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Abstract. In this paper will, building new miner called intelligent miner based
on twelve concentrations to predict water quality called (IM12CP-WQI). The
main goal of that miner is to find water quality based on twelve types of con-
centrations that cause water pollution which is: Potential Hydrogen (PH), Total
Dissolved Solids (TDS), Turbidity Unit NTU, Total Hardness (TH), Total Alka-
linity, Calcium (Ca), Magnesium (Mg), Potassium (K), Sodium (Na), Chloride
(Cl), Nitrogen Nitrate (NO3), and Sulfate (SO4). IM12CP-WQI consists of four
stages; the first stage related to data collection through two Seasons (i.e., sum-
mer & winter). The second stage, called pre-processing of data that include: (a)
Normalization the dataset to make dataset in range (0, 1). (b) finding correlation
between concentrations to know the direct or inverse correlation between those
concentrations and their relationship with the water quality index WQI. The sec-
ond stage involved building an optimization algorithm called DWM-Bat to find
the optimum weight for each of the 12 compounds as well as the optimum num-
ber of M models for DMARS. The third phase involved building a mathematical
model that combines these compounds, based on the development of MARS and
drawing on the results of the previous stage, DWM-Bat. The last stage included
the evaluation of the results obtained using three types of measures (R2, NSE, D)
on the basis of which the value ofWQIwas determined based on that determined if
the value of theWQI is less than 25, then it can be used for the purpose of drinking
either between (26–50) it is used in fish lakes, as well as (51–75) it can be used
in agriculture. Otherwise, it needs a refining process and reports are produced.
Also, the results of the model (IM12CP-WQI) were compared with the results of
the models (MARS_Linear, MARS_poly, MARS sigmoid, MARS_RBF) under
the same conditions and environment, finally; the results shown (IM12CP-WQI)
is pragmatic predictor of WQI.
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1 Introduction

Water is one of the most important resource for continuous life in the world. The source
of water split into two types: “surface and groundwater water, in general, surface water
is found in lakes, rivers, and reservoirs, while ground water lies under the surface of the
land, it travels through and fills openings in the rocks”. The water supply crisis is a harsh
truth not only on a national level, but also on a global level. The recent Global Dangers
report of the World Economic Forum lists the water supply crisis as one of the top five
global risks to materialize over the next decade. On the basis of the current population
trends and methods for water use, there is a strong indication that most African countries
will exceed the limits of their usablewater resources by 2025. The forecasted increases in
temperature resulting from climate change will place additional demands on over-used
water resources in the form of case dry’s [1–6].

The major challenges of water are increasing water demand, water Scarcity, water
pollution, inadequate access to safely, affordable water, sanitation, and climate change.
Thatwater pollution is the pollutant ion ofwater source such as oceans, rivers, seas, lakes,
groundwater and aquifers by pollutant. Pollutants may end in the water by directly or
indirectly application. This is the second most contamination type of the environmental
after air pollution. The water quality depends on the eco-system and on human use, such
as industrial pollution, wastewater and, more importantly, the overuse of water, which
leads to reduce level of water. Water Quality is monitored by measurements taken at the
original location and the assessment of water samples from the location achieving low
costs and high efficiency in wastewater treatment is a popular challenge in developing
states.

Prediction is one of the tasks achieve through data mining and artificial intelligent
techniques; to find the discrete or continuous of facts based on the recent facts (i.e.,
the prediction techniques generated actual values if prediction build from real facet
otherwise will generated the virtual values). Most prediction techniques based on the
a statistical or probabilities tools for prediction of the future behaviors such as “Chi-
squared Automatic Interaction Detection (CHAID), Exchange Chi-squared Automatic
InteractionDetection (ECHAID),RandomForestRegression andClassification (RFRC),
Multivariate Adaptive Regression Splines (MARS), and Boosted Tree Classifiers and
Regression (BTCR)” [7].

