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Abstract

The research is based on two basic principles: soft local function and soft ‘P-operation
to construct the new concepts of density called Ds-dense and Dc-dense. Through these
concepts, we defined a new type of separation axiom, which we called soft ST -space.
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1. Introduction

The soft sets that the world has known Molodtsov, in 1999 [1] had
a wide role in the applied scientific fields, which are considered more
general than the fuzzy sets known to the world Zahah. In 1965 [2], it gave
solutions to many scientific and engineering problems that the fuzzy
sets were unable to solve perfectly. Simply the soft set is subset of the
set E P(X), where X is the universal set and E the set of all parameters
of X. Many results were presented through previous studies on the soft
topological space [3, 4] and on soft ideal topological spaces and ideal
topological space [5,6,7]. Research is based on the soft local function
defined by Kharal [4] in 2011 as follows, (KE)* = l:I{F: ;VU, soft open
set containing F' such that U, AK€ jE}, where TE is soft ideal also
based on the soft ¥ —operator defined by Luay and Ali Abdulsada [8]
in 2020 as follows W(K,)=j#7-(7-K,), where ¥ ={(e, y);VeeE}
and ¢ ={(e,§);VeeE} and soft point F' is defined by F'(e)={x} and
F'(a)=¢Ve=#ainE. For more information, we can refer to the sources
mentioned above. Also the soft union F, UK, ={(e,F(e)uUK(e)); VeeE)},
the soft intersection F, AK, = {(e,F(e)K(e)); VeeE)}, the softinclusion
F.CK, iff F(e) c K(e); Ve € E, and thesoftcomplement K} = {(e, ¥ —K(e));
Ve e E}. Now we give a new definition of different types of dense in soft
ideal topological space via soft function.

2. Constructing Foundations

Definition 2.1: Let (7, 7,E,] ,) be asoft topological space over universally
set y and E the set of all possible parameters under consideration via to
X, with A c E. Then the soft set F, is called:

i. Soft someare locally dense (Ds-dense) iff ‘I’(P/:) # ¢, we denoted the
collection of all Ds-dense by D ().

ii. Softnowhere locally dense (Dn-dense) iff ‘{’(F/:) = ¢, we denoted the
collection of all Dn-dense by D ().

iii. Soft complement someare locally dense (Dc-dense) iff F, is Ds-
dense, we denoted the collection of all Dc-dense by D_.().

In other words, using the properties of the soft local function and soft
y -operator, the above definition in the following form, F, is Ds-dense, if
there exists U, €7 such tha~t u,n l//~(F/§) €]J,, is called Dc-dense if there
exists U, €7 such that U, "y (A)E],.
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Example2.2:Let y ={h h,,h,}, E=le, e} and 7={7,4,F,, F,, F,F,}
and [, =1{9,],;, I,z Js) where F.={(e i), (e, th h)}, E,={(e,
{h, 1.}, (e, AN}, E,={(e,9), (e, ), F,=1{.x) (e, ih hh},
Jie ={(e,9), (e, DY, T, =1e;, 1)), (ey 00, 5 =1(e, {1}, (e, {11}
Then if H, ={(e,, {h,h,}), (e, {h,})}, then w(H,)=4. So H, is D,-dense
and if K, ={(e,,{l,}), (e, {h,,h,})} then K, is Ds-dense.

Definition 2.3 : Let ( ;Z,f,E,fE) be a soft ideal space. A soft set G, is called
SL-inner of the soft point F:, if there exists a soft open set U, such that
F TE U, €G,. Noted that, if fE is a soft condense, then every SL-inner soft
set of any soft point is Ds-dense. Also we easily to show that if F; is Ds-
dense and F, £ H,, then H, is also Ds-dense. There is also an important
feature that links the two above definitions, which F, is Ds-dense iff it is an
SL-inner of at least one soft point in F,.

Theorem 2.4:
1. Everysoft J, —dense is Ds-dense.
2. Every soft set K, is either Ds-dense or Dc-dense.

Proof : If possible that F, is not Ds-dense, then FE = 7, in other words
that F. is non-empty proper subset of 7, but FX UF, = 7. Now either
F; #¢ or FEC* =9, so, if FEC‘ #$, then l//(Fg‘)ié)“ iff F, is Dc-dense, if
F =g, then F. =7, imply that w(F.)= 7, iff w(F5)= W(E.))*=
7 # ¢ iff F, is Dc-dense.

