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Abstract
One of the important trends in an intelligent data analysis will be the growing importance of data processing. But this point

faces problems similar to those of data mining (i.e., high-dimensional data, missing value imputation and data integration);

one of the challenges in estimation missing value methods is how to select the optimal number of nearest neighbors of

those values. This paper, attempting to search the capability of building a novel tool to estimate missing values of various

datasets called developed random forest and local least squares (DRFLLS). By developing random forest algorithm, seven

categories of similarity measures were defined. These categories are person similarity coefficient, simple similarity, and

fuzzy similarity (M1, M2, M3, M4 and M5). They are sufficient to estimate the optimal number of neighborhoods of

missing values in this application. Hereafter, local least squares (LLS) has been used to estimate the missing values.

Imputation accuracy can be measured in different ways: Pearson correlation (PC) and NRMSE. Then, the optimal number

of neighborhoods is associated with the highest value of PC and a smaller value of NRMSE. The experimental results were

carried out on six datasets obtained from different disciplines, and DRFLLS proves the dataset which has a small rate of

missing values gave the best estimation to the number of nearest neighbors by DRFPC and in the second degree by

DRFFSM1 when r = 4, while if the dataset has high rate of missing values, then it gave the best estimation to number of

nearest neighbors by DRFFSM5 and in the second degree by DRFFSM3. After that, the missing value was estimated by

LLS, and the results accuracy was measured by NRMSE and Pearson correlation. The smallest value of NRMSE for a

given dataset is corresponding to DRF correlation function which is a better function for a given dataset. The highest value

of PC for a given dataset is corresponding to DRF correlation function which is a better function for a given dataset.

Keywords Intelligent data analysis � Missing values � Imputation methods � Random forest � Local least squares

1 Introduction

Missing value problem is considered as one of the chal-

lenges in multi-applications, and it affects directory of tak-

ing the decision. Several solutions have been suggested to

solve this problem. First, the simplest solution for this

problem is the reduction in the dataset and the elimination of

all samples with missing values. This is possible when large

datasets are available, and missing values occur only in a

small percentage of samples. Second, a data miner, together

with the domain expert, can manually examine samples,

which have no values and enter a reasonable, probable, or

expected value, based on a domain experience. This solution

is straightforward for small numbers of missing values and

relatively small datasets. However, if there is no obvious or

plausible value for each case, the minor is introducing noise

into the dataset by manually generating a value. Finally,

automatic replacement of missing values with some con-

stants such as some of the solutions will be explaining later

(Han and Kamber 2006; Graham 2012; Rubin 1976). Sev-

eral solutions are possible here, which are:

• Replace all missing values with a single global constant

• Replace a missing value with its feature mean
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• Replace a missing value with its feature mean for the

given class

• Replace a missing value with the nearest neighborhood

from top or bottom.

In intelligent data analysis, the researcher is often

interested in discovering knowledge, which has a certain

predictive power. The basic idea is to predict the value that

some attribute(s) will take on in ‘‘the future,’’ based on

previously observed data. However, the missing value

problem always leads to some of the mistake in discovered

knowledge process and then become very difficult to be

comprehensible to the user and in many times results in

incomplete intelligent analysis of dataset behaviors

(Abualigah and Hanandeh 2015; Abualigah and Khader

2017; Abualigah et al. 2017; Al-Janabi 2018).

In real-world applications of data mining, even when

there are huge amounts of data, the subset of cases with

complete data may be relatively small. Some of data

mining methods accept missing values and satisfactorily

process data to reach a final conclusion. Other methods

require the all values be available (Rubin 1996). The

question is whether theses missing values can be filled in

during data preparation, prior to the application of any data

mining methods. Other, multivariate supervised classifica-

tion methods such as support vector machines and multi-

variate statistical analysis methods such as principal

component analysis, singular value decomposition and

generalized singular value decomposition cannot be

applied to data with missing values (Liew et al. 2010).

Therefore, missing value estimation is an important pre-

processing step.