Optimization is the process to finding of the best values dependent on the type
of objective function for the problem identified. Generally speaking, the problem of
maximizing or minimizing. There are many types of optimation namely continuous
optimization, bound constrained optimization, constrained optimization, derivative-free
optimization, discrete optimization, global optimization, linear programming and non-
differentiable optimization. There are two types of objective function optimisation, a
single objective function and a multiple objective function. In single-objective opti-
mization, the decision to accept or decline solutions is based on the objective function
value and there is only one search space. While one feature of multi-objective opti-
mization involves potential conflicting objectives. There is therefore a trade-off between
objectives, i.e. the improvement achieved for a single objective can only be achieved by
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making concessions to a other objective. There is no optimal solution for all m objec-
tive functions at the same time. As a result, multiple-objective functions under a set of
constrains specified [8].

The detection of Water Quality Index (WQI) is one of the most important chal-
lenges; therefore, this paper suggests a method to build an intelligent miner to predict of
WQI through combination between one of optimation algorithm after developing called
(DWM-Bat) with one of the prediction algorithms that based on mathematical principle
called (DMARS).

2 Building IM12CP-WQI

The model presents in this paper consist of two phases, the first including build the
station as electrical circuit to collect the data related to 12 concentrations in real time
and saved it on the master computer to preparing and processing in next phase. The
second phase focuses on processing dataset after split it based on season identifier, the
processing phase pass on many levels of learning to product forecaster can deal with
different size of dataset. All the actives of this researcher summarization in Fig. 1 while
the algorithm of IM12CP-WQI model described in main algorithm. The main hypothesis
used

• The file of water have the following: pH, TDS (mg/l), Hardness (as CaCO3) (mg/l),
Alkalinity (as CaCO3) (mg/l), Nitrate (mg/l), Sulfate (mg/l), Chloride (mg/l), Tur-
bidity (NTU), Calcium (mg/l), Magnesium (mg/l), Sodium(mg/l), finally Potassium
(mg/l).

• Limitation\range for each parameters from Permissible Limit to Maximum Limit: pH
[6.5–8.5] to No relaxation, TDS (mg/l) [500 to 2000], Hardness (as CaCO3) (mg/l)
[200 to 600], Alkalinity (as CaCO3) (mg/l) [200 to 600], Nitrate (mg/l) [45 to No
relaxation], Sulfate (mg/l) [200 to 400], Chloride (mg/l) [250 to 1000], Turbidity
(NTU) [5–10 to 12], Calcium (mg/l) [50 to No relaxation], Magnesium (mg/l) [50 to
No relaxation], Sodium(mg/l) [200 to No relaxation], finally Potassium (mg/l) [12 to
No relaxation] (see Table 1).

2.1 Data Preprocess Stage

Dataset collection through two seasons in region of Iraq. To building the predictor as
follow.

• Split the dataset for each season and save it in separated file hold the name of this
season.

• apply the normalization for each column in dataset related to each season. Normalize
used to all the datasets (PH, TDS, NTU, TH, TA, Ca, Mg, K, Na, Cl, NO3, and SO4)
to make the value of that concentration in the range [0, 1].

• Finally, apply the correlation for column in dataset related to each season. Correlation
Pearson used to correlation all the datasets (PH, TDS, NTU, TH, TA, Ca, Mg, K, Na,
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Table 1. Main Chemical Parameters related to determined WQI [9]

Parameters Unit Recommended water quality standards (Sn)

PH 6.5–8.5

Turbidityx (NTU) NTU 5

Totalxdissolved solid (TDS) (mg/L) 500

Calciumx (Ca) (mg/L) 75

Magnesiumx (Mg) (mg/L) 50

Chloridex (Cl) (mg/L) 250

Sodiumx (Na) (mg/L) 200

Potassiumx (K) (mg/L) 12

Sulfatex (SO4) (mg/L) 250

Nitratex (NO3) (mg/L) 50

Totalxalkalinity (CaCO3) (mg/L) 200

Totalxhardness (CaCO3) (mg/L) 500

Cl, NO3, and SO4) to know the correlation between the concentrations. Algorithm 1
explains the main steps of that stage.
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Fig. 1. Intelligent miner based on twelve concentrations to predict water quality

Where cov is the covariance between quantitative x and y, σx the standard deviation
of x, σy the standard deviation of y, μx the average of x, μy the average of y, and E the
expectation values.

