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Abstracts: Federated learning deals with the challenge of accessing data from different information sources while 
preserving their privacy in centralized learning. We can use this paradigm to learn a common global model for multiple 
clients using model aggregation cycles, without sharing data. Here aggregating the local models is a crucial part of the 
training. However, the model may experience accuracy and performance loss while aggregating heterogeneous data. 
We propose a new aggregation method with sampling, FEDSBME, using the Bayesian inference. We sample the local 
models of the participating clients and build a Bayesian ensemble model to create a powerful aggregation. The sampling 
of local models is performed using two approaches, SWAG and Dirichlet distribution sampling. Our experimental results 
prove that our suggested approach can preserve the accuracy and performance of the model when clients’ data are 
heterogeneous (non-iid) and with deeper neural networks.  

Keywords: Federated learning, SWAG, Dirichlet distribution, Bayesian ensemble model. 

 

1. INTRODUCTION  

The Federated learning (FL) is a form of distributed learning [1]. It trains the artificial intelligence models 
using several data resources while the data is kept undisclosed [2, 3]. Training data is distributed between clients 
such as smartphones, hospitals, and local information sources[4, 5]. Some of the complexities in centralized 
learning that gave rise to the emergence of federated learning are: 1- Sensitivity of data privacy 2- transferring large 
amounts of data to the server through the network is time-consuming 3- Real-world data are often non-iid, leading 
to client heterogeneity [6]. FL’s nature and key features in server-clients communications solve the problems 
challenging centralized learning. Federated averaging (FedAvg) is the most popular and used FL algorithm to 
manage the training process and the relationships between clients and the server [7-9]The crucial part of the FL 
process is transferring parameters from clients to the server and vice versa. This is an active research field in FL. 

      The effect of heterogeneous clients with non-iid data becomes evident in the most critical step in FL, the 
aggregation of the weights. Non-iid data are also known as statistical heterogeneity or unbalanced data[10]. In 
FedAvg, this kind of data causes model divergence and distancing from local optimums[11]. This makes the 
performance of FedAvg in the face of statistical heterogeneity a current open research question. To solve the 
problem of aggregation with unbalanced data, many researches have presented approaches for strong aggregation. 
Liu and Zhong [12] suggested a Bayesian approach to estimate the global posterior probability p(θ|D) of the 
multivariate Gaussian function N(μ ,∑). They updated the mean and covariance of parameter in weight aggregation 
step which maximize memory use and communicative overhead. Li et al. [13]suggested FedProx based on FedAvg. 
They used an isotropic penalty function but they make θ local models move away from the global optimum. 
Yurochkin et al[14]. proposed a non-parametric Bayesian approach to adjust the clients weights using adjusting the 
repeated layers before averaging. This algorithm has linear computational and communicational dependency that 
makes it not suitable for deeper neural networks. The above issues make proposed methods unsuitable to solve the 
problem of aggregation with non-iid data. 

    If Bayesian inference approach is used in the aggregation of weights with unbalanced data [15], we can reach 
a more optimal estimate of the global posterior instead of point posterior estimate. We aggregate the models 
achieved in each client’s training cycle and sample the global model from them using different methods. This 
minimizes the client drift due to unbalanced data considerably and minimizes their distance from the global 
optimum[16]. Two special advantages of this approach are: first, sampling of each client reduces the cost of 
transferring large amounts of parameters and increasing communication cycles. Second, sampling gets us closer to 
preservation of privacy. The key point of this theory is client sampling. Even when there is discrimination and 
maximum differences in the statistical population’s frequency, the client-sampling approach is guaranteed to gets 
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close to the normal state, while reducing the global model divergence due to the clients’ drift [16].  

