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Free vibration and Buckling Behavior of 
Tapered Beam by Finite Element Method 

 
Dhyai Hassan Jawad 

Abstract 
         This paper deals with free vibration and buckling behavior of non-uniform Euler-Bernoulli beam 
under variation of tapered parameter and degree of flexural bending by using Finite Element Method 
and linked with Matlab Program. The results obtained were compared with those results given in the 
literatures and it is found that the natural frequency and buckling load decrease with increasing the 
tapered parameter and degree of flexural stiffness of tapered beams. 

 الخلاصة
برنولي مستدقة غير منتظمة بتغير معامـل الاسـتدقاق          -حث يهتم بدراسة الاهتزاز الحر وسلوك الانبعاج  لعتبة اويلر         بهذا ال     

النتائج التي تم الحصول عليها قورنـت مـع نتـائج    . اتلاب برنامج الم و المحددةاصرن باستخدام الع لجساءة الانحناءالأسودرجة  
  . لجساءة الانحناء للعتبة المستدقةالأسووجد بان التردد وحمل الانبعاج يقل بزيادة معامل الاستدقاق ودرجة ، أخرىمصادر 

 
Nomenclature  
Symbols               Meaning  
mx              mass distribution per unit length  
EIx             flexural stiffness per unit length 
wx             displacement in z direction  
qT            deflection vector  
Ni              interpolation factors 

)(iN        shape function 

l
x

         non –dimensional length of beam element  

U               potential energy 
Ke          elastic stiffness  
T             kinetic energy  
me          mass matrix  
V            strain energy 
            a critical  bucking load 
Po              value of axial compression force 
Kg             geometrical stiffness matrix 
rm          tapered beam for mass 
rs              tapered beam for stiffness  
ß          non- dimensional natural frequency 
n         Number of element 
i         Number of node 
l         length of beam  
ωn      natural frequency 
 
1-Introduction 
       Tapered members are widely used in the modern construction industry, because 
of their (i) structural efficiency, which in turn may lead to significant material savings, 
(ii) ability to meet architectural and functional requirements and (iii) competitive 
fabrication costs. However, a designer can only take full advantage of the benefits of 
beam tapering provided that he is equipped with reliable and efficient methods of 



 

 1044

analysis, which (i) lead to accurate predictions of the tapered member structural 
behavior and, at the same time, (ii) do not involve a computer effort prohibitive for 
routine applications.. The strength of laterally unrestrained beams is frequently 
governed by the lateral buckling (or flexural-tensional buckling) failure. 
      The vibration and bulking problems of non-uniform beams have been extensively 
studied by several investigators. Several cases of tapered beams with different end 
conditions were obtained by Mabie and Rogers ,while Laura treats various cases of 
non-uniform beams with different conditions of end restraints. A direct solution for 
the transverse vibration of Euler–Bernoulli wedge and cone beams was obtained by 
Naguleswaran, while Abrate obtains the exact solution for the vibration of non-
uniform rods and beams. Lee et al. were studied the analysis of non-uniform beam 
vibration by a green function method in the Laplace transform domain. Brown was 
studied the lateral buckling load of a tapered beam by finite difference analysis. In this 
method, the effect of tapering could not be completely taken into account in the 
expressions of nonlinear strains, which may lead to incorrect lateral buckling loads. 
Ronagh et al. was found the errors in lateral buckling loads caused by this method 
cannot be eliminated merely using fine mesh configuration in the finite element 
analysis. Ronagh et al. and recently Andrade and Camotim were investigated the 
lateral buckling of tapered beams employing the FE method, based on their total 
potentials presented. 
     Si Yuan et. were studied the exact dynamic stiffness method for non-uniform 
Timoshenko beam vibration and Bernoulli Euler column bulking while Jung et. deals 
with free vibration problems of non-uniform Euler-Bernoulli beam under various 
supporting conditions. Zang Lei. was presented a new theory for the lateral buckling 
of wet-tapered I-beam while Vaidotas Sapalau studies a theoretical and numerical 
analysis of tapered beam- columns subjected to a bending moment and axial force. 
Aniosio A. was studied the lateral torsional buckling of singly symmetric web-tapered 
thin –walled I beam by using FEM. 
       In this study a finite element method is introduced to solve the vibration and 
buckling of non-uniform beam with clamped-free boundary condition to obtain 
natural frequencies and buckling loads.        
2- Theoretical Analysis 
     A schematic of mass m(x) and flexural stiffness per unit length EI(x) is shown in 
fig(1), W(x) is the displacement in Z direction. In the present work, is a considered 
Euler-Bernoulli beams for analysis of out-of-plane bending vibration. The following 
function is used in the analysis to represent deflection which  is given by  Si Yuan 