Missing data present a problem in many fields, and

different techniques have been developed to effectively

handle this problem in datasets. The simplest way is to

remove the entire raw that contains missing values and

replace them with row average, medium or even with zero

(Ali 2012a). However, this leads to biases since the cor-

relation structure between the variables is ignored. Missing

value methods are designed for continuous data and to

those data that have a mixture of nominal and categorical

variables, and implementation can break down in chal-

lenging datasetting. The inability to deal with complex

interactions between variables prevents these techniques to

tailor the missing data handling procedure and match a set

of analysis goals. In addition, it is unclear how these

methods appropriate for missing value problem because no

universal tool exists for different types of datasets. For

these reasons, there has been much interest in using

machine learning (ML) methods to estimate missing data

problems.

Random forest (RF) is considered to be a popular clas-

sifier that has shown significant attainments on a wide

range of classification problems due to its ability to deal

with high-dimensional data. Although RF has shown to

have many good features, it has the potential to perform

even better for estimating missing values (Rieger et al.

2010; Cutler et al. 2007; Hapfelmeier et al. 2012; Waljee

et al. 2013; Stekhoven and Bühlmann 2012; Verikas et al.

2011; Aljarah et al. 2018). RF has offered different

advantages for classification problems when applied on

large datasets: it does not overfit, it has the ability to

estimate feature importance during training with little

additional time and most importantly, and it effectively

accommodates nonlinear relations and interactions among

variables (Mafarja et al. 2018; Genuer et al. 2010). Local

least squares (LLS) technique has been employed, and its

performance is proved to be effective and suitable for

missing value imputation (Ali 2012b; Wasito and Mirkin

2006; Moorthy et al. 2014; Bose et al. 2013).

In this study, a new tool called DRFLLS based on the

developed random forest (DRF) algorithm and LLS

imputation strategy is applied to find the optimal estimation

of missing values. Different equations as similarity mea-

sures inside the original RF were used rather than

depending on the correlation only to estimate the optimal

number of nearest neighbors (k). Then, we used LLS as the

local strategy to estimate the missing values based on the

number of neighbors. The Pearson correlation (PC) and

normalized root mean squared error (NRMSE) are used to

assess the imputation accuracy, where the value that gives

the highest PC and the least NRMSE represents the optimal

value. Thus, the similarity measure that generated the k is

considered the best generator of the number of neighbors.

The rest of the paper includes the following sections. In

Sect. 2, we summarize and analyze the work of previous

related works. In Sect. 3, we describe materials and

methods used in this work. In Sect. 4, the design of the

proposed method is discussed. In Sect. 5, the results and

evaluation measures are presented. This section is followed

by the conclusion of the study.

2 Related works

In recent years, ML techniques were designed to estimate

missing values. This section is centered upon the previous

literature which is related to missing value estimation and

the solutions that have been proposed.

Several recent works have been proposed to handle

missing data. Al-Janabi (2017) presented a solution for

missing value problem, which consists of many steps: first,

dataset design: ‘‘Vertical’’ decomposition, ‘‘horizontal’’

decomposition; second, new constraint short hands: ‘‘dis-

tributed key’’ and ‘‘distributed foreign key’’; third, new

dataset updating construct: ‘‘multiple assignment’’
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(table level); fourth, decomposition by query to derive (an

improved) PERS_INFO when needed. However, this

technique cannot find the missing values effectively

because it depends on finding substation values from the

tables of the missing values based on propositional

constructions.

In another research, Bruggeman et al. (2009), suggested

PhyloPars Web server to provide a statistically consistent

technique. The authors merged an incomplete set of

empirical records with species phylogeny to produce a

complete set of estimates parameter for all species. Their

model is extended to enable better handling of missing

data. They stated that their method achieved optimal and

accurate use of all available information than ad hoc

alternatives. Another optimal method for replacing missing

ensemble temperature data can be seen in the work of

McCandless et al. (2011). The main objective of their work

is to produce a consensus forecast through the use of sta-

tistical post-processing techniques to find out the results of

replacing the missing data on these post-processing

schemes. However, this method does not explain how to

handle missing value problem in details.

