55% 97% 0.66

2.5. Binding Pose Analysis

The binding mode of the compounds with proteins (acetylcholinesterase, α-tubulin,
actin, arginine kinase, histone subunit III, Hsp90, elongation factor 1-alpha, and carbamoyl
phosphate synthase) showed the different interactions between the proteins and ligands
showed in Table 3. The interactions between the inhibitors and their target proteins, as well
as their binding modes and orientations, are shown in Figures 2–9.
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Table 3. Docking scores and molecular properties of bioactive phytochemical components from the
HPLC of Phaseolus vulgaris leaves (ref) and the yeast extract compounds. The molecular docking table
shows the protein target, the interactive ligands with the highest binding energy, the type of bound
of the highest score ligands, and the X, Y and Z geometry values of the protein.

Target Ligands
Binding Energy

of Direct
Kcal/mole

Binding Energy
of Indirect
Kcal/mole

Binging Site Type of Bond X, Y and Z Value

Acetylcolenestras

Disodium
5′-inosinate −6.5 0

SER36, CYS33,
SER29, ASN22,
ASN19, CYS18

center_x = 15.4462
center_y = 85.5487
center_z = −1.2087

Petunidin
3-glucoside 0 −6.9

ASN17, CYS18
ASN19, ASN22
SER29, VAL30
GLN32, CYS33,
SER36VAL37,

ASP38

Alkyl
Conventional

H-bond
carbon H-bond

Amide -pi stacked
pi-Alkyl

Van der waals
pi-Alkyl
pi-Anion

Halogen (Fluorine)
Pi-Sulfur

α-tubulin Chlorogenic acid
ID 0 −10.3

GLN11, ALA12
ASP69, ALA100
GLY144, ILE171

TYR224, ASN228

Conventional
H-bond
pi-Alkyl

Amide-pi stacked
Pi-Pi Stacked

Pi-Sigma
Unfavourable Donor–Donor

Unfavourable
Acceptor–Acceptor

center_x = 12.8911
center_y = 28.1478
center_z = −3.7346

Actin

Calcium
5′-guanylate D −7.6 0

THR30, ALA32
LEU34, ASN39,

GLN61, ARG101

Conventional
H-bond

cabon H-bond
Unfavourable Donor–Donor

Pi-Sigma
center_x = 16.2688
center_y = 30.1281
center_z = 30.8989

Chlorogenic acid
ID 0 −7.4

GLU31, LEU34
ASN35, TYR57
ALA59, ILE60

VAL63

Cabon H-bond
Pi-Sigma
pi-Alkyl

Conventional
H-bond

Unfavourable
Acceptor–Acceptor

Arginine kinase

Kaempferol-3,7-
di-O-glucoside

I
0 −9.9

PHE135, SER128
PRO126, ILE98

HIS95

cabon H-bond
Conventional

H-bond
Unfavourable Donor–Donor

Pi-Pi Stacked

center_x = 21.1887
center_y = −3.9607
center_z = 13.2428

Hyperoside D −9 0

ASN142, LEU136,
PHE135, SER128,
PHE127, VAL118,

ILE98

Van der waals
Conventional

H-bond
Unfavourable

Acceptor–Acceptor
pi-Alkyl

Pi-Pi Stacked
Pi-Pi T–shaped

Delphinidin
3-glucoside ID −9 −9

ASN142, PHE135,
PHE127, VAL118,

LEU96

Van der waals
Conventional

H-bond
Unfavourable

Acceptor–Acceptor
pi-Alkyl

Pi-Pi Stacked
Pi-Pi T–shaped

Hsp90 Cyanidin
3-glucoside ID –1 0 −10.9

ASN40 GLY86
LEU96 PHE127
TYR128 TRP151

THR173

cabon H-bond
Conventional

H-bond
Unfavourable Donor–Donor

Pi-Pi Stacked
Pi-Pi T–shaped

Pi-Sigma

center_x = 0.6349
center_y = 14.4620
center_z = 20.6177
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Table 3. Cont.