2.2 Determine Weights of Concentrations and Number of Model (DWM-Bat)

In general, the BA is failing in satisfy the goal of it, when it arrives as max number of
iterations without finding the goal, while it is a success in its’ work when satisfy the
following three steps (i.e., Evaluate the fitness of each Bat, Update individual and global
bests, Update velocity and position of each Bat). These steps are repeated until some
stopping condition is met. The goal of DWM-Bat is to determine the optimal (weight
for each concentration, and number of base model of MARS “M”). Algorithm 2 shows
the DWM-Bat step.
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2.3 Develop MARS(DMARS)

Here we will train and predict concentrations movements for several epochs and see
whether the predictions get better or worse over time. The Algorithm 3 shown how
execution the DMARS.
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2.4 Evaluation Stage

In this section, we will explain the evaluation of the predictor based on the compute
three measures called (R2, NSE and D), for each season to all Concentrations as shown
in Algorithm 4.

3 Experiment and Results

Select the suitable parameters of any learning algorithm is considered one of the main
challenges in the science, in general, MARS take a very long time in implementation
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to give the result, therefore this section shows how DWM –Bat solves this problem and
exceed this challenge.

In other words, the determination of weights and the number of model (M) are essen-
tial parameters that fundamentally affect DMARS performance. In general, the MARS
based on the dynamic principle in selecting the parameters of it, the main parameters of
DWM –Bat shown in Table 2.

Table 2. The Parameters Utilize in DWM –Bat

Parameter Value

Number of bats (swarm size) (NB) 720

Minimum (M) 2

Maximum (M) 12

Determine frequency (pulse_frequency) Pulse_frequency =
0*ones(row_num,col_num)

Loudness of pulse 1

Loudness decreasing factor(alpha) 0.995

Initial emission rate (init_emission_rate) 0.9

Emission rate increasing factor (gamma) 0.02

Bats initial velocity (init_vel) 0

Determine vector of initial velocity(velocity) velocity =
init_vel*ones(row_num,col_num)

Population Size (row_num) 60

(col_num) 12

Minimum value of observed matrix (min_val) 0.0200

Miaximum value of observed matrix (max_val) 538

Maximum number of iteration (max_iter) 250

Number of cells (n_var) n_var = row_num*col_num

Lower bound (lb) lb = min_val*ones(row_num,col_num)

Upper bound (ub) ub = max_val*ones(row_num,col_num)

Position of bat (Pos) Pos = lb +
rand(row_num,col_num)*(ub-lb)

rand1, rand2 Random numbers that are in the range [0, 1]

Calculate velocity and position of weight of
each concentrations

vw = vw + rand1 ∗ (pwBest−w) +
rand2 ∗ (gwBest−w) (1)
w = w + vw (2)

Calculate velocity and position of the # of M vm = vm + rand1 ∗ (pmBest−m) +
rand2 ∗ (gmBest−m) (3)
m = m + vm (4)
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By apply the DWM–Bat get the best weight of each the 12 contractions as follow:
PH = 0.247, NTU = 0.420, TDS = 0.004, Ca = 0.028, Mg = 0.042, Cl = 0.008, Na =
0.011, K =, 0.175, SO4 = 0.008, NO3 = 0.042, CaCO3(TA) = 0.011, and CaCO3(TH)
= 0.004, while the optimal number of M related to winter and summer dataset is 9.

DMARS is mainly based on the MARS algorithm, which is capable of handling the
dynamic principle in selecting the parameters of it.

In this stage, forward the parameters result from DWM–Bat to DMARS that repre-
sents the weight of each material, number of model (M) with the dataset of that seasons
generated from the best split of five cross-validations to represent training of DMARS
the main parameters of that algorithm represent in Table 3. Then compute the prediction
values based on the best split result from five cross-validations.