3
4

2
321)( xaxaxaaxW                                                                                      (1) 

The deflection vector of the elemental finite element is  
 

][ 2211  VVq T                                                                                                 (2) 
 
After application of the boundary conditions of clamped- free to calculate the 
interpolation functions ( 4321 ,,, NNNN ) to describe the distribution of displacement. 
Eq.(1) can be written as in finite element formulation, 
 

24231211)(  NVNNVNxW                                                                              (3) 
Where 

32
1 231)(  N  
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)2()( 32
2   LN                         shape factors  

32
3 23)(  N  

)()( 23
4   LN   

Where, 
L
x

 , is the non-dimensional length of beam element (element coordinates). 

The potential energy of the beam element is given by  Si Yuan : 

dxtxWxEIU
L

])),()[((
2
1

0

2                                                                                        (4)                                                                  

Eq.(4)  can be written in matrix form as  

qkqU e
T

2
1

                                                                                                                 (5) 

Where, ek , elastic stiffness matrix. 

dxNNxEIk
L

jie  
0

)(                                                                                                 (6) 

Where,  2

2
"

d
Nd

N i
i   

The kinetic energy of the beam element is 

dxxWxmT
L

2

0

])()[(
2
1
                                                                                               (7) 

Eq.(7)  can be written in matrix form as  

qmqT e
T

2
1

                                                                                                                 (8) 

Where, em , mass matrix 


L

jie dxNNxmm
0

)(                                                                                                     (9) 

The strain energy V denotes the work down by a critical load ( oP )  
Given by the equation 

dxWpV
L

 
0

2
0 ][                                                                                                       (10) 

Where 0p is a value of axial compression force. 
Eq.(10)  can be written in matrix form as  

qkqV g
T

2
1

                                                                                                               (11) 

Where, gk , geometrical stiffness matrix 

 
L

jiog dxNNPk
0

                                                                                                    (12) 

Where,  
d
Nd

N i
i 
'  

Mass and stiffness matrices of each beam element are used to form global mass and 
stiffness matrices. The dynamic response of a beam for a conservative system can be 
formulated by means of Lagrange’s equation of motion in which the external forces 
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are expressed in terms of time- dependent potentials, and then performing the required 
operations the entire system leads to the governing matrix equation of motion: 
 

0][  qKPKMq eoe                                                                                          (13) 
 
The above equation represents the solution of two relate problems, they are given by  
Si Yann 
 :-  
1- Free vibration                            0][ 2  qMK e                                                 (14) 
2- Buckling behavior                    0][  qKPK goe                                                (15) 
 
 
 
 
                                                                                                                       
                                                                                         v1                         v2 
 

                                                                           θ1                        θ2             
i=1                                               i=n                                                                       

         

                                                                                              1              2                                                                                 
 
 
 
 
 
3- Results and Discussion  
     Three case of mass and stiffness distribution were studied. In the first case linear 
mass and linear stiffness distribution, the second the mass is linear and stiffness is 2nd 
order. And third, the mass is linear and stiffness is 4th order. 
Case(1): [Linear mass, Linear stiffness] 

)1()( mo rmxm   
)1()( so rEIxEI   

Case(2):[Linear mass, second degree stiffness] 
)1()( mo rmxm   

2)1()(  i
so rEIxEI   

Case(3):[Linear mass, forth degree stiffness] 
)1()( mo rmxm   

4)1()(  i
so rEIxEI   

Where ( om ) parameter for mass distribution per length ,at x=0, ( oEI ) parameter for 
stiffness  distribution  of flexural rigidity, at x=0, and  ( mr ), ( sr )are the tapered beam 
for mass and stiffness and (i) is super index refer to the order of non linearity for both 
mass and stiffness distribution , respectively. 
 

m(x),EI(x) 

L 

b 

x 
h(x) 

Fig (1)A: Cantilevered tapered beam with 
 rectangular Cross-section            

                         

W(x) 

