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ORIGINAL STUDY

Best Neural Network Approximation by using
Bernstein Polynomials with GRNN
Learning Application

Hawraa Abbas Almurieb a,*, Anwar Anwer Hamody b

a Department of Mathematics, College of Education for Pure Sciences, University of Babylon, Hilla, Iraq
b Hudaibiya School, Babylon Education Directorate, Hilla, Iraq

Abstract

Bernstein polynomials are one of the first and main tools for function approximation. On the other hand, neural
networks have many useful applications in approximation and other fields as well. In this paper, we study how we
benefit from properties of Bernstein polynomials to define a new version of neural networks, that can be fit approxi-
mating functions in terms of modulus of continuity. Numerically, we use neural networks to approximate some types of
continuous functions. For that purpose, we use GRNN algorithm to approximate functions uniformly by using Matlab,
giving some examples that confirm good rate approximation.
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1. Introduction

I n many papers, authors define many formulas of
neural networks for purposes of function

approximation. For examples [1e6], studied the ex-
istence of best function approximation in C[a,b] and
Lp spaces by neural networks with several formulas.
When a new formula is defined, it should have the
appropriate properties to best fit the target function.
Moreover, the degree of that best approximation is
estimated in terms of several criteria, especially
modulus of continuity. Now, we begin with some
main definitions about approximation.
Definition 1.1. [7] Let ðX; k $kÞ be a normed space,

then the best approximation of x2X, from Y⊆ X, is
y02Y, that satisfies

��x�y0
��¼ inf

y2Y
kx�yk: ð1Þ

The uniform norm [7], is the one that we use here,
which is given by

kxk∞¼max
1�i�n

jxij; ð2Þ

for any x ¼ ðxiÞni¼12Rn.
If we consider C½a; b�; to be the set of continuous

functions on ½a;b�, then the following norm over any
f2C½a; b� is given by

��f��∞¼max
a�x�b

��f ðxÞ��; ð3Þ

Function approximation begun with polynomials
by P. L. Chebyshev [8], the problem is to find some
polynomial on ½a; b� that minimize

max
a�x�b

��f ðxÞ�pðxÞ��: ð4Þ

Later, many forms of polynomials were built to
get the best approximation as in [4], see for example
[9e11], they approximated continuous functions
with several polynomials, famously, Bernstein
polynomials [10]. Bernstein introduced his poly-
nomials that best approximate continuous func-
tions, and later it was improved with modulus of
continuity, for more details, see [7].

Received 23 May 2022; accepted 16 July 2022.
Available online 2 September 2022

* Corresponding author.
E-mail address: pure.hawraa.abbas@uobabylon.edu.iq (H.A. Almurieb).

https://doi.org/10.55810/2313-0083.1003
2313-0083/© 2022 University of AlKafeel. This is an open access article under the CC-BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/)

mailto:pure.hawraa.abbas@uobabylon.edu.iq
https://doi.org/10.55810/2313-0083.1003
http://creativecommons.org/licenses/by-nc/4.0/


Definition 1.2. [7] The general form of Bernstein
polynomials is given by

�
Bn
�
f
��ðxÞ¼Xn

k¼0

f
�
k
n

��
n
k

�
xkð1� xÞn�k

; ð5Þ

for 0 � x � 1:
On the other hand, neural networks are universal

approximations for any continuous function by
Cybenko [12], he used very primitive formula of
neural network in his earliest proof. Until today, one
can find many versions of neural networks among
papers [3,13e17]. Some defined new activation
functions, while others gave special weights that fit
their needs for function approximation.
Few little papers dealt with neural networks via

Bernstain polynomials, far away from approxima-
tion approaches. We define a special formula of
neural network on ½�1; 1�d; as follow.
Definition 1.3. For any input x and a weight w, s.t.

x;w2½�1; 1�d; define the neural network

NnðxÞ¼
Xd
j¼0

Xn
k¼0

cj;i sjððw:xÞþbj
�
; ð6Þ

where ðw:xÞ is the inner product between the vec-
tors w and x, cj;i ¼ ð�1Þi n!