With respect to Eq. (5), the proposed approach found that TH, TDS, K, NO3, Na,
PH, TA, Cl and Ca had a very important contribution in the prediction of the WQI in
winter season from any of the remaining concentrations.

Example #1: Proof the accuracy of the proposedmodel through some of samples related
to winter season, taking into account that the data is limited between 0 and 1 due to the
normalization of it.

The use of the ideal (M) model number and the ideal weights that were determined
from DWM-BA, which are as follows: M = 9; Weights = [PH = 0.247, NTU = 0.420,
TDS=0.004,Ca=0.028,Mg=0.042,Cl=0.008,Na=0.011,K=0.175, SO4=0.008,
NO3 = 0.042, CaCO3(TA) = 0.011, and CaCO3(TH) = 0.004]. In general, the ranges
of WQI based on the stander measures and possible use shown below (see Table 4).

Proof:

1-IF PH= 0.991; TDS= 0.675; Cl= 0.667; TA= 0.7939; Ca= 0.8634; TH= 0.825;
NO3 = 0.194; Na = 0.300; K = 0.0012.

WQI (1)= 100*[0.991*0.247+ 0.675*0.004 + 0.667*0.008 + 0.794* 0.011+ 0.864*
0.028 + 0.825* 0.004 + 0.194*0.042 + 0.300*0.011 + 0.002*0.175]

WQI (1) = 100* 0.300837 = 30.0837

Obviously, the WQI score is dependent on Case #2

2-IF PH = 1.000; TDS = 0.729; Cl = 0.750; TA = 0.786;Ca = 0.0773; TH = 0.850;
NO3 = 0.186;Na = 0.300;K = 0.002.

WQI (2)= 100*[1.000*0.247+ 0.729*0.004+ 0.750*0.008+ 0.786* 0.011+ 0.773*
0.028 + 0.850* 0.004 + 0.186 *0.042 + 0.300*0.011 + 0.002*0.175]

WQI (2) = 100*[0.301068] = 30.1068

Obviously, the WQI score is dependent on Case #2
As for prediction values to WQI for two seasons winter and summer based on the

best result of a split of five cross validations for IM12CP-WQI model, where data for
each season were divided into two parts, 80% samples training and 20% samples testing,
and Ranging for all material from 0 to 1. We notice that the prediction values are very
close to the real values and this indicates that the IM12CP-WQI predictor is a good
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Table 3. The Parameters Utilize in DMARS

Parameter Description

Number of input variable(d) d = 12

Datasets (x) x = samples of winter season or samples of
summer season

Number of columns (m) m = 13

Number of row (n) n = 60

Training data cases (Xtr, Ytr) Xtr(i,:), Ytr(i), i = 1, …, n

Vector of maximums for input variables
(x_max)

x_max(winter) = [0.06, 7.55, 538, 42.60,
381.66, 417.424, 88, 397.984, 15.32, 9.28,
457.20, 135.69, 94.27]
x_max(sumer) = [0.060, 7.470, 539, 24.850,
325, 417.760, 92, 447.424, 6.700, 3.800,
427.760, 137.945, 87.707]

Vector of minimums for input variables
(x_min)

x_min(winter) = [0.02, 7.240, 363, 21.300, 300,
28.800, 36, 2.35, 1.859, 1.780, 0.89, 20.146,
12.233]
x_min(summer) = [0.0200, 6.900, 390, 14.200,
235, 24, 33.600, 2.355, 1, 0.920, 0.630, 64.857,
11.449]

Size of dataset (x_size) x_size(n,m) = x_size(60, 12)

BF Equation

BF_Z1 0.175*K // k = 0.985

BF_Z2 0.011*TH // TH = 0.86

BF_Z3 0.042*NO3 // NO3 = 0.761

BF_Z4 0.004*TDS // TDS = 0.55

BF_Z5 0.011*Na // Na = 0.415

BF_Z6 0.247*PH // PH = 0.371

BF_Z7 0.011*CaCo3(TA) // TA = 0.37

BF_Z8 0.008*Cl // Cl = 0.362

BF_Z9 0.028*Ca //Ca = 0.317

WQI = 100 ∗
∑M

(K=0)
(BF_ZK)