Qi et al. (2005) presented a method to measure such

similarities at task classifying pairs of proteins as they

interact or not. They used direct and indirect information

about interaction pairs to construct a RF from a training

dataset. The resulted RF is employed to find the similarity

between protein pairs using a modified k-nearest neighbor.

Their final results demonstrate that the RF approach

achieved a high level of accuracy compared to other pro-

posed tools. Carranza and Laborte (2015) used RF to

investigate its suitability for data-driven predictive model

and to examine its ability to handle missing values using

Abra data in Philippines. The analysis results indicate that

RF is useful for both data-driven predictive and missing

value handling. Pantanowitz and Marwala (2009) applied

five methods to impute missing data using HIV sero-

prevalence dataset. The final results show that RF is a

powerful and accurate method which can successfully be

applied to handle missing values.

Golub et al. (2005) proposed the imputation method

based on least squares formulation. The authors used local

similarity structures in the data and least squares opti-

mization process to estimate the missing values in gene

expression dataset. In addition, the experiments show that

their method achieved comparable results alongside with

other approaches for missing value estimation on different

datasets. In another work, four imputation approaches were

assessed to handle missing values in Epistatic miniarray

profiling (E-MAPs) data (Ryan et al. 2010). Three local

(nearest neighbor-based) and one global (BPCA-based)

techniques that adapted to work with symmetric pair-wise

data were used. The experimental results prove that good

missing value imputation can be achieved by using LLS.

The work of Chiu et al. (2013) confirmed the use of LLS as

the best and suitable technique for missing values handling.

3 Methods and material

3.1 Random forest

Random forest (RF) is a supervised learning technique (Brei-

man 2001) that is widely used to solve classification and

regression problems in different domains (Heidari et al.

2018, 2019;Adamet al. 2014;Elyan andGaber 2016;Ali 2013;

Xie et al. 2009). RF ensembles of trees that have grown from

bootstrapped training data for classification purposes, the trees

are combined usingmajority voting with one vote per tree over

all trees in the forest, while for regression purposes, forests are

created by averaging over trees. The remaining samples that are

not selected for training are collected to another subset called

out-of-bag (OOB). This subset aims to assess generated deci-

sion trees and to estimate the classification or regression error

rate in the RF (James et al. 2013).

3.2 Local least squares

Local least squares (LLS) imputation consists of two steps:

the first is to use k similarity records, and the second is to

utilize regression and estimation, regardless of how the k

records are chosen. The traditional LLS is based on the L2-

norm or Pearson correlation coefficients as methods to select

the similarity records (number of neighbors k) and then

recover missing values that depend on the k records with the

largest Pearson correlation coefficients (Kumar et al. 2008).

3.3 Used datasets

In this work, six datasets were used which have different

types and features as explained in Table 1. All of these

datasets suffer from the missing value problem.

4 DRFLLS as a novel tool

In intelligent data analysis, we are often concerned to discover

knowledge which has a certain predictive power. Intelligent

data analysis goal is to predict the value that some

attribute(s) will take on in ‘the future’ based on previously

observed data. But missing value problem always leads to

inaccurate conclusions that can be drawn from the data, and

the process then becomes difficult for the users to understand.

To overcome this problem, this work proposes a tool called

developed random forest local least squares (DRFLLS) to

estimate the number of neighbors and find the optimal
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estimation of missing values. The DRFLLS design is divided

into three parts: (1) the first part aim to generate k similarity

records depending on seven different measures of similarity,

where each of these measures uses a new correlation function

of the random forest. As a result, this part generates seven

different values of neighbors, i.e., solve the select k-nearest

neighbor problem; (2) the second part takes the different

values of k results from the previous step and applies LLS to

estimate the missing values. This generates seven values for

each missing value based on the number of similarity mea-

sures; (3) the third part evaluates which of these seven esti-

mation values is optimal by applying two types of evaluation

measures including Pearson correlation between the predicted

and actual values and the normalized root mean squared error

(NRMSE). Figure 1 shows the structure of DRFLLS.

Figures 2 and 3 illustrate the pseudo-code that is used to

handle missing values and the procedure that is applied to

build the tree in the training phase, respectively.