i!ðn�kÞ!ðk�iÞ! f
�
k
n

�
; j ¼ 1;…::; d, k ¼

0;…:; n; and 1j and xj2½ � 1; 1�, are the j th compo-
nent of 1 ¼ ð11;…; 1dÞ and x ¼ ðx1; :::; xdÞ; respec-
tively. The activation function of j th component is
given by

sjðxÞ¼xkj
�
1j � xj

�n�k
; ð7Þ

Set 8 to the set of neural networks of the form
[6].
Definition 1.4. The best neural approximation of

f2Cd½�1; 1� is N028; that satisfies��f �N0

��
∞¼ inf

N28

��f �N
��
∞ ð8Þ

Moreover, the degree of best uniform approx-
imation of f2Cd½�1; 1� from the set 8, is

En
�
f
�
∞¼ inf

N28

��f �N
��
∞ ð9Þ

To measure Enðf Þ∞, then modulus of continuity
is there, it gives better degree of approximation than
e. To learn more about modulus of continuity, here
is the following definition from [7].
Definition 1.5. For any bounded function f on ½a; b�

,the modulus of continuity of f is given by

uf ð½a;b�;dÞ¼ sup
���f ðxÞ� f ðyÞ��

: x;y2 ½a;b�; jx�yj�d
	 ð10Þ

2. Auxiliary lemmas

Now, we need some properties of Bernstein's
polynomials to prove our main result. In general,
Bernstein polynomials satisfies the following
properties.
Lemma 2.1. Properties of Bernstein polynomials

[7].
1.
Pn
k¼0

�
n
k

�
xkð1� xÞn�k ¼ 1

2.
Pn
k¼0

�
k
n � x

�2� n
k

�
xkð1� xÞn�k � 1

4n

3. For d> 0; and
��k
n � x

�� � d, implies.

Pn
k¼0

�
n
k

�
xkð1� kÞn�k � 1

4ns

Lemma 2.2. Properties of. uf ð7Þ
1- If f is uniformly continuous then.

uf ðdÞ10 as d10þ

2- If. d‘ < d; than uf ðd‘Þ � uf ðdÞ
3- uf ðndÞ � n uf ðdÞ; for n2N
4- uf ðldÞ � ð1 þ lÞuf ðdÞ; for l> 0.

3. Existence of best approximation

This is the main section of the paper, it concludes
when and how we find best approximation with our
Bernstein neural network.

3.1. Existence theorem

Let f2Cd½ � 1; 1�, then for any n 2N, with d � n ;
there exist a neural network of f

Nn
�
f
�¼ Xd

j¼0

Xn
k¼0

cj;i sj
�
w:xþbj

�
; ð11Þ

that satisfies

En
�
f
�
∞ � cuk

�
f ;d
� ð12Þ

4. Proof of existence theorem

Let n2N and d � n; then by [6,8,10], Lemma 2.1,
and Minkowski Inequality, we have

��f �Nn;d
�
f
���¼

�����
X
k

X
j

f


yj
�

� f
�
k
n

�
n!

k!ðn� kÞ!yj
k


1� yj

�n�k
�����

�
X
k

X
j

����f
yj�� f
�
k
n

�
n!

k!ðn� kÞ!yj
k


1� yj

�n�k
����
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�
X
k

X
j

�����
�
f


yj
�
� f
�
k
n

��
n!

k!ðn� kÞ!yj
k


1� yj

�n�k
����
�

�
X
k

X
j

uf

�����yj�kn
����
�

n!
k!ðn� kÞ!yj

k


1� yj

�n�k

By using l ¼ ffiffiffi
n

p ��y�k
n

�� and d ¼ 1ffiffi
n

p in property
[3] of Lemma 2.1, then by using Cauchy-shwarz
inequality, we get

��f �Nn;d
�
f
���� uf

�
1ffiffiffi
n

p
�X

k

X
j


1þ ffiffiffiffi

n
p ����yj� k

n

����
�

n!
k!ðn� kÞ!y

k
j



1� yj

�n�k

¼uf

�
1ffiffiffi
n

p
�"