= 100 ∗ (BF_Z1 + BF_Z2 + BF_Z3 + BF_Z4 + BF_Z5

+ BF_Z6 + BF_Z7 + BF_Z8 + BF_Z9)

(5)

predictor as it was able to predict the real values well, so it is a better predictor compare
with MARS linear, MARS_Sig, MARS_RBF and MARS_Poly. As shown in Figs. 2, 3,
4, and 5.
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Table 4. Generated report of WQI based on four cases

Case WQI Possible use

Case#1 Value in rang (0–25) Drinkable

Case#2 Value in rang (26, 50) Fit for aquarium and animal drinking

Case#3 Value in rang (51, 75) Not suitable for drinking, but suitable for watering crops

Case#4 Value in rang (76, 100) Unusable pollutant must go to recurrence
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Compare between the Actual and Predicate train values result from 
IM12CP-WQI Model

Actual (train) Predic�on (train)

Fig. 2. Predictive Model IM12CP-WQI for Training Dataset of Winter Season
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Compare between the Actual and Predicate Tes�ng values result 
from IM12CP-WQI  Model

Actual (test) Predic�on (test)

Fig. 3. Predictive Model IM12CP-WQI for Testing dataset for Winter Season

The results shown IM12CP-WQI model, were located closer to the reference point,
indicating better performance compared to the other models. A comparison showed that
the IM12CP-WQI model generally converged faster and to a lower error value than the
eithers model under same input combinations. The novel hybrid IM12CP-WQI model
showedmore accurateWQI estimateswith faster convergence rate than the othermodels.

The performances of the all models test in this study (i.e., MARS Linear,
MARS_Poly, MARS_Sig, MARS_RBF, and MARS_DWM-BA) to predict the WQI
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Compare between the Actual and Predicate Training values result 
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Actual (train) Predic�on (train)

Fig. 4. Predictive Models IM12CP-WQI for Training Dataset to Summer Season
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Fig. 5. Predictive Model IM12CP-WQI for Testing Dataset to Summer Season

were investigated for both training and testing stages for both seasons (winter and
summer).

• In the training phase at winter season, for the prediction of WQI, IM12CP-WQI pro-
vided more accurate performance (R2 = 0.2202, NSE=0.9999, and D = 1) compare
with other models, and MARS_RBF provided less accurate performance (R2 = −
0.1148, NSE = −2.3411, and D = −16.6417) compare with other the models.

• While, in the testing phase at winter season for the prediction of WQI, IM12CP-
WQI provided more accurate performance (R2 = 0.7919, NSE = 0.9999, and D =
1) compare with other models, in other side; MARS_RBF provided less accurate
performance (R2 = −0.2034, NSE = −1.4032, and D = −2.5096).

• While, the evaluation of the summer season proves the training dataset of IM12CP-
WQI give the best performance based on the three evaluation measures (R2= 0.2331,
NSE = 0.9999, and D = 1) compare with other models, and MARS_RBF provided
less accurate performance (R2=0.751, NSE= −2.2284, and D= −12.0533) compare
with the other models.

• Also, IM12CP-WQI provided more accurate performance for the three measures of
testing dataset (R2 = 1.2688, NSE = 0.9999, and D= 1) compare with other models,
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while; MARS_RBF provided less accurate performance (R2 = 2.7051, NSE = −
2.185, and D = −2.6243).

4 Discussion

In this section, a quite few statistical measures are presented to evaluate the performance
of the proposed models. Moreover, the results of the IM12CP-WQI and MARS tech-
nologies compared with more than one core. The results proved that the IM12CP-WQI
model gives the best results according to the evaluation measures in two seasons related
to the training and testing dataset, in general, this study answers the following questions
[10–16]

• How Bat optimization algorithm can be useful in building an intelligent Miner?
• BOA works to modify the behavior of each in a particular environment gradually,
depending on the behavior of their neighbors until they obtained the optimal solution.

