

Journal of Interdisciplinary Mathematics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjim20

Forms weakly continuity using weak ω – open sets

Mustafa Hasan Hadi, May Alaa Abdul-Khaleq AL-Yaseen & Luay A. Al-Swidi

To cite this article: Mustafa Hasan Hadi, May Alaa Abdul-Khaleq AL-Yaseen & Luay A. Al-Swidi (2021) Forms weakly continuity using weak ω – open sets, Journal of Interdisciplinary Mathematics, 24:5, 1141-1144, DOI: 10.1080/09720502.2020.1790747

To link to this article: https://doi.org/10.1080/09720502.2020.1790747

4		0	
	Т		

Published online: 07 Oct 2020.

Submit your article to this journal 🕑

Article views: 8

View related articles

View Crossmark data 🗹

Journal of Interdisciplinary Mathematics ISSN: 0972-0502 (Print), ISSN: 2169-012X (Online) Vol. 24 (2021), No. 5, pp. 1141–1144 DOI : 10.1080/09720502.2020.1790747

Forms weakly continuity using weak ω – open sets

Mustafa Hasan Hadi * May Alaa Abdul-Khaleq AL-Yaseen⁺ Luay A. Al-Swidi[§] Department of Mathematics College of Education for Pure Sciences University of Babylon Hillah Iraq

Abstract

In this paper, we introduced new types of weak continuity by weakly open sets we have named perfectly ω -continuous, contra- ω -continuous and approximately ω -continuous. As well as we created the relationship between them and also provided some theorems about these types of weak continuous.

Subject Classification: 54C05, 54C08, 54C10.

Keywords: ap $-\omega$ -continuous, ap $-\omega$ -open, ap $-\omega$ -closed, ultra $-\omega$ -open map.

1. Introduction

In 1970, Levine [5] presented his notion generalization closed sets (*g* – closed) in a topological spaceDontcher. J.[2] introduced notion contra continuous map by open set in 1996. Noiri.T, Al-Omari.A. and Noorani. M. S. M. [7] introduced type of the sets are called weak ω – open sets by ω – closedset.

To know more properties about weak ω – open see [7]. In this research, we have circulated ω – closed and ω – open we have name $g\omega$ – closed and $g\omega$ – open respectively, through which we have known a new kind of continuity we have named contra – ω – continuous, perfectly

[§]E-mail: drluayhall@yahoo.com

^{*}E-mail: pure.mustafa.hassan@uobabylon.edu.iq (Corresponding Author) [†]E-mail: may_alaa2004@yahoo.com

ω – continuous and approximately ω – continuous we have shown the relationship between them and also presented some theorems about them. We also introduced new types of closed maps and called them approximately ω – closed map and ultra – ω – closed map, perfectly – ω – closed map, we have proved some of the characteristics that concern them. In addition [1] introduced new types of continuous functions and names of generalizations of continuity. In a year 2013 C.Janaki and V. Jeyanthi introduce and investigate the notion of contra πgr-continuous, almost contra πgr-continuous functions and discussed the relationship with other contra continuous functions and obtained their characteristics [4]. Also Md. Hanif Page [3] StudyAlmost Contra gs-continuous functions. Luay. A. Al Swidi and Mustafaknew the types of continuity usingweak ω – ω – Open Sets

2. Auxiliary Results

Definition 2.1. [7] : Let *x* be a point *x* in (*X*, *T*). We call *x* is condensation point of *A* if for every *U* in *T* and *x* in *U*, the set $U \cap A$ is uncountable.

Definition 2.2. [7] : Let $A \subseteq X$. If A contains all its condensation points then it is called ω – closed. The complement of the ω – closed set is called ω – open".

Remark 2.3. [7] : It is clear that any open set is ω – open

Definition 1.4. [7] : Let *A* be a subset of a space *X*. A is called"

- 1. $b \omega$ open if $A \subseteq int_{\omega}(cl(A)) \cup cl(int_{\omega}(A))$ and we called $b \omega$ closed set to the complement of the $b \omega$ open set.
- 2. $\beta \omega$ open if $A \subseteq cl(int_{\omega}(cl(A)))$ and we called $\beta \omega$ closed set to the complement of the $\beta \omega$ open set.
- 3. $\alpha \omega$ open if $A \subseteq int_{\omega}(cl(int_{\omega}(A)))$ and we called $\alpha \omega$ closed set to the complement of the $\alpha \omega$ open set.
- 4. pre ω open if $A \subseteq int_{\omega}(cl(A))$ and we called pre ω closed set to the complement of the pre ω open set.

3. The Main Result

Definition 3.1: Let $(\mathfrak{R}, \mathcal{T})$ be a topological space. Let $M \subseteq \mathfrak{R}$. We called M a generalized ω – closed set $(g\omega$ – closed set) if $cl_{\omega}(M) \subseteq S$, whenever $M \subseteq S$ and S is an ω – open set.

The complement of the generalized ω – closed set is called generalized ω – open set ($g\omega$ – open set).

