

Journal of Interdisciplinary Mathematics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjim20

On the soft D_s -dense and D_c -dense in soft ideal topological spaces

Luay A. Al-Swidi, Ghassan Adnan Qahtan, Mustafa Hasan Hadi & Ahmed A. Omran

To cite this article: Luay A. Al-Swidi, Ghassan Adnan Qahtan, Mustafa Hasan Hadi & Ahmed A. Omran (2022): On the soft D_s -dense and D_c -dense in soft ideal topological spaces, Journal of Interdisciplinary Mathematics, DOI: 10.1080/09720502.2022.2040853

To link to this article: https://doi.org/10.1080/09720502.2022.2040853

Published online: 04 Jul 2022.

Submit your article to this journal 🕝

View related articles

View Crossmark data 🗹

On the soft *D*_s-dense and *D*_c-dense in soft ideal topological spaces

Luay A. Al-Swidi * Department of Mathematics College of Education for Pure Sciences University of Babylon Hillah Iraq

Ghassan Adnan Qahtan [†]

Department of Mathematics College of Education for Pure Sciences University of Kerbala Kerbala Iraq

Mustafa Hasan Hadi [§] Ahmed A. Omran [‡] Department of Mathematics College of Education for Pure Sciences University of Babylon Hillah Iraq

Abstract

The research is based on two basic principles: soft local function and soft Ψ -operation to construct the new concepts of density called *Ds*-dense and *Dc*-dense. Through these concepts, we defined a new type of separation axiom, which we called soft *ST*₁-space.

Subject Classification: 54H30, 54C65, 54B30.

Keywords: Soft set, Local function, Dense set, Soft complement, Locally dense and D_c-dense.

This research was conducted during the NREUP at Michigan State University, U.S.A. and it was sponsored by NSF grants DMS-1156582 and DMS-1359016.

^{*} E-mail: pure.leal.abd@uobabylon.edu.iq

^t E-mail: ghassan.k@uokerbala.edu.iq

[§] E-mail: pure.mustafa.hassan@uobabylon.edu.iq (Corresponding Author)

[‡] E-mail: pure.ahmed.omran@uobabylon.edu.iq

1. Introduction

The soft sets that the world has known Molodtsov, in 1999 [1] had a wide role in the applied scientific fields, which are considered more general than the fuzzy sets known to the world Zahah. In 1965 [2], it gave solutions to many scientific and engineering problems that the fuzzy sets were unable to solve perfectly. Simply the soft set is subset of the set $E_{L}P(X)$, where X is the universal set and E the set of all parameters of X. Many results were presented through previous studies on the soft topological space [3, 4] and on soft ideal topological spaces and ideal topological space [5,6,7]. Research is based on the soft local function defined by Kharal [4] in 2011 as follows, $(K_{F})^{*} = \tilde{U}\{F_{e}^{x}; \forall U_{F} \text{ soft open}\}$ set containing F_{e}^{x} such that $U_{E} \cap K_{E} \in \tilde{J}_{E}$, where \tilde{J}_{E} is soft ideal also based on the soft Ψ -operator defined by Luay and Ali Abdulsada [8] in 2020 as follows $\Psi(K_E) = \tilde{\chi} - (\tilde{\chi} - K_E)^*$, where $\tilde{\chi} = \{(e, \chi); \forall e \in E\}$ and $\tilde{\phi} = \{(e, \phi); \forall e \in E\}$ and soft point F_e^x is defined by $F_e^x(e) = \{x\}$ and $F_e^x(a) = \phi \forall e \neq a \text{ in } E$. For more information, we can refer to the sources mentioned above. Also the soft union $F_E \tilde{\cup} K_E = \{(e, F(e) \cup K(e)); \forall e \in E)\}$, the soft intersection $F_E \cap K_F = \{(e, F(e) \cap K(e)); \forall e \in E)\}$, the soft inclusion $F_{E} \subseteq K_{E}$ iff $F(e) \subseteq K(e)$; $\forall e \in E$, and the soft complement $K_{E}^{c} = \{(e, \chi - K(e)); \forall e \in E, e \in E\}$ $\forall e \in E$ }. Now we give a new definition of different types of dense in soft ideal topological space via soft function.

2. Constructing Foundations

Definition 2.1: Let $(\tilde{\chi}, \tilde{\tau}, E, \tilde{J}_A)$ be a soft topological space over universally set χ and E the set of all possible parameters under consideration via to X, with $A \subseteq E$. Then the soft set F_A is called:

- i. Soft someare locally dense (*Ds*-dense) iff $\Psi(F_A^*) \neq \tilde{\phi}$, we denoted the collection of all *Ds*-dense by $D_s(\tilde{\chi})$.
- ii. Soft nowhere locally dense (*Dn*-dense) iff $\Psi(F_A^*) \cong \tilde{\phi}$, we denoted the collection of all *Dn*-dense by $D_n(\tilde{\chi})$.
- iii. Soft complement someare locally dense (*Dc*-dense) iff F_A^c is *Ds*-dense, we denoted the collection of all *Dc*-dense by $D_C(\tilde{\chi})$.