• On the other hand, the MARS use the principle of the try and error in the selection of
the basic parameters of their own and modified gradually to reach the values accepted
for those parameters.

• Depending on the BOA and MARS of the above subject, we used the BOA principle
to find the optimal weights for each concentration and the number of based models
of the MARS.

• How to build a multi-level model with a combination of two technologies )MARS
with BOA)?

Through, building new miner called IM12CP-WQI that combining between the
DWM –Bat and the DMARS. Where DWM –Bat used to find the best values of wights
to each concentration with best number of M to DMARS while DMARS used to predict
the water quality index (WQI).

• Is three evaluation measures enough to evaluate the results of suggested Miner?
• Yes, thatmeasures are sufficient to evaluate the results of theminer to the both seasons.
• What is the benefit result from building miner by combination between DWM_Bat
and DMARS?

By combining DWM_Bat and DMARS, reduce the execution time by defining
MARS parameters but at the same time will increase the computational complexity.

5 Conclusions

Wecan summarize themain point performance in that paper as the follows:Water quality
index dataset is a sensitive data need to accuracy techniques to extract a useful knowledge
from it. Therefore; IM12CP-WQIwas able to solve this problem by giving results of high
predictive accuracy, but on the other hand, it increased the mathematical complexities to
obtain of that results. The main purpose of the normalization process is to convert data
within a specified range of values to be handled more precisely at subsequent processing
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stages. Especially since the concentrations are within different ranges and are measured
in different units, so a normalization has been made to make them within a specific
range to work on. Where the concentrations were placed between range (0, 1). This
study proves the correlation between WQI and the important concentrations are k =
0.985, TH = 0.86, NO3 = 0.761, TDS = 0.55, Na = 0.415, PH = 0.371, TA = 0.37,
Cl = 0.362, Ca = 0.317. This step focus on determined the important concentrations
are Total Hardness (TH) that have negative relation with WQI and TDS. By apply the
DWM-Bat get the best weight of each concentration as follow: W-PH = 0.247, W-NTU
= 0.420, W-TDS = 0.004, W-Ca = 0.028, W-Mg = 0.042, W-Cl = 0.008, W-Na =
0.011, W-K = 0.175, W-SO4 = 0.008, W-NO3 = 0.042, W-CaCO3(TA) = 0.01l, and
W-CaCO3(TH) = 0.004. While the optimal number of M related to both datasets are
9. This stage increases the accuracy of results and reduces the time required to training
the MARS algorithm. Selection the best activation function to build the predictor based
on mathematical concept, through build DMARS that replace the core of MARS by
four types of functions (i.e., polynomial, sigmoid, RFB and linear). Results indicated
that the MARS technique with linear and sigmoid kernel functions have stood at higher
level of accuracy rather than the MARS approaches developed by other types of kernel
functions. As the results of both training and testing indicated that MARS-linear and
MARS-sig methods have provided relatively precise prediction for WQI, compared to
theMARS_RBF andMARS_Poly. IM12CP-WQI give pragmatic model of water quality
index for different seasons indicates the water become high quality when the value of
WQI is small value not exceed twenty-five will used to drink while other values highest
than twenty-five to fifty. It is possible use to other uses, such as watering crops, fish
lakes, and factories, except that requires a refining process to the water.

The following point give good idea for features works; Using other optimization
algorithms based on search agent algorithm such as Whale Optimization Algorithm
(WOA) or Particle Swarm Optimization (PSO) or Ant Lion Optimization (ALO). Inves-
tigation other prediction algorithm that adopts the mining principle such as Gradient
Boosting Machine (GBM) or extreme gradient boosting (XGBoost). Verification from
the prediction results based on other evaluationmeasures such as (Accuracy, Recall, Pre-
cision, F, and FB). Test the model on the new dataset that contain other concentrations
rather than these used in this study.
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