Target Ligands
Binding Energy

of Direct
Kcal/mole

Binding Energy
of Indirect
Kcal/mole

Binging Site Type of Bond X, Y and Z Value

Hsp90

Delphinidin
3-glucoside D/ID −10 12

ASN40, ASP82
GLY86, LEU96,

GLY126 PHE127,
TRP151 THR173

Cabon H-bond
Conventional

H-bond
Pi-Sigma

Pi-Pi T–shaped
Pi-Pi Stacked center_x = 0.6349

center_y = 14.4620
center_z = 20.6177

Hyperoside D −9 0

ASN40 ASP82
GLY86 LEU96

GLY126 PHE127
TRP151 THR173

Conventional
H-bond

Pi-Sigma
Pi-Pi T–shaped
Pi-Pi Stacked

Histone subunit3

Myricetin
3′-glucoside ID 0 −8.5

LEU66 GLN69
ARG70 ARG73

LEU83

Cabon H-bond
Conventional

H-bond
Unfavourable Donor–Donor

pi-Alkyl

center_x = 74.957
center_y = 39.323

center_z = −20.6626

Hyperoside D −6 TYR55 SER58
THR59 GLU60

Elongation factor

kaempferol3-O-
xylosylglucoside, 0 −9.8

HIS85, ALA58
GLN57, MET51
ALA41, ASP40,

THR37

Van der waals
Conventional

H-bond
pi-Alkyl

Pi-Pi T–shaped
Pi-Sigma
Pi-Sigma

center_x = 22.1139
center_y = 30.3465
center_z = 31.8549

Delphinidin
3-glucoside ID/D −9.5 −9.5

HIS85, VAL62
CYS60, ALA58
GLN57, MET51
ALA41, THR37

Cabon H-bond
Conventional

H-bond
Pi-Sigma

Pi-Pi T–shaped
pi-Alkyl
Pi-Sulfur

hyperoside D −9.9 0
HIS85, CYS60,

ALA58, MET51,
ALA41, THR37

Cabon H-bond
Conventional

H-bond
Pi-Sigma

Pi-Pi T–shaped
pi-Alkyl
Pi-Sulfur

Carbamoyl
phosphate
synthase

disodium
5′-guanylate −8.1 0

LYS196, MET195,
LYS194, GLN182,
CYS178, ASN152,
GLY151, GLY149,

PRO81, SER60

Cabon H-bond
Conventional

H-bond
pi-Alkyl
Pi-Cation

Petunidin
3-glucoside 0 −6.8

TRP34, LEU31,
GLU29, LYS28,
ARG26, LEU13,

ILE10, ILE8, PHE2

Cabon H-bond
Conventional

H-bond
Pi-Sigma
pi-Alkyl

Unfavourable Donor–Donor
Halogen (Fluorine)

center_x = 21.3610
center_y = 59.0995
center_z = 103.8306
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2.5.1. Root Mean Square Deviation (RMSD) Analysis

Calculations of the RMSD for the ligand-enzymes complex were used to determine the
dynamic stability and conformational perturbation, which occur in each of the simulated
systems during the simulation time scale. The RMSD values were calculated for the
following protein-inhibitors combinations: acetylcholinesterase with disodium 5′-inosinate
and petunidin 3-glucoside; actin with calcium 5′-guanylate D and chlorogenic acid; α-
tubulin with chlorogenic acid alone; arginine kinase with kaempferol-3,7-di-O-glucoside I,
hyperoside D, delphinidin 3-glucoside ID, and histone subunit III complexes with myricetin
3′-glucoside ID and hyperoside D. All the trajectories reached equilibrium state after 20 ns,
as shown in Figure 10. The RMSD values for all complexes are observed to be stable during
the 50 ns simulation.
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Figure 10. RMSD analyses of protein-ligand complexes. (A) acetylcholine esterase, (B) actin,
(C) α-tubulin, (D) arginine kinase, and (E) histone subunit III with inhibitors (disodium 5′-inosinate
and petunidin 3-glucoside), (calcium 5′-guanylate D and chlorogenic acid), chlorogenic acid,
(kaempferol-3,7-di-O-glucoside I, hyperoside D, delphinidin 3-glucoside ID) and (myricetin 3′-
glucoside ID, hyperoside D), respectively.