     In this paper, we suggest a sampling-based aggregation method to estimate the global posterior. We first 
average the weights of the clients in each training epoch using SWA and put the results in a Bayesian ensemble 
model. We can infer many other distributions of the global model by sampling this model. We use two methods, 
Gaussian (normal) distribution sampling and Dirichlet distribution sampling. Server uses the weights sampled from 
the Bayesian ensemble model in each new epoch. We set two goals to reach a stronger prediction than the 
previous approaches. 1- presenting a new aggregation method to solve the problem of model divergence when 
using non-iid data. 2- Increasing the optimality of the model and converging to the best point by Gaussian 
optimization of SWA (SWAG). We use a Stochastic Weight Averaging (SWA) with a cyclic or learning rate to scan 
the model while pulling ourselves us out of the noisy local minima to build a better Bayesian ensemble model. We 
call our algorithm FedSBME. A Covid-19 data with a 3-class classification (suffering from Covid-19, suffering from 
pneumonia, healthy) is used for the experiments. Our suggested algorithm keeps its precision and performance in 
the face of non-iid data and neural networks with deeper architectures.  

    Most trained models in the literature can address the challenges of non-IID data but perform the execution 
process (model training and testing) with maximum parameter transfer in numerous communication epochs, which 
increases communication costs. Our proposed approach, on the other hand, is capable of superior training with high 
performance with minimum parameter transfer in the least number of epochs. The present research employs 4 
distinctive COVID-19 datasets for the execution process. This training strategy with real data is scarcely seen in 
other FL-based studies. Nevertheless, we managed to reach the highest convergence with deeper architectures 
(ResNet-50). Therefore, our research direction is as follows: 

• The use of novel FL with the prospect of solving the problem of imbalanced data from heterogeneous 
clients in an attempt to diagnose COVID-19 as the current major health issue      

• The development of a new aggregated approach based on Bayesian inference with a sampling technique in 
each epoch to provide a secure framework for exchanging the least number of parameters between the 
collaborative systems in the training process  

• The ability to protect privacy as well as beneficial information exchange and reach convergence promptly in 
minimum communication epochs   

• The use of SWA instead of SGD in each client to obtain the best global optimum 

This paper consists of the following sections. Section 2 briefly reviews achievements in related work. Then the 
proposed method of this article will be described in Section 3.  Section 4 also addresses the evaluation of the 
performance of the proposed method compared to other methods. Finally, in section 5, conclusions and future 
orientations are also outlined. 

Table 1. Advantages and disadvantages of some of the proposed methods. 

Author(s) Proposed approach Advantages Disadvantages 

Al-Shedivat et 
al. 

[27] 

Presented a global 
posteriori inference by 
averaging local posterior 

Reducing complexity Not using a new 
approach 

 

Guo et al. 

[25] 

Introduced constant federal 
learning to merge different 
aspects of data 
heterogeneity 

Used a regularization 
technique to access 
previous epoch data 

Constant learning 
rate despite applying 
Gaussian noise to the 
gradients (we leave 
the nose) 
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Yun et al 

[19] 

Can update low-
dimensional gradients 
using a low-dimensional 
global model. 

Reducing 
communicational 
costs by considering 
the certainty 
coefficient for each 
client 

We can access the 
original data using 
reverse engineering. 
Using data averages 
are not just a 
sufficient condition to 
keep data secure. 

Liu et al. [12] Used Bayesian inference 
to estimate the local 
posteriors and multivariate 
Gaussian distribution to 
solve heterogeneity 
problem. 

Using Laplace 
approximation with 
priori distribution for 
online local training of 
the clients 

Not experimenting 
with unlabeled data 

Zhu et al. 

[39] 

Introducing data-free 
knowledge distillation 
approach to deal with the 
heterogeneous data 
problem 

Using knowledge 
distillation to solve the 
problem of 
heterogeneous data 
to make the model 
converge in less 
communication cycles 

Not using real-world 
data in the 
experiments and 
focusing on local 
minima 

Huchinson et al. 

[28] 

Calculate the posterior 
distribution of the 
parameter using the 
observed data 

Uses KL divergence 
between local 
distributions leads to 
correct prioris of local 
functions 

Not using proper data 
set for experiments 

Li et al. 