In other words, using the properties of the soft local function and soft ψ -operator, the above definition in the following form, F_A is *Ds*-dense, if there exists $U_A \in \tilde{\tau}$ such that $U_A \cap \psi(F_A^c) \in \tilde{J}_A$, is called *Dc*-dense if there exists $U_A \in \tilde{\tau}$ such that $U_A \cap \psi(A) \in \tilde{J}_A$.

Example 2.2: Let $\chi = \{h_1, h_2, h_3\}$, $E = \{e_1, e_2\}$ and $\tilde{\tau} = \{\tilde{\tau}, \tilde{\phi}, F_{1E}, F_{2E}, F_{3E}, F_{4E}\}$ and $\tilde{J}_A = \{\tilde{\phi}, J_{1E}, J_{2E}, J_{3E}\}$ where $F_{1E} = \{(e_1, \{h_1\}), (e_2, \{h_1, h_3\})\}$, $F_{2E} = \{(e_1, \{h_2, h_3\})\}$, $(e_2, \{h_3\})\}$, $F_{3E} = \{(e_1, \phi), (e_2, \{h_3\})\}$, $F_{4E} = \{(e_1, \chi), (e_2, \{h_1, h_3\})\}$, $J_{1E} = \{(e_1, \phi), (e_2, \{h_2\})\}$, $J_{2A} = \{(e_1, \{h_1\}), (e_2, \phi)\}$, $J_{3E} = \{(e_1, \{h_1\}), (e_2, \{h_2\})\}$. Then if $H_E = \{(e_1, \{h_1, h_3\}), (e_2, \{h_2\})\}$, then $\psi(H_E^*) = \tilde{\phi}$. So H_E is D_n -dense and if $K_E = \{(e_1, \{h_1\}), (e_2, \{h_1, h_3\})\}$ then K_E is Ds-dense.

Definition 2.3: Let $(\tilde{\chi}, \tilde{\tau}, E, \tilde{J}_E)$ be a soft ideal space. A soft set G_E is called *SL*-inner of the soft point F_e^* , if there exists a soft open set U_E such that $F_e^* \in U_E \subseteq G_E$. Noted that, if \tilde{J}_E is a soft condense, then every *SL*-inner soft set of any soft point is *Ds*-dense. Also we easily to show that if F_E is *Ds*-dense and $F_E \subseteq H_E$, then H_E is also *Ds*-dense. There is also an important feature that links the two above definitions, which F_E is *Ds*-dense iff it is an *SL*-inner of at least one soft point in F_E .

Theorem 2.4:

- 1. Every soft \tilde{J}_{F} dense is Ds-dense.
- 2. Every soft set K_E is either Ds-dense or Dc-dense.

Proof: If possible that F_A is not Ds-dense, then $F_E^{*^c} \cong \tilde{\chi}$, in other words that F_E^* is non-empty proper subset of $\tilde{\chi}$, but $F_E^{c^*} \cup F_E^* \cong \tilde{\chi}^*$. Now either $F_E^{c^*} \neq \tilde{\phi}$ or $F_E^{c^*} = \tilde{\phi}$, so, if $F_E^{c^*} \neq \tilde{\phi}$, then $\psi(F_E^{c^*}) \neq \tilde{\phi}$ iff F_E is Dc-dense, if $F_E^{c^*} \cong \tilde{\phi}$, then $F_E^* = \tilde{\chi}^*$, imply that $\psi(F_E) \cong \tilde{\chi}$, iff $\psi(F_E^{c^*}) = (\psi(F_E))^{*c} = \tilde{\chi}^{*c} \neq \tilde{\phi}$ iff F_E is Dc-dense.

We can easily to show that for any soft set $K_{\scriptscriptstyle E}$ is either *Ds*-dense or *Dn*-dense in soft ideal space $(\tilde{\chi}, \tilde{\tau}, E, \tilde{J}_{\scriptscriptstyle E_e^{\chi}})$, where the soft ideal $\tilde{J}_{\scriptscriptstyle E_e^{\chi}} = \{H_{\scriptscriptstyle E}; F_{\scriptscriptstyle e}^{\chi} \in H_{\scriptscriptstyle E}^{c}\}.$

The following theorem presents the important properties of D_s-dense.

Theorem 2.5: Let $(\tilde{\chi}, \tilde{\tau}, E, \tilde{J}_E)$ be soft ideal space, then the following are hold.