5 Results and performance evaluation

5.1 Estimating the number of nearest neighbors

One of the remaining problems in the various missing

value methods is how to select the optimal local nearest

base of the missing values (the number of nearest neigh-

bors). Figure 4 shows the outline of the DRF pseudo-code

that used to find the optimal nearest neighbors’ numbers.

In this paper, different types of correlation functions or

similarity functions among the trees to estimate the optimal

number of nearest neighbors are used. For a given forest f,

the similarity between target record and other record X1

and Xj pairs is computed in the following way. For each of

the two pairs, we first propagate their values down all trees

within f. Next, the terminal node position for each pair in

each of the trees is recorded. Let Z1 = (Z11, Z1L) be these

tree node positions for X1 and similarly define Zj. The

similarity between X1 and Xj pairs takes different forms

that apply in parallel as follows:

• Random forest with Simple Similarity (RFSS)

This measure is computed using Eq. (1), where

I presents the indicator function as explained in Eq. (1)

• Random forest with Pearson correlation (RFPC)

For this measure, Eq. (2) is used, where �Zj represents

the average of values in Xjj and rj is the standard

deviation. The components of X1 that correspond to

missing values are not included in computing the

coefficients, as explained in Eq. (2).

• Random forest with fuzzy similarity measure 1

(RFFSM1)

This measure is based on fuzzy Minkowski distance.

A smaller distance between X1 and Xj is observed, and

there is a greater similarity between them as explained

in Eq. (3).

RFFSM1 is computed using Eq. (3), where r ? !.

• Random forest with fuzzy similarity measure 2

(RFFSM2)

It is computed using Eq. (4), where i = 2, … , L.

• Random forest with fuzzy similarity measure 3

(RFFSM3)

This measure needs to define the notion of cardinal-

ity of the fuzzy set. The cardinality is given by the

number of elements in that set. This concept can be

extended to fuzzy sets using the sigma count, which can

be defined as Zhou et al. (2015), and Eq. (5) is used to

compute this measure.

• Random forest with fuzzy similarity measure 4

(RFFSM4)

This measure is computed using Eq. (6).

• Random forest with fuzzy similarity measure 5

(RFFSM5)

This measure is calculated using Eq. (7).

As a result, we get seven forests, each one of which is

built based on one of the above correlation equations and

provides one predicate value to the number of neighbors.

Table 2 explains DRF results for several datasets used in

this paper.

The optimal numbers of nearest neighbors generated by

DRF for a given dataset are shown in bold. The table above

Table 1 Overview of the

dataset information
Dataset name #

Records

#

Features

# Missing

values

Area

Communities and Crime (Redmond 2009) 766 128 26,850 Social

DNA (Genbank 1992) 2000 181 31,000 Bioinformatic

P53 Center for Machine Learning and Intelligent

Systems, USA (2010a)

889 255 15,870 Life Sciences

URL reputation (Saul et al. 2009) 11,256 28,712 98,341 Computer

Splice (Genbank 2018) 3190 61 16,780 Life

GIS Center for Machine Learning and Intelligent

Systems, USA (2010b)

1001 9 822 Bioinformatic
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explains why the datasets have a low rate of missing values

given that the best estimate of the number of nearest

neighbors is given by DRFPC, followed by DRFFSM1

with r = 4. When the datasets have a high rate of missing

values, the best estimate of the number of nearest neigh-

bors is given by DRFFSM5, followed by DRFFSM3.

Select Dataset

Evaluation each result 
using PC & NRMSE

Determined the best K

Forward the Optimal 
Estimation of Missing 

Values to Postprocessing 

Postprocessing 
Stage

Has Dataset 
Missing Values 

N
o

Y
es

R
aw

D
at

as
et

s

Fig. 1 Novel tool DRFLLS

Algorithm1: DRFLLS for Handle Missing Values 
Input: Dataset has a missingvalue 
Output: Dataset without missing values 

1: Set parameters; number of bootstrap samples, Max no of trees, Max, No. of 
level, Min no of node, no of terminal node, no of epoch

2: Call Build Tree Procedure  
3: Estimation Number of Nearest Neighbors using (DRFSS, DRFPC, RFFSM1, 

DRFFSM2, DRFFSM3, DRFFSM4, DRFFSM5) 
4: Estimation Missing Values using LLS  
5: Validation of Results base on Pearson Correlation and NRMSE 
6: End DRFLLS Algorithm.  