[36] 

Uses semi-supervised 
knowledge distillation for 
heterogeneous data in 
federated learning 

Makes preserving the 
privacy of the 
participants and 
improving the 
communication 
possible by 
introducing adaptive 
aggregation method . 

Data generated by 
the generator is not 
accurately tested. No 
security analysis for 
data. 

Li et al. 

[21] 

Introducing the approach 
of federated learning to 
preserve privacy 

Controlling the drift of 
local architectures 

Not focusing on the 
data heterogeneity 

 

2. RELATED WORKS 

FL Standard FL with balanced data has a proper default setting [17]. Due to the observed difference between 
the federated learning and the distributed one, we’ll still face different challenges in each of them. Communication 
between the server and the clients has many bottlenecks. This makes dealing with them effective in reaching the 
server’s maximum efficiency and best end result. Preserving privacy is essential in this regard. This mean data 
should be kept and should remain in its local location. Current studies are mostly about the stability, convergence, 
and communicational costs of federated learning while using non-iid data[3, 13, 16, 18-23]. Some of the suggested 
models use shared data between the server and the clients to reduce model drift [20]. Others use adaptive 
optimization to better update the global model [11]. Lin et al. [23] research resembles ours. They made merging the 
models possible. Li et al. [13] looked for a better local training of the clients in heterogeneous conditions. Liu et al 
[24] used a Bayesian approach to estimate posterior locally to solve the precision drop issue when using 
heterogeneous data. Guo et al. [25] present a constant federated learning (CFL) to merge various aspects of the 
data heterogeneity. Thorgeirsson et al. [26] calculate the weight uncertainty in aggregation stage of federated 
learning algorithm (FedAVg) and find the posterior distribution of the model’s weights using Bayes rule. They used 

stochastic features of the Fourier transform to get a Gaussian estimation and as the posterior belief.  
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    Al-Shedivat et al. [27] presents a global posterior inference by averaging local posteriors. Hutchinson et 
al. [28] found the posterior distribution of the parameters using the observed data and used it to find the distribution 
of predictions of y. There has been studies on non-convex federated learning settings [29, 30]. Woodworth et al. 
[31] did a Stochastic Gradient Decent (SGD) analysis using heterogeneous data. In homogeneous settings, 
LocalSGD is better than Minibatch SGD, but it is not true for heterogeneous data. Wang et al. [32] suggested a 
normalized averaging method that removes the objective paradox and errors of convergence. Wang et al[33]. found 
a suitable trade-off between local updating and global aggregation using non-iid data. It tries to minimize the loss 
function and maneuvers on non-convex methods. Liu et al. [30] generalize the Adagrad optimization steps of 
stochastic gradient decent optimization to reach an adaptive convergence rate for non-convex functions. Shoham et 
al. [34] reduce weight divergence by optimizing a decomposed global posterior into a computational formula 

 during training. In this equation  represents a local data complement and n 

represents the nth client. Similar works [35-38] use knowledge distillation along with Bayesian inference for 
inference and getting better precision. All researches always look for better precisions and faster model 
convergences. Our method outperforms them due to using Dirichlet distribution and SWAG which leads to better 
convergence and management of the heterogeneous data. The following table shows some of the advantages and 
disadvantages of the proposed methods. 