We can easily to show that for any soft set K; is either Ds-dense
or Dn-dense in soft ideal space ( ;E,f,E,]FZ ), where the soft ideal

J., ={Hg FF e H}
The following theorem presents the important properties of D -dense.
Theorem 2.5: Let (7,%,E,],) be soft ideal space, then the following are hold.
i. If {K,,A €A} arecollection of Ds-dense, then U;_, K. is Ds-dense.

ii. For any collection {K,, ,A € A} of soft sets, if U;_, K, is Ds-dense,

then K, is Ds-dense VA € A.
iii. If VAe A,K,, is Dc-dense then N, K. is Dc-dense.
iv. If TE is soft condense and M, is Dc-dense, then w(M,) # ¢.

v. If fE is soft condense, then for each non-empty soft open set is Ds-
dense.
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Definition 2.6: The soft ideal space ( ;Z,f,E,fE) is called SIS-hyper
connected, every soft I-dense F, iff F, is soft open set.

Proposition 2.7: Let the soft ideal space ( ;Z,f,E,fE) be SIS-hyper
connected, then the following properties are satisfied.

i If w(K,)=y(H,)=¢, then y(K, OH,)=4g.
ii. If K, and H; are Dc-dense, then K, O H, is Dc-dense.

iii. If K, and H, are Ds-dense, then K. " H, is Ds-dense.

The proof is directly from properties of the soft local function, soft
y -operator and Definition 2.1 and Definition 2.3.

Theorem 2.8 : For any soft set K, in the soft ideal space (},%,E,],), we define
the soft sets.

(i) SS(K,)=0{M,eD(y), M, £K,}.

(ii) SC(K,)=A{(F, eD. (y);K, EF.}.

(iii) SB(K,)=SS(K,)NSC(K,°).

Through the above definition we note that, if ], is soft condense
SB(K,) is Ds-dense for K, is soft closed set, also K; is Ds-dense iff SC(K)) is
Ds-dense.

Now by using the properties of Definition 2.1, we can prove the
properties in the following proposition.

Proposition 2.9: For any soft sets K, and H, of soft ideal space (¥, f,E,fE )
the following features are truest.
(1) K, &SC(K,)and K, # y is Dc-dense iff K, = SC(K,).
(2) SS(K,)cK, and ¢ #K, is Ds-dense iff K, = SS(K,).
(3) [SS(K,)I = SC(K?).
(4) [SC(K,)I = SS(KS).
(5) SB(K,)=[SS(K,)OSS(K;)I.
(6) SS(K.)OSS(H,)Z SS(K, OH,).
(7) SC(K,)OSC(H,)E SC(K,OUH,).
(8) SS(K,AH,)ZSS(K,)NSS(H,).
(9) SB(K,)=SB(K}).
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(10) If SC(K,) = %, then K° is softI -dense.

(11) SB(K,) is Dc-dense.

(12) ¢ # K, is Dc-dense iff SB(K,) K, = ¢.

(13) K, # 7 is Dc-dense iff SB(K,) c K.

(14) ¢ # K, & y is bothDs-dense and Dc-dense iff SB(K,) = 0.

Proof of (13) : Let K, is Ds-dense, then K, =SS(K,) which imply that
¢= SS(K,) ASB(K,) = K, ASB(K, ). Conversely, since SS(K,)cK,, and
for any soft point F' € K, which is notin SB(K,), soitisin SS(K,), hence
K, =SS5(K,).

Proposition 2.10 : For any soft sets K, and H; in the soft ideal space
(¥,7,E,J;), it has the following features.

1. Either SB(K,)c K, or SB(K,) E K.
2. If K, & H,, then SC(K,)c SC(H,) and SS(K,) < SS(H,).
3. For any different soft points F',F’, (x#yre=a, x=yAre#a),
(x 2y ne#a) then SC(E")#SC(F").
Definition 2.11 : If for each different soft points F',F’, there exists D -
dense sets G,,H, with F' €G, and F' ¢G, andF' € H,, F'¢H,, the
soft ideal space is called soft ST1-space.

Clearly that soft discrete topology space is soft T1-space and ST1-
space for any soft ideal J,. Also we noted that if the soft ideal ], is soft
condense, then every soft T1-space is a soft ST1-space. Now let’s introduce
the main theorem.

Theorem 2.12 : For any soft ideal space ( ;Z,f,E,fE ), the following features are
equivalent.

i (7, ‘E,E,TE ), is soft ST1-space.
ii. For each soft point F' is Dc-dense.
iii. For each soft set F, = N\{K, € D, (f();FE C K.}

3. Discussion and Conclusion

We can define the others separation axioms as well as the definition
of soft ST1-space and we study the relationship between them, also study
the important features of these separation axioms, we can develop the
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soft local function by using soft @ -open and define the Ds-dense and
Dc-dense via this development. The results in the papers [9,10,11] can be
modified by using the Ds-dense.
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