Fig. 2 Missing value handling
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5.2 Missing value estimation

We get seven nearest neighbors (k1, k2, k3, k4, k5, k6, k7)

by the DRF method. Let r1 be a record containing n fea-

tures and q missing values. We deal with the case in which

there is more than one missing value in a record vector by

the local least squares method. In this case, recovering the

total number of q in any location is as follows:

(A) The nearest neighbor record vectors for r1 are first

found. In this process of finding similar records, the

q components of each record having the same

location of the missing values in r1 are ignored.

(B) Build a matrix, A 2 Rk�ðn�qÞ, where A is a two-

dimensional matrix in which the number of rows

equals the number of nearest neighbors ki {i = 1, …,

7}. The number of columns equals the number of

total features n minus the number of columns

containing missing values q.

(C) Build a matrix B 2 Rk�q, where B is a two-dimen-

sional matrix in which the number of rows equals the

number of nearest neighbors ki {i = 1, …, 7}. The

number of columns equals the number of columns

containing missing values q.

(D) Build a vector w 2 Rðn� qÞ�1, where w is a one-

dimensional matrix in which the number of columns

equals the number of total features n minus the

number of columns containing missing values q.

(E) After A and B matrices and a vector w are formed,

the least squares problem is formulated as:

min
x

ATX �W
�
�

�
�
2

ð8Þ

(F) The vector u ¼ ða1; a2; . . .; aqÞT of q missing values

can be calculated as

u ¼
a1
..
.

aq

0

B
@

1

C
A ¼ BTX ¼ BTðATÞtw ð9Þ

where (AT)t presents pseudo-inverse of AT and the

pseudo-inverse At of A can be computed by:

At ¼ ½V1 V2�
P�1

1 0

0 0

" #

½U1 U2�T

¼ V1

X�1

1

U T
1

ð10Þ

Algorithm 2: Build Tree (Grow an un-pruned tree on training records)

1: While number of records in training set< >Null        

2: Read a new record         

3: Pass it down the tree         

4: If it reaches a terminal node             

5: If first record at this node                  

6: Randomly choose n attributes                    

7: Find intervals for each of the n attributes update counters.

8: If node has seen nm in records                       

9: If similarity measure test is satisfied                             

10: Save node split attribute 

11: Save corresponding split value                                

12: If no more records in the training set                     

13: If node records are highest similarity
14: Take average response from all individually trained trees  

15: Assign the average response to number of nearest neighbors

16: Else

17: Save best split attribute seen so far                                      

18: Save corresponding split value  

19: End while

Fig. 3 Building tree in the

training phase
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DRF to predict the optimal nearest neighbours’ numbersFig. 4 DRF used to find the

optimal nearest neighbors’

numbers
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where V1 2 Rn�1�rank;
P�1

1 2 Rrank�rank;UT
1 2

RK�rank:
The known elements of w can be presented by

w ’ x1a1 þ x2a2 þ � � � þ xkaki ð11Þ

where the xi refers to the coefficients of the linear

combination found from the least squares formula-

tion given by Eq. (9).

(G) As a result, the multiple regressions represent a

target record, i.e., the record has multiple missing

value features, as a linear combination of its nearest

neighbors as:

Target ¼ x1b1 þ x2b2 þ � � � þ xkbk ð12Þ

where bk is the kth nearest neighbor and xk repre-

sents the regression coefficient corresponding to that

neighbor.

5.3 Performance evaluation

To assess the performance and accuracy of the DRFLLS

method, two measures were used. Pearson correlation and

NRMSE served to evaluate the differences between pre-

dicted and actual values

NRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mean ijanswer � ijguess
� �2
h i

variance[ijanswer�

v
u
u
t ð13Þ

where the mean and variance are calculated over the

missing elements in the whole matrix, the set of known

values are ijanswer, while ijguess are the set of predicted

values.