3. OUR PROPOSED METHOD: BAYESIAN ENSEMBLE MODEL FOR STRONG AGGREGATION 

The newly developed federated learning (FL) aims to obtain a globally optimal model for the server in the 
process of ensemble learning with multiple clients. The server's globally optimal model is accompanied by the 
server's maximum learning rate. This goal is achieved by maximizing the global posterior, P(θ|D) , on the server. As 
seen in Fig. 1, we employ a Bayesian model ensemble to enable the maximum learning rate in non-IID data-
involved training. In the first step of training clients, we use a multivariate Gaussian function to aggregate the clients' 
parameters. By using this distribution, we aim to approximate the local posteriors of each client, so that we can 
eventually approximate the global posterior which maximizes learning on the server. In the second step, each 
client's diagonal covariance and average are what we transfer to the server (the reason for selecting the diagonal 
covariance is explained in the following). By aggregating the covariance and average in a common model, we seek 
a model ensemble the framework of which is based on the Bayesian inference. In the third step, the model 
ensemble is sampled through both the SWAG technique (left figure) and Dirichlet distribution (right figure). The 
samples are transferred to the server. Finally, in the fourth step, the server initiates its new training epoch with the 
samples taken from the clients, and in the fifth step, upon the termination of given training epochs, it transfers the 
average of implementation parameters. This process (steps 1 to 5) continues until the desired accuracy is achieved 
on the server. It should be noted that we assume imbalanced data in heterogeneous clients, according to which the 
maximum desirable accuracy is obtained in five steps. 

3.1.  Sub-headings 

Fig. (1) gives a view of the new aggregation methods (red box). We propose a Bayesian approach to deal with 
the model drift when using non-iid data. Our goal is to maximize the model learning when the data distribution is 
unbalanced. By maximizing global posterior, we can maximize learning in the server. We need a global posterior 

estimation  that learning from the global models and reaching an optimum model ( , ) are its two special 

cases. Using posterior estimation, we can infer these two cases. Estimating the output probability , inferred 

from a global model with parameter , is one approach to reduce the model’s drift using Bayesian inference. We 

wish to see the effect of parameter  in predicting . To predict the output, we combine all of the output probabilities 

of local models. 

                                                                                                   

(1) 

 

In equation 1 the output probability using all the samples observed by the model is the product of output probability 

 affected by parameter  times the posterior probability. In FL maximizing the global posterior to reach a global 

optimum is a common goal. However, evaluating it in the federated learning is impossible [12]. Generally, the 
mentioned argument means equation (3-1) cannot be solved. 

This makes us estimate it using Monte Carlo methods  as an aggregation of the local model, 

global model, and its posterior. Using m models, we estimate the posterior as follows: 
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(2) 

Equation (2) shows an ensemble model called a Bayesian ensemble model in Bayesian 

approach. In this model . This means aggregating the clients’ output gives us a 

sequence of  parameters. We’ll use this sequence to estimate the global posterior 

probility. The challenge now is to estimate the client model using the posteriors. We’ll 
discuss it in the next section. 

3.2. Bayesian model set with estimated posteriors 

 

 
Figure 1. The new aggregation method based on sampling of the Bayesian ensemble model. 

3.2.1. Sampling a Bayesian ensemble group using a Gaussian multivariate distribution SWAG 

Using Gaussian Stochastic Average Weighting (SWAG) instead of SGD is one of the methods to estimate the 
posterior probability based on the clients’ models. This provides a solution to last section’s challenge. We can 

estimate  easily in this case. It’s best to discuss SWA, the base method, before studying SWAG. SWA has 

cyclical or constant learning rate and begins the job using a pre-trained solution. It starts from the start point of SGD 
and reaches the optimum points by tracking it in the local geometrical space. At the end of training epochs, we 
average our solution with the SGD solution to get to the SWA special solution, which leads to a more optimum 
solution. However, if the training rate in SWA is cyclical based on FGE, it will jump some of the local minima [40] . 
At the end of the training, we average the calculated weight points and SGD weight points to present the solution to 

find the optimal . Advantages of SWA over SGD are using less memory, has little computational overhead, and 

finds a more extensive and optimal solution in the end. Using SWA leads us to a Bayesian framework to estimate 
the global posterior with it. Actually, we can easily find the posterior region in the weight space by searching all the 
weight space while updating parameters. We begin by SWAG, a Gaussian distribution SWA. SWAG builds the 

Gaussian distribution  by adjusting the parameters based on the weights resulted from SGD. Maddox et al. 

[15] convert SWA into a Gaussian (normal) distribution SWAG using a multivariate Gaussian model .  