2.5.2. Radius of Gyration (Rg) Analysis

The Rg factor is best described for the stability of receptor-ligand complexes during
the molecular dynamics simulations. The results demonstrate that the Rg values during
different time points for the acetylcholine esterase, actin, α-tubulin, arginine kinase, and hi-
stone subunit III complexes to their respective ligands are constant during 50 ns simulation,
which indicates the compactness of all of the proteins (Figure 11).
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Figure 11. Radii of gyration for (A) acetylcholine esterase, (B) actin, (C) α-tubulin, (D) arginine
kinase, and (E) histone subunit III with inhibitors (disodium 5′-inosinate and petunidin 3-glucoside),
(calcium 5′-guanylate D and chlorogenic acid), chlorogenic acid, (kaempferol-3,7-di-O-glucoside I,
hyperoside D, delphinidin 3-glucoside ID), and (myricetin 3′-glucoside ID, hyperoside D) complexes.

2.5.3. Hydrogen Bond Analysis

The number of hydrogen bonds for the ligand-enzymes complexes are plotted over a
50-ns MD simulation interval (Figure 12). Since hydrogen bonds constitute a transient con-
nection that provides stability to the receptor-ligand complex, they constitute an important
factor to consider when discussing receptor-ligand stability. These bonds determine the
specificity of the binding mode. In this study, we have calculated all of the hydrogen bonds
for all of the complexes. The numbers of hydrogen bonds at different time points have
been calculated, as shown in Figure 12. The average number of hydrogen bonds calculated
for inhibitors (disodium 5′-inosinate and petunidin 3-glucoside), (calcium 5′-guanylate D
and chlorogenic acid), chlorogenic acid, (kaempferol-3,7-di-O-glucoside I, hyperoside D,
delphinidin 3-glucoside ID) and (myricetin 3′-glucoside ID, hyperoside D) are (0–6, 0–5),
(0–7, 0–9), 0–9, (0–8, 0–9, 0–10), respectively. All of the predicated ligands have shown
continuous hydrogen bonding during the 50 ns simulation, which demonstrates the stabil-
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ity of the complexes. The only exception was chlorogenic acid, which only shows stable
hydrogen bonding in the span of 35 ns.
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Figure 12. Estimation of the hydrogen bond number during a 50 ns MD simulation of for (A) actyl-
choline esterase, (B) actin, (C) α-tubulin, (D) arginine kinase, and (E) histone subunit III with
inhibitors (disodium 5′-inosinate and petunidin 3-glucoside), (calcium 5′-guanylate D and chlgenic
acid), chlorogenic acid, (kaempferol-3,7-di-O-glucoside I, hyperoside D, delphinidin 3-glucoside ID),
and (myricetin 3′-glucoside ID, hyperoside D) complexes.

2.5.4. Root Mean Square Fluctuation Analysis (RMSF)

The RMSF value refers to the flexibility and mobility of structure—a higher value of
RMSF indicates a loosely bonded structure with twists, curves, and coils, while a lower
value of RMSF indicates a stable secondary structure, including α-helix and beta-sheets. Our
RMSF analysis demonstrates that all of the ligands showed less conformational variations
during binding and can act as stable complexes (Figure 13).
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has been estimated using the molecular mechanics Poisson-Boltzmann surface area tool 
(G_MMPBSA) [21]. This useful tool allows for efficient and reliable free energy 
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Figure 13. RMSF analysis for (A) acetylcholine esterase, (B) actin, (C) A-tubulin, (D) arginine kinase,
and (E) histone subunit III with inhibitors (disodium 5′-inosinate and petunidin 3-glucoside), (calcium
5′-guanylate D and chlorogenic acid), chlorogenic acid, (kaempferol-3,7-di-o-glucoside I, hyperoside
D, delphinidin 3-glucoside ID), and (myricetin 3′-glucoside ID, hyperoside D) complexes.