In each column of Table 3, the smallest value of

NRMSE for a given dataset is presented in the bold font.

This means that corresponding DRF correlation function is

better function for a given dataset. In addition, the error

generated of each database based on the number of nearest

neighbors is yielded by different types of DRF correlation

measures as shown in Table 4.

In each column of the Table 4, the highest value of the

correlation for a given dataset is presented in bold font.

This means that the corresponding DRF correlation func-

tion is the best function for a given dataset.

The results from the correlation measures (DRFSS,

DRFPC, DRFFSM1, DRFFSM2, DRFFSM3, DRFFSM4

and DRFFSM5) and the imputation accuracy measures on

the six datasets are provided. Higher correlation and a

lower NRMSE scores will result in more accurate impu-

tations. The results from the NRMSE method are provided

in Table 3, while those from the Pearson correlation are

provided in Table 4. As it can be seen in each column in

Table 3, smaller values of NRMSE for a given dataset are

shown in bold, while in Table 4, the correlation for a given

dataset has the highest values. From these experiment

results, we can find that the corresponding DRF correlation

function is a better function for the datasets used in this

study.

5.4 Relative importance of each similarity
measure

To further illustrate the importance of each similarity

measures in the estimation process, the generated error by

the DRF is provided

Generation Error� S�i ðX1;XjÞ½ST2�
ST2!

ð14Þ

where S�i is the average correlation among trees. ST2 is the

‘strength’ of the tree classifiers, i.e., the average perfor-

mance of the classifiers (Waske et al. 2010).

The error generation for each dataset based on the

number of nearest neighbors yielded by different types of

DRF similarity measures is provided. In Table 5 and

Fig. 5, we can find that if the dataset has a small number of

missing values, then the best estimation of the number of

nearest neighbors is obtained from DRFPC, followed by

DRFFSM1 with r = 4 in GIS dataset since it has both the

smallest missing values and error generation. If the dataset

has a large number of missing values, then the best esti-

mation number of nearest neighbors is obtained from

DRFFSM5, followed by DRFFSM3 as in the DNA dataset

which includes the highest missing values.

Table 2 Number of nearest

neighbor estimation by the

developed random forests

method

Correlation function Communities and crime DNA P53 mutants URL reputation SPLICE GIS

DRFSS 17 30 22 31 14 13

DRFPC 21 16 24 14 18 11

DRFFSM1 23 24 20 13 15 7

DRFFSM2 16 18 21 15 12 21

DRFFSM3 19 23 13 28 10 18

DRFFSM4 23 25 5 22 26 19

DRFFSM5 24 28 11 35 22 13
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Table 3 Accuracy, as measured

by NRMSE for all datasets
Correlation function Communities and crime DNA P53 mutants URL reputation SPLICE GIS

DRFSS 0.65 0.72 0.74 0.60 0.76 0.92

DRFPC 0.71 0.76 0.71 0.65 0.60 0.67

DRFFSM1 0.87 0.80 0.72 0.68 0.63 0.54

DRFFSM2 0.75 0.74 0.83 0.60 0.73 0.77

DRFFSM3 0.64 0.67 0.85 0.59 0.82 0.83

DRFFSM4 0.85 0.69 0.81 0.71 0.78 0.95

DRFFSM5 0.61 0.60 0.88 0.58 0.65 0.82

Table 4 Accuracy, as measured

by correlation for all datasets
Correlation function Communities and crime DNA P53 mutants URL reputation SPLICE GIS

DRFSS 0.74 0.81 0.79 0.59 0.63 0.67

DRFPC 0.76 0.77 0.86 0.78 0.73 0.78

DRFFSM1 0.66 0.68 0.81 0.68 0.68 0.72

DRFFSM2 0.71 0.65 0.33 0.48 0.51 0.49

DRFFSM3 0.80 0.83 0.45 0.79 0.49 0.39

DRFFSM4 0.78 0.74 0.60 0.76 0.63 0.32

DRFFSM5 0.85 0.88 0.71 0.91 0.44 0.56

Table 5 Error generation for each dataset based on the number of nearest neighbors yielded by different types of DRF correlation measures