Here  is the covariance matrix tracking the local changes along the local geometry. We update the covariance 

matrix using every new  point reached along the SWA path. Considering the millions of parameters in of neural 

networks, computing covariance  in each round R will need complex computations and lots of memory to update 

all of them in the rounds. It makes us use its diagonal matrix  instead. Now in each round we just update the 

main diagonal elements and update the rest of the matrix's element in the last round of SGD. This helps us to 
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estimate the global posterior by averaging Bayesian model. We can sample this Gaussian method and perform the 
Bayesian model averaging. 

In FL, operation  represents  steps of SGD for a small set of client’s data  (each 

client’s data as a subset of all data sampled from all clients).  Parameters calculated from each client model are 

considered in the step  of updating weights to go through global model parameters. We use the diagonal 

Gaussian distribution  to adjust client models with each other. 

      (3) 

In equation (3), we calculate  using samples from client , a fraction of the whole sample data, and update the 

diagonal covariance resulted from the weight space tracking. Now we can easily use this  

distribution to sample our Bayesian model set in equation 4. we square each element using  expression. 

Note that in both possible cases in the client’s model and  are considered a sample of  

distribution. 

3.2.2. Sampling a Bayesian ensemble model using a Dirichlet distribution 

As another method to estimate the global posterior, we use the Dirichlet method. To combine expert models in 
supervised learning, the Bayesian inference uses combined models as the prior distribution. In this method, we use 

stochastic gradients to analyze  estimation. Considering the client’s model as , a convex 

combination or weighted average of the clients’ models can become a better model for each client. 

  (4) 

In equation (4)  reperesnets a vector showing each client’s parameters and  

is the clients’ sample data. We use the Dirichlet distribution  as the distributied model of  and sample 

 using the following equation: 

 (5) 

In the above equation, if , we have a Dirichlet distributed parameter.  Is a 

multivariate Beta function for normalization Generally, we perform two operations in the Bayesian ensemble model 

method.First, we calculate the posterior distribution  from client models. Second we sample the 

 estimation using Bayesian ensemble model. We mostly solved the problem of heterogeneous 

data in sampling process and converting each client into a global model in communicating with server. We’ll prove 
our claims in the experiments section. FedSBME algorithm is as follows. 

 In algorithm 1, the server begins by a fully supervised, adjusted learning rate training of the models using 

labeled data and SWA method (line 1). The resulting  parameters will be sent to all clients after training the 

model. The  client initializes its model with the  parameters and begins its Rth round of training. Each client 

performs training in K steps using its local data and an adjusted local training rate using SWA method (line 2-8). 
Once adjusted epochs finished, the client models of the current rounds are sampled and a Bayesian ensemble 
model is built. Then we estimate the global posterior and sample using equation (3) or (5) (SWAG or Dirichlet 

distribution) (Line 9-13) Finally we send the  resulted from sampling to the server. Server returns the resulting  

after training  with its own data (Line 15). 

 



International Journal of Membrane Science and Technology, 2023, Vol. 10, No. 2, pp. 1382-1396 

1388 

Algorithm1: FEDSBME  

1: Server input:      and   

2: Clients input: Local step size and model local labeled data    

3: for  to  do 

4:      Sample clients ; 

5:      Communicate   to all clients  ;        

6:       For each client       in parallel do        

7:                Initialize local model  ; 

8:                   Client Training in each Round ( , , ); 

9:              Create   ;     

10:            Create global model distribution   from ;  

11:            Sample m global models    ;  

12:            Create ; 

13:    Transfer   to the Server; 

14:          End 

15: Server output:  

 