2.5.5. Molecular Mechanics Poisson-Boltzmann Surface Area Free Energy Calculations

The binding capacity of the ligand towards the receptor is quantitatively estimated
by binding free energy analysis. Binding free energy is the summation of all non-bonded
interaction energies. The binding free energy of the interactions between acetylcholine
esterase, actin, α-tubulin, arginine kinase, and histone subunit III and the docked ligands
has been estimated using the molecular mechanics Poisson-Boltzmann surface area tool
(G_MMPBSA) [21]. This useful tool allows for efficient and reliable free energy simulation
to model protein-ligand interactions. Our binding energy analysis spanning 50 ns MD
simulation trajectories show that all ligands have a binding affinity towards enzyme
inhibition and form stable complexes. Other different kinds of interaction energies, such as
van der Waals energy, electrostatic energy, polar solvation energy, and solvent accessible
surface area (SASA) energy, have been also calculated for all the Tools Shapes complexes
(Figure 14). Results indicate that van der Waals, electrostatic, and SASA energy negatively
contribute to the total interaction energy, while only polar solvation energy positively
contributes to the total free binding energy. In particular, the contribution of van der Waals
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interactions is much greater than that of the electrostatic interactions in all cases except
the complexes arginine kinase-delphinidin 3-glucoside and histone subunit-myricetin 3′-
glucoside. Furthermore, the contribution of SASA energy is relatively small when compared
to the total binding energy. The negative value of van der Waals energy also points to the
significant hydrophobic interaction between the ligands and the enzymes [22].
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Figure 14. Representation of the van der Waals, electrostatic, polar solvation, SASA, and binding
energy for docked compounds into: Acetylcholine esterase, Actin, A-tubulin, Arginine kinase and
histone subunit III with inhibitors (disodium 5′-inosinate and petunidin 3-glucoside), (calcium 5′-
guanylate D and chlorogenic acid), chlorogenic acid, (kaempferol-3,7-di-o-glucoside I, hyperoside D,
delphinidin 3-glucoside ID), and (myricetin 3′-glucoside ID, hyperoside D) complexes.

2.5.6. Principal Component Analysis (PCA)

Principal component analysis is a method that utilizes linear combinations of measured
variables, which allows for the reduction of the dimensionality of data and helps identify
the principal sources of variation. In molecular dynamics simulations, PCA is a popular
method to account for the essential dynamics of the system on a low-dimensional free
energy landscape [23]. To analyze the collective motion of all complexes, PCA analysis
based on C-a atoms has been performed. It was observed that the first few eigenvectors of
the principal components (PCs) of the structures play an important role and describe the
overall motions of the entire system. These data suggest that kaempferol-3,7-di-O-glucoside
ID has formed very stable complexes with arginine kinase and myricetin 3′-glucoside ID
with histone subunit III, which can be considered as a lead compound (Figure 15).
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Since it was previously found that the first five eigenvectors constitute the majority
portion of the total dynamics of the whole system, we plotted only the first two eigenvectors
against each other, where each dot represents correlated motions (Figure 16). The well-
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stable clustered dots signify the more stable structure, and low-clustered dots represent the
weaker stable structure.
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3. Materials and Methods
3.1. Database Search, Structural Modeling, and Model Validation

All protein sequences were obtained from NCBI (https://www.ncbi.nlm.nih.gov/,
accessed on 10 August 2022) in FASTA format and are mentioned by their Gen Bank
accession number in Table 2. The Liriomyza trifolii NCBI taxonomy (tax ID: 32264) proteins
were selected by searching all of the sequential homolog and orthologs using NCBI Blast
server [24] with the default values, and against the nonredundant protein sequences. The
sequences were retrieved in the FASTA format as an amino-acid sequence. The initial atomic
structures of the proteins, based on homology modeling, were built using the Swissmodel
server (https://Swissmodel.expasy.org/, accessed on 10 August 2022). In this study, a
sequence of Blast-P similarities for recognition of closely related structural homologs in
Liriomyza trifolii was queried against a PDB database [18]. The first hit on the annotation
Blast-p was obtained to identify the templates based on PDB template ID. The Protein Data
Bank collected the PDB file of the templates and was aligned using BLAST. The Swissmodel
server used the target sequence file, the alignment file, the PDB file for the prototype, and
all the template proteins to build the homology model. Homology models with a score of
<−4 were chosen. The optimized models (acetylcholinesterase, α-tubulin, actin, arginine
kinase, histone subunit III, heat shock protein 90 (Hsp90), and elongation factor 1-alpha)
were found to be suitable based on several qualitative background checks, including the
PROCHECK (PDBSum) and Swissmodel server (https://saves.mbi.ucla.edu/, accessed on
10 August 2022). The Ramachandran plot evaluated that the predicted models were closer
to the template with (99.1%, 92.6%, 86.7%, 84.4%, 88.6%, 88.4%) residues lying in the favored
regions. The ERRAT score values of 99.1304, 89.7527, 96.4539, 82.0707, 96.5217, 90.9774, and
QMEAN score indicated that the predicted models were reliable and satisfactory, as they
are higher than the ideal values of the QMEAN score <−4, and ERRAT around 95% for a
model with a satisfactory resolution [24].