- i. If $\{K_{\lambda E}, \lambda \in \Lambda\}$ are collection of *Ds*-dense, then $\bigcup_{\lambda \in \Lambda} K_{\lambda E}$ is *Ds*-dense.
- ii. For any collection $\{K_{\lambda E}, \lambda \in \Lambda\}$ of soft sets, if $\bigcup_{\lambda \in \Lambda} K_{\lambda E}$ is *Ds*-dense, then $K_{\lambda E}$ is *Ds*-dense $\forall \lambda \in \Lambda$.
- iii. If $\forall \lambda \in \Lambda, K_{\lambda E}$ is *Dc*-dense then $\bigcap_{\lambda \in \Lambda} K_{\lambda E}$ is *Dc*-dense.
- iv. If \tilde{J}_{E} is soft condense and M_{E} is *Dc*-dense, then $\psi(M_{E}) \neq \phi$.
- v. If \tilde{J}_E is soft condense, then for each non-empty soft open set is *Ds*-dense.

Definition 2.6: The soft ideal space $(\tilde{\chi}, \tilde{\tau}, E, \tilde{J}_E)$ is called *SIS*-hyper connected, every soft *I*-dense F_E iff F_E is soft open set.

Proposition 2.7: Let the soft ideal space $(\tilde{\chi}, \tilde{\tau}, E, \tilde{J}_E)$ be *SIS*-hyper connected, then the following properties are satisfied.

- i. If $\psi(K_E) = \psi(H_E) = \tilde{\phi}$, then $\psi(K_E \cup H_E) = \tilde{\phi}$.
- ii. If K_E and H_E are *Dc*-dense, then $K_E \tilde{\cup} H_F$ is *Dc*-dense.
- iii. If K_E and H_E are *Ds*-dense, then $K_E \cap H_E$ is *Ds*-dense.

The proof is directly from properties of the soft local function, soft ψ -operator and Definition 2.1 and Definition 2.3.

Theorem 2.8 : For any soft set K_E in the soft ideal space $(\tilde{\chi}, \tilde{\tau}, E, \tilde{J}_E)$, we define the soft sets.

- (i) $SS(K_E) = \tilde{\cup} \{ M_E \in D_s(\tilde{\chi}); M_E \subseteq K_E \}.$
- (ii) $SC(K_E) = \tilde{\cap} \{F_E \in D_c(\tilde{\chi}); K_E \subseteq F_E\}.$
- (iii) $SB(K_E) = SS(K_E) \cap SC(K_E^{c})$.

Through the above definition we note that, if \tilde{J}_E is soft condense $SB(K_E)$ is Ds-dense for K_E is soft closed set, also K_E is Ds-dense iff $SC(K_E)$ is Ds-dense.

Now by using the properties of Definition 2.1, we can prove the properties in the following proposition.

Proposition 2.9: For any soft sets K_E and H_E of soft ideal space $(\tilde{\chi}, \tilde{\tau}, E, \tilde{J}_E)$, the following features are truest.

(1) $K_E \subseteq SC(K_E)$ and $K_E \neq \tilde{\chi}$ is Dc-dense iff $K_E = SC(K_E)$.

(2)
$$SS(K_{E}) \subseteq K_{E}$$
 and $\tilde{\phi} \neq K_{E}$ is Ds -dense iff $K_{E} = SS(K_{E})$

$$(3) \quad [SS(K_{\rm F})]^c = SC(K_{\rm F}^c).$$

- (4) $[SC(K_{E})]^{c} = SS(K_{E}^{c}).$
- (5) $SB(K_E) = [SS(K_E) \tilde{\cup} SS(K_E^c)]^c$.
- (6) $SS(K_E) \tilde{\cup} SS(H_E) \tilde{\subseteq} SS(K_E \tilde{\cup} H_E).$
- (7) $SC(K_E) \tilde{\cup} SC(H_E) \tilde{\subseteq} SC(K_E \tilde{\cup} H_E).$
- (8) $SS(K_E \cap H_E) \subseteq SS(K_E) \cap SS(H_E)$.

(9)
$$SB(K_E) = SB(K_E^c)$$
.

- (10) If $SC(K_{E}) = \tilde{\chi}$, then K_{E}^{*c} is soft *I* dense.
- (11) $SB(K_F)$ is Dc dense.
- (12) $\tilde{\phi} \neq K_E$ is Dc dense iff $SB(K_E) \cap K_E = \tilde{\phi}$.
- (13) $K_{\scriptscriptstyle E} \neq \tilde{\chi}$ is Dc-dense iff $SB(K_{\scriptscriptstyle E}) \subseteq K_{\scriptscriptstyle E}$.
- (14) $\tilde{\phi} \neq K_{E} \subset \tilde{\chi}$ is both *Ds* dense and *Dc* dense iff $SB(K_{E}) = \tilde{\phi}$.