4. EXPERIMENTAL RESULTS 

4. 1. Result’s preparation 

4. 1.1. Setting and parameters in the proposed method 

To execute and evaluate the proposed method, we use CNN architecture shown in Fig. 2. We use a batch 

normalization (batch size 128) in 100 rounds for 4 clients. We do an  (4 models belonging to 4 clients) 

sampling from the Bayesian ensemble model using learning rate  in the first round and multiply the 

learning rate by (0.9, 0.6, 0.3) respectively in a scheduled way. Finally, we calculate the new learning rate for the 
current round. Transferring data to the clients is done using Dirichlet distribution. We set a constant server learning 

rate . Setting a very large learning rate in non-iid local data distribution will cause a slow convergence 

for a large number of communication cycles. Models cannot reach the desired performances in a small number of 
communication cycles if the learning rate is set too small. Using a scheduled adaptive learning rate will give the best 
performance. Our results show reaching the desired accuracy and performance needs reducing the convergence 

rate 20% to 70% in each round. We set sampling rate for the Bayesian ensemble model at  in each 

training epoch. Using Resnet50 model gives us good accuracy compared to FedProx. We use Resnet50 as the 
backbone of a pre-trained model, and a new classification head instead of the existing one. We use SoftMax 

activation function and entropy loss function. Images are  pixels and are distributed unevenly into an 
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unbalanced 3-class output between 4 clients. Our server has an i7 CPU, a GTX 1660 GPU, and used Pytroch 
10000, Windows 10, Python 3.8.1 with Anaconda, and CUDA 11.3. 

 
Figure 2. The CNN architecture for feature extraction and Covid-19 classification. 

4. 1. 2. Datasets 

We used several datasets available in research resources and Kaggle repository. This dataset consists of X-
Ray images belonging to three classes: suffering Covid-19, healthy, and suffering pneumonia. In each training step, 
we used 30% of the dataset to train the server and distributed the remaining 70% between clients. 20% and 10% of 
the server 30% share was used for training and test, respectively. 40% of the client’s 70% share is used for training 
and 30% is used for testing local model. Table 2 shows the details of the datasets for each class. 

• Dataset 1: This dataset is from a Covid-19 radiography database classified into three classes. It is equally 
divided into 438 cases in each class (suffering Covid-19, suffering viral pneumonia, healthy).  

• Dataset 2: This dataset is gathered from Kaggle repository. It was put into two separate folders for training 
and testing purposes. The training set included 111 ‘suffering from Covid-19’ images, 70 healthy images, 
and 70 ‘suffering from viral pneumonia’ images. The test set included 26, 20, and 20 images from suffering 
from Covid-19, healthy, and suffering from viral pneumonia people, respectively. 

• Dataset 3: The third data set is also taken from Kaggle repository. It contained 3788 two-dimensional x-ray 
images. This included 1102, 1345, and 1341 x-ray images from people suffering Covid_19, suffering viral 
pneumonia, and healthy ones respectively. 

• Dataset 4: This dataset is taken from a radiography database researchers gathered from various countries 
for Covid-19 diagnosis research purposes. In three update, it is a total of 15153 images in a 3-class 
classification. It included 3616, 10192, and 1345 images from people suffering Covid_19, viral, healthy 
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people, and people suffering from pneumonia, respectively. The follwing figure shows pictures from the 
dataset with a 3-class classification. We’ll give more details of getting results using these datasets. 

Table 2. Datasests table showing details of each class. 

           

 

 

 

 

 

 
 

4. 1. 3. Evaluation criteria 

   We evaluated the proposed method using four criteria: F1-Score, Accuracy(Acc), Specificity(SPE), and 
Sensitivity(SEN). The detailed results of our evaluation using those criteria will be described in the later 
sections. 

 

                  (6) 

                           (7) 

                           (8) 

                          (9) 

4. 2. Evaluation of the proposed method 

   We first describe the reasons to choose 4 clients for the test process. Fig (3), resulting form the initial test, 
gives a compelling reason for this. Then, we’ll show the results of running the experiments on the clients and server 
as diagrams. 

 

Dataset 
Name 

Reference 
Total 
Sample no. 

Suffering 
Covid-19 

Health
y 

Sufferi
ng 
pneum
onia 

DataSet1 [41] 1314 438 438 438 

DataSet2 [42] 317 137 90 90 

DataSet3 [43] 3788 1102 1341 1345 

DataSet4 [44] 15153 3616 10192 1345 
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Figure 3. A view of training the server using different clients. 