3.2. Preparation of Proteins and Ligands

The sequences of the Liriomyza trifolii proteins (acetylcholinesterase, actin, α-tubulin,
arginine kinase, elongation factor 1-alpha, Hsp90, and histone subunit III) with GenBank
accession no. number (CAI30732.1, ARQ84036.1, ARQ84030.1, ARQ84038.1, ARQ84034.1,

https://www.ncbi.nlm.nih.gov/
https://Swissmodel.expasy.org/
https://saves.mbi.ucla.edu/
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AGI19327.1, ARQ84032.1, ABL07756.1, respectively) were obtained from NCBI. The protein
sequences were retrieved in the FASTA format. The 3-D structures of proteins were built
using the Swissmodel server (https://Swissmodel.expasy.org/, accessed on 10 August
2022). Here, proteins were selected as target receptor proteins and were imported to
the 3-D refine server to perform energy minimization for the six proteins (http://sysbio.
rnet.missouri.edu/3Drefine/, accessed on 10 August 2022). During docking studies, all
water molecules and ligands were removed, and hydrogen atoms were added to the
target proteins. The docking system was built using SAMSON software 2020 (https:
//www.samson-connect.net/, accessed on 10 August 2022). The structures were prepared
using the protein preparation wizard of the Autodock Vina extension of SAMSON 2020
software. The X, Y, and Z dimensions of the receptor grid, used for the blind docking of
ligands to proteins, are reported in Table 3. The ligands were retrieved from the PubChem
database in SDF format. Subsequently, each ligand was converted into MOL2 format using
OpenBabel software (http://openbabel.org/wiki/Main_Page, accessed on 10 August 2022),
followed by an energy minimization at pH 7.0 ± 2.0 in SAMSON software.

3.3. Binding Site Prediction and Protein-Ligand Docking

Discovery studio software and SAMSON software were used for binding site predic-
tion. SAMSON software uses Autodock Vina as an extension to maximize the accuracy of
these predictions while minimizing computer run-time [25]. It uses the interaction energy
between the protein and a simple van der Waals probe to locate energetically favorable
binding sites. The program is based on quantum mechanics, and it predicts the potential
affinity, molecular structure, geometry optimization of the structure, vibration frequencies
of coordinates of atoms, bond length, and bond angle. Following an exhaustive search,
100 poses were analyzed, and the best scoring poses were used to calculate the binding
affinity of the ligands. The ligands that tightly bind to a target protein with high scores were
selected in Table 3. The proteins were docked against a variety of bioactive compounds that
are phytochemical components from the HPLC of leaves of Phaseolus vulgaris (ref) and yeast
extract using SAMSON software [21]. The 2-D interaction was carried out to find favorable
binding geometries of the ligand with the proteins using Discovery Studio software. Thus,
the 2-D interaction images of the docked protein-ligand complexes with high scores to the
predicted active sites were obtained.

3.4. Protein Ligand Interaction Using SAMSON and Discovery Studio Software

The ligands were docked with the target proteins (acetylcholinesterase, actin, α-
tubulin, arginine kinase, elongation factor 1-alpha, Hsp90, and histone subunit III), and the
best docking poses were identified. Figures 1 and 2 show the 2-D and 3-D structures of the
binding poses of the compounds, respectively.

3.5. Protein–Protein Interaction Network

The Liriomyza trifolii proteins were submitted to the server for functional interaction
associated network between partners for the STRING (Research Online of Interacting
Genes/Proteins Data Basis version 10.0)13 [24]. The interactions were examined at medium
and high confidences.