1þ ffiffiffi
n

p X
k

X
j

����yj� kn
���� n!
k!ðn�kÞ!y

k
j



1�yj

�n�k
#

�uf

�
1ffiffiffi
n

p
�"

þ ffiffiffi
n

p X
j

(X
k

����yj�k
n

���� n!
k!ðn�kÞ!y

k
j



1�yj

�n�k
)1

2

(X
k

����yj�k
n

���� n!
k!ðn�kÞ!y

k
j



1�yj

�n�k
)1=2#

� uf

�
1ffiffiffi
n

p
�"

1þ ffiffiffi
n

p Xd
j

1
4n

#1
2

� cuf

�
1ffiffiffi
n

p
�

By taking maximum over j to both sides, we
finish the proof.▪

5. Function approximation by learning neural
networks

Many algorithms use weighting technique to
adjust the neural network to get the desired target.
In this section, we use GRNN (General Regression
Neural Networks) algorithm to find a neural
approximation for some different continuous
functions to train it closer to the target function.
Mean Square Error (MSE) is the measure of how
well the function approximation is. The optimiza-
tion problem is to minimize MSE as to reach the
target error.
GRNN is an FNN (Feedforward Neural Network)

with a radial basis layer and the next linear layer. It
generates a good tool for function approximation. It
is simply an inputeoutput with a structure of Radial

Basis Network in the first layer, but with a different
input to the transfer function. The Euclidean dis-
tance is applied to the input x and the weight w as
follow

kx�wk¼
 Xd

j¼1

�
xj �wj

�2!1=2

;

where x ¼ ðx1; x2;/; xdÞ and w ¼ ðw1;w2;/;wdÞ.
And then, the result is activated by Gaussian RBF

as follow

sðxiÞ¼ e�xi2=r2

Also, set

YðxÞ¼
Pd

i¼1YðxiÞe�ðxi�wiÞ2=r2Pd
i¼1e

�ðxi�wiÞ2=r2
;

where r2 is the smoothing parameter of the
Gaussian kernel (Default 1). YðxÞ represents the
normal distribution.
Theoretically, RBF maps an input X to get a weight

W , so we could measure how much the function is
the approach to the target by calculating kX � Yk.
Thus, the result is trained again in the same
procedure.

6. Experimental results

One of the most important neural network algo-
rithms for function approximation is the GRNN al-
gorithm. We introduce some practical results for our
algorithm, including function examples, by using
Matlab. In addition, all calculations and figures are
done by Matlab too.

6.1. Continuous exponential function

We apply GRNN to approximate a continuous
exponential function which is of one variable
x2½0; 1�
y¼ðxþ1Þexpð�3xþ3Þ

Figure 1 shows both the target function and the
approximated one using GRNN, and the MSE is
0.0042.

6.2. Continuous periodic function

We apply GRNN to approximate the function of a
continuous periodic function, which is of one vari-
able x2½0; 1�
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y¼ sinð4xÞexpð� j5xjÞ
Figure 2 shows both the target function and

the approximated one using GRNN; the MSE is
0.0031.

6.3. Santner function

Another famous function that is used for approx-
imation is the Lim Function [18]. It is given by

y¼ f ðxÞ¼ e�1:4x cosð3:5pxÞ;x2½0;1�
Figure 3 shows both the target function and the

approximatedoneusingGRNN; theMSEis 1.4637e-05.

6.4. MSE results

Finally, we collect our results of MSE between
output and target of each function in the examples
above with the following table.

Fig. 1. Approximation of y ¼ ðxþ1Þexpð�3xþ3Þ by GRNN.

Fig. 2. Approximation of y ¼ sinð4xÞexpð�j5xjÞ by GRNN.
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7. Conclusions

This paper includes a special type of neural
network that we defined in terms of Bernstein poly-
nomials, we proved that the uniform approximation
exists. Moreover, the degree of best approximation is
concluded. Numerically, we find best approximation
for some continuous functions by using GRNN algo-
rithm and calculate the MSE of each. More improve-
ments and generalizations are possible in this topic.
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