As shown in Fig (3), the server is most accurately trained when there are 4 clients. The model’s accuracy drops 
with further increase in clients’ number. We reduced the number of clients in training the server to 4.  

Table 3. Server’s classification results during proposed method’s evaluation. 

Type Class     F1-score 

Server 

Covid-19 99.01 97.11 94.64 98.88 98.49 

Normal 98.26 96.64 99.37 99.01 99.32 

Pneumonia 98.33 98.25 97.26 98.65 98.06 

 

Table 4. Clients’ classification result during proposed method’s evaluation. 

Type Class     F1-score 

Client 1 

Covid-19 97.06 93.19 87.95 93.57 93.12 

Normal 98.64 96.39 93.19 96.59 94.75 

Pneumonia 98.99 97.14 94.75 96.0 98.19 

Client 2 

Covid-19 98.32 94.11 92.21 95.67 97.13 

Normal 99.01 97.36 97.33 97.31 98.07 

Pneumonia 96.78 98.67 93.49 97.67 99.67 

Client 3 

Covid-19 96.15 93.73 97.27 92.43 98.43 

Normal 98.22 94.91 93.39 98.33 97.55 

Pneumonia 96.41 98.43 98.18 94.71 94.92 

Client 4 

Covid-19 98.29 96.08 92.44 96.66 89.34 

Normal 94.36 95.36 98.53 98.46 97.48 

Pneumonia 97.79 97.32 99.94 97.05 99.25 
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Figs. (4) and (5) diagrams show the results of implemening the proposed approach on a server and 4 clients. In 
Fig. (5) the accuracy of the client 1 increases till round 35, but decreases slightly after that. Finally, after round 70, 
we see a constant accuracy trend in the execution. In client 2, the accuracy increases up to round 10, and after 
some decreasing, finally becomes increasing again in round 58, and reaches a constant accuracy of 98%. In client 
3, accuracy keeps increasing till round 30, gets to its maximum up to round 58, and we’ll see a constant accuracy 
trend after that.  

In client 4, the accuracy increases till round 4, gets to its maximum at round 75, after some ups and downs, and 
then always remains constant druing the experiment. The accuracy of the model training in the first 10 rounds is 
good. it has a short constant trend from round 50, and finally becomes increasing from round 85 in the rest of the 
training epochs. The server training results are crucial for us. Considering the theories and ideas described in 
section 3, and special setting used in training and testing the model, our proposed model practically increases the 
accuracy of the model in less communication cycles when using unbalanced data. We stopped the experiments 
here.   We used the criteria of section 3.1.4 for one serve, 4 clients evaluation results in tables (4) and (3) Covid-19 
detection accuracy in clients 1, 2, ..., and server were 93.57, 95.67, 92.43, 96.66, 98.88 percent respectively. Server 
had the best detection accuracy. Accuracies in detecting healthy people were 96.59, 97.31, 98.33, 98.46, 99.32 
percent respectively.  

  

Figure 5. Clients’ results during model training. Figure 4. Server’s result during model training. 

  
Figure 7. The loss of Datasets ResNet50 model. Figure 6. The performance of datasets on ResNet50 model. 
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Figure 8. ResNet50 model’s performance for clients and server using different datasets. 