Normal to x-y plane 

B: element of beam 
  2 nodes  4- DOF 
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For all cases, value of  ( mr ) and ( sr ) are equals and vary from ( 10  ) step 0.25 to 
obtained its effect on the natural frequency and corresponding buckling loads for five 
modes only. 
  Table (1), (2) and (3) show an important comparison of non-dimensional natural 
frequency (ß) and critical buckling load of a uniform cantilever beam with results 
from Jurg et al. Si Yuan et al. and Zhang Lei. 
Table:(1) Comparisons of non-dimensional natural frequency (   ) 
of a uniform cantilever beam. 
Mode No             Present work                 Jung                  Si Yuan 
   1                    3.5155                         3.5160                 3.5161 
   2                    22.0336                       22.0345               22.0345 
   3                    61.6963                       61.6972               61.6972 
   4                    120.9018                       -------               120.9017 
   5                    199.8575                        ------                199.8573     
 
Table: (2) Comparison of critical buckling load of a uniform cantilever beam.(λ) 
Mode No                 Present work                   Zhang Lei 
 

1                          2.4673                         2.4682    
   2                          22.2057                       22.2055 
   3                          61.6837                       61.6835 
   4                          120.8966                    120.8965    
   5                          199.8592                    199.8590   
 
Table(3): Comparison of non-dimensional natural frequency and critical buckling load 
of tapered cantilever beam. 
 Tapered  
Parameter        Mode No          (Non-dimensional Natural Frequency)1/2             (Critical Buckling Loads)1/2  

 
                                          Present work       Jung              Present work     Si Yuan 
 

95.0
8.0




s

m

r
r

       1                     1.6768          1.6742                0.9712          0.9705                   

                       2                    4.1978          4.1969                2.1937           2.9131 
                       3                    7.0244          7.0232                4.8562           4.8557 
                       4                    9.8332          9.8314                6.7987           6.7982 
                       5                   12.6428        12.6422               8.7412           8.7408 
 
 

5.0
5.0




s

m

r
r

        1                    1.8585           1.8580                1.3352            1.3347 

                      2                     4.6525           4.6523                4.0058            4.0050 
                      3                     7.7853           7.7847                6.6764            6.6761 
                      4                     10.8998        10.8990               9.3470            9.3465 
                      5                     14.0122          -------               12.0176          12.0171 
All the frequencies and buckling load predicted agree very well with the published 
results. 
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Figs (2,3), (4,5) and (6,7) present the non dimensional natural frequency and critical 
buckling loads  for the first , second  and third case respectively. From the first sight it 
was observed that the tapered ratio has a great effect on the vibration characteristics of 
the beam. 
     In general, it was noted that the natural frequency and corresponding critical 
buckling loads decrease with increasing in the taper ratio ( mr ) and ( sr ) for all modes, 
its magnitude are different from mode to other. 
      In other words, natural frequency of the 2nd   mode (as example) for different 
values of tapered ratio are smaller than that corresponding for 3rd , 4th ,and 5th modes, 
respectively. 
     The band width of effectively is increased with increasing the modes number due 
to the increasing in the natural frequency and buckling loads when the mode number 
is increased also. 
    In addition, since the natural frequency is a structured property (means that its 
value is the same at each point in the structure), therefore, its value is largely depends 
on the effective stiffness and mass at same point. This leads to that natural frequency 
in the first case is greater than that corresponding to the second and third case, 
respectively. due to effect of super index (i) which reduces the stiffness contribution 
to obtain the frequency. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig (2): Variation of non-dimensional frequency with 
tapered parameter for case (1)  
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Fig (3): Variation of critical buckling load with 
tapered parameter for case (1)  
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Fig (4): Variation of non-dimensional frequency with 
tapered parameter for case (2)  

Fig (5): Variation of critical buckling load with 
tapered parameter for case (2)  

Fig (6): Variation of non-dimensional frequency with 
tapered parameter for case (3)  
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4-Conclusions 
     In this paper the finite element method has been further extended to vibration and 
buckling of non-uniform Euler-Bernoulli beam from the results, some of the 
conclusions can be drawn as below   
1- The non-dimensional frequency and critical buckling load predication obtained for 

the uniform and tapered beams are compared with the corresponding values 
mentored in the literature and found to agree very well. 

2- The natural frequency and buckling load decrease with increasing of the tapered 
parameters. 

3- The degree of the flexural load effect on the natural frequency and buckling load 
was decreased with the increasing in the degree of flexural bending stiffness. 
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