Definition 3.2: A map $e:(\mathfrak{R},\mathcal{T})\to(\mathcal{F},\mathcal{T}')$ is called to be approximately ω – continuous (ap – ω – continuous) map if $cl_{\omega}(G) \subseteq e^{-1}(S)$ whenever *S* is an ω – open subset \mathcal{F} and *G* is $g\omega$ – closed subset of \mathfrak{R} , s.t $G \subseteq e^{-1}(S)$. Let us now recall the definition of the ω – continuous map.

Definition 3.3: A function $e:(\mathfrak{R}, \mathcal{T}) \to (\mathcal{F}, \mathcal{T}')$ is called to be ω – continuos if for any $r \in \mathfrak{R}$ and any ω – open set D of \mathcal{F} containing e(r), there exists ω – open set S, s. t $e(S) \subseteq D$.

Definition 3.5: A map $e:(\mathfrak{R},\mathcal{T})\to(\mathcal{F},\mathcal{T}')$ is called to be contra $-\omega$ – continuous if $e^{-1}(D) \subseteq \mathfrak{R}$ is ω – closed set for any ω – open set D in \mathcal{F} .

Theorem 3.6: Let $e:(\mathfrak{R},\mathcal{T}) \to (\mathcal{F},\mathcal{T}')$ be a map. If e is contra $-\omega$ - continuous map, then e is $ap - \omega$ - continuous map.

Proof : Suppose that $S \subseteq \mathcal{F}$ is an ω – open set and $G \subseteq \mathfrak{R}$ is $g\omega$ – closed set s. t. $G \subseteq e^{-1}(S)$. Therefore $cl_{\omega}(G) \subseteq cl_{\omega}(e^{-1}(S))$. Since *e* is contra – ω – continuous map, we've got $e^{-1}(S)$ is an ω – closed and hence $cl_{\omega}(G) \subseteq cl_{\omega}(e^{-1}(S)) = e^{-1}(S)$. Thus *e* is ap – ω – continuous map.

Definition 3.7: A map $e : (\mathfrak{R}, \mathcal{T}) \to (\mathcal{F}, \mathcal{T}')$ is called to be approximately ω – closed set (ap – ω – closed set) if $e(G) \subseteq \operatorname{int}_{\omega}(D)$ whenever $D \subseteq \mathcal{F}$ is a $g\omega$ – open set, $G \subseteq \mathfrak{R}$ is ω – closed \dot{u} – closed set and $e(G) \subseteq D$.

Definition 3.8: A map $e: (\mathfrak{R}, \mathcal{T}) \to (\mathcal{F}, \mathcal{T}')$ is said to be approximately ω – open (ap – ω – open) if $cl_{\omega}(G) \subseteq e(S)$, whenever *S* is an ω – open subset of \mathcal{R} , *G* is a $g\omega$ – closed subset of \mathcal{F} and $G \subseteq e(S)$.

Definition 3.9: A function $e:(\mathfrak{R},\mathcal{T}) \to (\mathcal{F},\mathcal{T}')$ is said to be ultra $-\omega$ – closed if any $M \subseteq \mathfrak{R}$ is ω – closed set, e(M) is ω – open set in \mathcal{F} .

Definition 3.10 : A function $e:(\mathfrak{R},\mathcal{T}) \to (\mathcal{F},\mathcal{T}')$ is said to be ultra $-\omega$ – open if any $M \subseteq \mathfrak{R}$ is ω – open set, e(M) is ω – closed set in \mathcal{F} .

Refrenceces

- BenchalliS. S., "Semi-Totally Continuous Functionsin Topological Spaces", *International Mathematical Forum*, vol.6, no. 10, pp. 479 – 492, 2011.
- [2] Dontcher. J. "Contra- continuous functions and strongly S- closed spaces", Internet. J. Math. Math Sci. 19, pp.303-310, 1996.
- [3] Hanif Page. Md., "Almost Contra gs-Continuous Functions", Gen. Math. Notes, vol. 15, no. 2, pp. 45-54, 2013.
- [4] Janaki.C. and Jeyanthi.V., 'A New Class of Contra Continuous Functions in Topological Spaces", *International Refereed Journal of Engineering and Science*, vol. 2, no.7, pp. 44-51, 2013.
- [5] Levine, N., "Generalized closed sets in topology", *Rend. Circ. Math. Palermo*, vol. 19, no.2, pp. 89-96, 1970.
- [6] Luay. A. Al Swidi and Mustafa. H. Hadi, "Characterizations of Continuity and Compactness with Respect to Weak Forms of ω-Open Sets", *European Journal of Scientific Research*, vol. 57, no.4, pp.577-582, 2011.
- [7] Noiri, T., Al-Omari, A. A. and Noorani, M. S. M., "Weak forms of ω-open sets and decomposition of continuity", E. J. P. A. M., vol. 2, no.1, pp.73-84, 2009.

Received May, 2020

1144