3.6. Molecular Dynamics Simulation

The molecular dynamic approach is widely used to assess atoms’ behavior and struc-
tural stability, and to study the conformational changes at an atomic level. Understanding
the stability of protein upon ligand binding is significantly improved by molecular dynam-
ics simulation studies. Gromacs 4.6.2 [26] with GROMOS96 54a7 force field [27] was used
for MD simulation studies of two systems, at 50 ns each. The ProdrG2 Server was used
to generate the topology of the analysis of enzyme-ligand complexes. Each system was
placed in the center of the cubic box, with a distance of 1.0 nm between the enzyme and
the edge of the simulation box. Each system was solvated with explicit water molecules.

https://Swissmodel.expasy.org/
http://sysbio.rnet.missouri.edu/3Drefine/
http://sysbio.rnet.missouri.edu/3Drefine/
https://www.samson-connect.net/
https://www.samson-connect.net/
http://openbabel.org/wiki/Main_Page


Int. J. Mol. Sci. 2022, 23, 12791 20 of 22

Before proceeding towards energy minimization, all systems were neutralized by adding
Na+ and Cl− ions, accordingly. The steepest descent method was used for the energy
minimization of each system. MD simulations with NVT (isochoric-isothermal) and NPT
(isobaric-isothermal) ensembles (N 1

4 constant particle number, V 1
4 Volume, P 1

4 Pressure,
T 1

4 Temperature) were performed for 1 ns, each, to equilibrate the enzyme-ligand system
for constant volume, pressure (1 atm), and temperature (300 K). To calculate electrostatic
interaction, the Particle Mesh Ewald (PME) algorithm [25] was used with a grid spacing of
1.6 Å and a cutoff of 10 Å, and the LINCS method was used to restrain the bond length. Fi-
nally, the trajectories were saved at every 2-fs time step and the production MD simulation
of the enzyme-ligand complex was performed for 50 ns [28].

4. Conclusions

This study presented an array of naturally occurring, nontoxic, easily extractable,
low-cost ligands that show great potential as inhibitors of a variety of proteins found
in the gut of the polyphagous pest L. trifolii that is known to attack a myriad of crops.
The target proteins are acetylcholinesterase, actin, α-tubulin, arginine kinase, and histone
receptor III subtypes. The proposed inhibitors or inhibitor combinations are (disodium
5′-inosinate and praliciguat), (calcium 5′-guanylate and chlorogenic acid), chlorogenic acid
alone, (kaempferol-3,7-di-O-glucoside with hyperoside and delphinidin 3-glucoside), and
(myricetin 3′-glucoside and hyperoside), respectively. In lieu of an experimentally available
structure of the target proteins, the initial models of the protein of L. trifolii origin were
constructed using homology modeling. The analyses used in this investigation included
structural modeling, binding site interaction prediction, molecular docking free energy
calculations, binding pose analysis, dynamic stability and conformational perturbation
analysis, radius of gyration analysis, hydrogen bond analysis, and molecular mechanics
PBSA free energy calculations. The results demonstrated that the proposed inhibitors
formed stable complexes with their target proteins while also having great potentials for
inhibitory activity. All five ligand-protein complexes have favorable parameter values
in RMSD, RMSF, RoG, intermolecular hydrogen bonding, and binding free energy for
50 ns. Trajectories analysis showed that the studied complexes displayed structural stability
during the MD runs.

The are many various methods of predicting protein 3-D structures, for example,
I-Tasser to obtain their ‘starting’ structures or AlphaFold server and Swissmodel server.
Though the principle is the same for all of the homology modeling software, it is based
on the template structure that the final model is built. Different software uses different
templates to model, but we can conclude that the most exact commonly used online tool
is Swissmodel; it is easy and the most widely feasible, and not too expensive to be used
for predicting protein 3-D structures. Moreover, all of the various methods of predicting
protein 3-D structures “yield the same predicted protein structures”.

The development of computer systems in biological studies has had a great impact on
developing and understanding the effects of protein inhibitors. This allows the opportunity
for optimizing and utilizing computational methods, such as the ones used in this study, as
low-cost, efficient, and effective means of predicting protein-ligand interactions.
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