Proof of (13) : Let K_E is *Ds*-dense, then $K_E = SS(K_E)$ which imply that $\tilde{\phi} = SS(K_E) \cap SB(K_E) = K_E \cap SB(K_E)$. Conversely, since $SS(K_E) \subset K_E$, and for any soft point $F_e^x \in K_E$ which is not in $SB(K_E)$, so it is in $SS(K_E)$, hence $K_E = SS(K_E)$.

Proposition 2.10 : For any soft sets K_E and H_E in the soft ideal space $(\tilde{\chi}, \tilde{\tau}, E, \tilde{J}_E)$, it has the following features.

- 1. Either $SB(K_{E}) \subseteq K_{E}$ or $SB(K_{E}) \subseteq K_{E}^{c}$.
- 2. If $K_E \subseteq H_E$, then $SC(K_E) \subseteq SC(H_E)$ and $SS(K_E) \subseteq SS(H_E)$.
- 3. For any different soft points $F_e^x, F_a^y, (x \neq y \land e = a, x = y \land e \neq a), (x \neq y \land e \neq a)$ then $SC(F_e^x) \neq SC(F_a^y)$.

Definition 2.11 : If for each different soft points F_e^x , F_a^y , there exists D_s -dense sets G_E , H_E with $F_e^x \in G_E$ and $F_a^y \notin G_E$ and $F_a^y \notin H_E$, $F_a^e \notin H_E$, the soft ideal space is called soft *ST*1-space.

Clearly that soft discrete topology space is soft *T*1-space and *ST*1-space for any soft ideal \tilde{J}_{E} . Also we noted that if the soft ideal \tilde{J}_{E} is soft condense, then every soft *T*1-space is a soft *ST*1-space. Now let's introduce the main theorem.

Theorem 2.12 : For any soft ideal space $(\tilde{\chi}, \tilde{\tau}, E, \tilde{J}_E)$, the following features are equivalent.

- i. $(\tilde{\chi}, \tilde{\tau}, E, \tilde{J}_E)$, is soft ST1-space.
- ii. For each soft point F_e^x is Dc-dense.
- iii. For each soft set $F_E = \tilde{\cap} \{K_E \in D_s(\tilde{X}); F_E \subseteq K_E\}$.

3. Discussion and Conclusion

We can define the others separation axioms as well as the definition of soft *ST*1-space and we study the relationship between them, also study the important features of these separation axioms, we can develop the soft local function by using soft ω -open and define the Ds-dense and *Dc*-dense via this development. The results in the papers [9,10,11] can be modified by using the *Ds*-dense.

References

- [1] D. Molodtsov, Soft set theory—First results, *Computers and Mathematics* with Applications, vol. 37, no. 4, pp. 19–31, (1999).
- [2] L.A. Zadeh, Fuzzy sets", Information and Control, vol. 8, no. 3, pp. 338-353, 1(956).
- [3] Aygünoğlu and Aygün, Halis, Some notes on soft topological spaces, Neural Computing & Applications, Supplement, Vol. 21, p.p. 113-119, (2012).
- [4] Kharal, Athar and Ahmad, B., Mappings on soft classes, *New Mathematics and Natural Computation*, vol. 7, no. 3, pp. 471–481, (2011).
- [5] Wardowski, Dariusz, On a soft mapping and its fixed points, *Fixed Point Theory and Applications*, pp. 1–11, (2013).
- [6] Ali, Muhammad and Feng, Feng and Liu, Xiaoyan and Min, Wonkeun and Shabir, Muhammad, On some new operations in soft set theory, *Computers & Mathematics with Applications*, vol. 57, pp. 1547–1553, (2009).
- [7] Shabir, Muhammad and Naz, Munazza, On soft topological spaces, *Computers and Mathematics with Applications*, vol. 61, no. 4, pp. 1786– 1799, (2011).
- [8] Ali Abdulsada, D. and Al-Swidi, L.A.A., Compatibility of Center Ideals with Center Topology, *IOP Conference Series: Materials Science* and Engineering 928(4), (2020).
- [9] Hadi, M.H., AL-Yaseen, M.A.A.K. and Al-Swidi, L.A., Forms weakly continuity using weak ω–open sets, *Journal of Interdisciplinary Mathematics*, 24(5), pp. 1141-1144, (2021).
- [10] Hadi, M.H., Al-Yaseen, M.A.A.K., Study of Hpre -open sets in topological spaces, *AIP Conference Proceedings* 2292, (2020).
- [11] Mohammad Reza Molaei and Tahere Nasirzadeh, On cocycles, Journal of Interdisciplinary Mathematics, 22(1), pp. 91-99, (2019).

Received August, 2021 Revised December, 2021