Client 4 was the most accurate client and server was the most accurate of all with a 99.32% accuracy. 
Accuracies in detecting viral pneumonia were 96.0, 97.67, 94.71, 97.05, 98.06 percent respectively. Fortunately, the 
server has the best results as in the previous classes. As described in Section 4.1.2, we used 4 datasets to train 
and evaluate the model. We described the details of dividing the data between the server and the client in the same 
section. We first train the model with the first dataset, then with the second one, and so on. Fig (6) shows the 
performance of different datasets in training the model. Datasets 1 and 4 has the best accuracy among the datasets 
used. Fig. (7) shows the loss due to training the model using selected datasets. The biggest loss is during using 
datasets 2 and 3. Fig (8) shows Resnet50 model’s performance for different datasets in clients and server. Client 1 
has the best accuracy when using Dataset 4. The accuracies of client 2 for datasets 1 and 4 are almost the same. 
Training client 2 with both of those datasets gives a desirable performance. Client 3 gives the best accuracy for 
Datasets 3 and 4. Client 4 reaches a desirable accuracy using datasets 2 and 4. Server reaches the desired 
performance using dataset 4. It is known than reaching the desired performance in deep learning methods requires 
lots of datasets. Our results clearly show that. Dataset 4 has the most samples, and shows the best performance in 
our experiments. Evaluation of the proposed method is done using two SGD and SWA optimizers in 1000 
communication cylces. Accuracies were 99.58%, and 93.02% for SWA and SGD, respectively. Using SWA 
increased the Bayesian ensemble model’s accuracy The follwoing diagram shows the result of this analysis. 

 
Figure 9. The results of using different optimizers 
in the proposed method. 
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Table 5. Evaluation results for the proposed method compared to the results of the previous approaches. 

 

4.3. Comparing our proposed method with the other methods 

Our proposed method has a best accuracy of 96.78% which is the highest compared to FedMix, SCAFFOLD, and 
FedProx accuracies. The following diagram and table, showing the results of the execution, proves it. Table (5) shows 
the results of evaluation and comparing the proposed method with the previous methods. FedMix has the best test 
accuracy among the previous approaches. Our method tops all of the previous methods. This evaluation is done using 4 
datasets of chest x-ray images, taken from several Covid-19 databases. The software programs and hardware 
equipment discussed in section 1.1.4 were the requirements of this evaluation. 

 DataSet   Introduction  

 DataSet4 DataSet3 DataSet2 DataSet1  

Author Name        Method         Model Train Acc%                                Test Acc % 

 

78.06 

 

82.90 

 

 

57.96 

 

 

83.90 

 

 

73.05 

 

 

FedPr
ox 

 

Generalization and re-
parameterization to 
solve the issue of non-
convex federal 

Yoon et al. 

[45] 

86.05 

 

81.22 

 

73.26 

 

67.77 73.95 

 

FedMi
x 

Federated reinforced 
Learning (MAFL) 

Yoon et al. 

[19] 

 

49.08 

 

61.94 

 

75.95 

 

80.57 

 

88.83 

 

FedCu
rv 

Adding a penalty 
expression to loss 
function to control non-
convexity 

Shoham et al. 

[34] 

83.70 63.55 73.48 61.88 85.57 FedRe
p 

Personalized federated 
learning 

Collins et al. 

[18] 

70.51 

 

91.28 

 

85.03 90.64 81.68 

 

SCAF
FOLD 

Used customer similarity 
to reduce customer drift 

Karimireddy et al. 

[16] 

73.48 

 

63.28 

 

82.27 

 

59.54 

 

70.89 

 

FEDM
D 

Transfer learning and 
knowledge distillation 

Li & Wong. 

[21] 

 

96.78 

 

92.54 

 

95.58 

 

91.04 

 

89.56 

 

Our 
Model 

Bayesian ensemble 
model and sampling 

Proposed Method 
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Figure 10. Results of using different optimizers in the 
proposed method. 

5. CONCLUSION AND RECOMMENDATIONS 

In federated learning, weight aggregation is the crucial step known as the most important cause of restrictions in 
implementing this novel approach. Needless to say, implementation will go forward without any problems if 
balanced data and basic CNNs are employed. Therefore, engaging with non-IDD data is the main issue. We 
recommend a new aggregated approach based on Bayesian inference and sampling, using which we managed to 
reach the desired accuracy in training the model with imbalanced data and deeper architectures such as ResNet-
50. Using new strategies in our proposed approach, we hope to solve other complications in the newly developed 
federated learning (FL). In this regard, our new vision is to verify and enforce privacy protection as well as the 
principle of maintaining the model's balance through training non-IDD data and heterogeneous clients. 
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