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Abstract--- It is well known, inverse and direct theorems relate the degree of best trigonometric or algebraic 
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of smoothness of functions via its degree of algebraic approximation. 
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I. Introduction and Definition   

Direct approximation theorems are statements asserting that if  belongs to certain class of smoothness then its 

degree of best approximation decreases to zero. On classes of continuously differentiable functions, such theorems 

were first proved in terms of the first-order modulus of continuity by Jackson [10] in 1911. Later, Zygmund[20] and 

Akhiezerin [1] generalized Jackson’s results to the second-order modulus of continuity, and Stechkinin [17] 

extended these results to the moduli of continuity of an arbitrary integer order k, k ≥ 3. 

Inverse approximation theorems are the converse statements that characterize the smoothness properties of a 

function depending on the speed of convergence to zero of its approximation by some approximating aggregates. 

These theorems were first obtained by Bernstein [2] in 1912. And already in 1919, direct and inverse approximation 

theorems, due to Jackson and Bernstein, were given in the book on approximation theory by de la Vall´ee Poussin 

[19].  

Investigations of the connection (direct and inverse) between the smoothness properties of functions and the 

possible orders of their approximations were carried out by many authors on various classes of functions and for 

various approximating aggregates. Such results constitute the classics of modern approximation theory and they are 

described quite fully in the monographs see [4],[5],[9],[18]. 

In [3] the authors prove direct and inverse inequalities for the degree of best approximation using neural 

networks. Also in [11] the authors used a direct kind of approximation. They proved a Jackson type theorem for the 

approximation of functions defined on graphs. 

Now we will give some basic definitions.  
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Definition1.6 [13]           ,    -        and let    denote the space of algebraic polynomials of 

degree not exceeding  , and denote  

  ( )          ‖    ‖ . 

The degree of approximation of     ,    - by element of     

As usual, we will use the notation  ( ) to denote such absolute constants depending on   which are of no 

important to us and may be different even if they appear in the same line. 

II. Notation and Auxiliary Results  

In our article we will use the following notations [16] 
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It can easily verified that          and   ( )        ( ) for    . See [16] 

To prove our main results, we need the following lemmas. 

Lemma 2.1 [15] 
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Lemma 2.3 

For a function     
                     . The following inequality holds.  



Jour of Adv Research in Dynamical & Control Systems, Vol. 12, No. 4, 2020 

DOI: 10.5373/JARDCS/V12I4/20201419 

ISSN 1943-023X                                                                                                                                          71 

Received: 10 Feb 2020/Accepted: 06 Mar 2020 

∑    
 
( ( )      ) 

 
  ( )

 

   

    
  
( ( )    ) 

 
  

Proof 

The idea of the proof depend on employment of the inequality   
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Lemma 2.4 

For                         we have  
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Proof. In view of (Lemma 2.2) applied for  ( )     and using Markov's inequality 
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III. Main Results  

The following results is our main results.  
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Proof 

It follows from ([7] Theorem1.1) 
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Theorem 3.3 

Let     
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By using potapov's estimate see [8] 
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Combine          we get (3.2). 
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    Then we get     

  and the proof is complete.  

From Corollaries (3.2) and (3.4), another constructive characterization result was given in the following 

corollary.   
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Now we present a matching inverse theorem. 

Theorem 3.6 

Let          ,                 
 , we have  
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Proof 
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             to the right- hand side of  (3.3), inequalities (3.4) and (3.5) together 

with         the proof is complete. 

As a direct consequence of Theorem 3.1 and Theorem 3.6, we have the following corollary. 

Corollary 3.7 

Let          ,                 
 , we have  
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IV. Conclusion  

In field of approximation theory, it is important to study inverse and direct theorems. For function 

approximation, we can estimate the degree of best approximation by mean of its weighted moduli of smoothness. 

This implies a characterization for many classes of smoothness of functions via the degree of their weighted 

algebraic approximation. 
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