DRF

correlation

measures

Communities and

crime

DNA P53 mutants SPLICE GIS

# Nearest

neighbors

Error

generation

# Nearest

neighbors

Error

generation

# Nearest

neighbors

Error

generation

# Nearest

neighbors

Error

generation

# Nearest

neighbors

Error

generation

DRFSS 17 0.892 30 0.063 22 0.587 14 0.174 13 0.179

DRFPC 21 0.59 16 0.073 24 0.479 18 0.159 11 0.092

DRFFSM1 32 0.589 24 0.065 20 0.487 15 0.169 7 0.104

DRFFSM2 16 0.58 18 0.071 21 0.586 12 0.194 21 0.172

DRFFSM3 19 0.489 23 0.064 13 0.588 10 0.222 18 0.174

DRFFSM4 23 0.575 25 0.065 5 0.586 26 0.132 19 0.176

DRFFSM5 24 0.078 28 0.058 11 0.589 22 0.195 13 0.179

0
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0.4
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1
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Rela�onship between Different 
Types of DRF Similarity Measures 

and Error Rate

Communi�es and Crime DNA P53 MUTANTS SPLICE GIS

Fig. 5 Relationship between

different types of DRF

similarity measures and error

rate
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In this study, we have used between 10 and 120 different

DRF trees, based on the trial-and-error principle to decide

the optimal number. Table 6 shows the error generation by

different numbers of trees used in DRF.

In Table 6, the values of trees in the range of [10, 120]

were used; at each stage, 10 trees were added. By another

word, each dataset was tested 12 times starting from 10 to

120. In each test, the cumulative error was calculated

according to Eq. (14). As the number of decision trees is

increased, the required time for calculating missing values

by the model will be increased, while the error rate will be

decreased. The main aim is to reach a state of stability

between the number of trees used in constructing the model

and the percentage of generated errors. In Table 6, it can be

seen that in communities and crime dataset when the

number of trees reached 80, the cumulative error was

0.112, when the number of trees increased to 90, the error

was 0.110; and the error became 0.108 when the number of

trees reached 100. This indicates that the error is decreased

by 0.002. For this, the number 80 was selected because it

represents the state of stability and the changes in the error

rate after this number were relatively small compared to

the used time. The optimal number of trees for communi-

ties and crime, DNA, P53 MUTANTS, SPLICE and GIS

datasets are 80, 100, 120, 60 and 25, respectively, as shown

in Fig. 6. The value of each parameter used in DRF for

each dataset and the relative importance that is given for

each similarity measure are summarized in Table 7.

As the results showed in above figures and tables, the

proposed DRFLLS method provides a great improvement

in both accuracy and stability over the different types of

dataset used in this paper for missing value estimation.

5.5 Comparing DRFLLS with other proposed
methods

The result obtained with the DRFLLS for the datasets used

in this study was compared among the proposed methods

reported by other researchers. The compression of

DRFLLS with other proposed methods with respect to the

employed tools, datasets, structure and method of deter-

mine nearest neighbor is illustrated in Table 8.

5.6 Assumptions and limitations

The main assumption of this paper is one of processing

original datasets that suffer from many records that have

missing values in different locations of the record but not

processing the missing values that may occur in the post-

processing stages, i.e., the clustering, association rules and

decision stages. RF is considered as one of the statistical

tools that perform well in many fields. However, our

experiments found that the combination of RF and simi-

larity measures to design DRF methods leads to an increase

in the time complexity. Because it requires performing

many of mathematical operations as explained in the above

2–8 equations; also when the number of trees in the RF is

increased, the required time to handle missing values in the

training data will be increased. While the main advantages

of DRFLLS are ability to find the missing values for small

and huge dataset, using different measures to determine the

number of nearest neighbors, these measures including

simple similarity, Pearson similarity coefficient and fuzzy

similarity (M1, M2, M3, M4 and M5) make the tool suit-

able to deal with the dataset that differs in their natural,

amount of missing values, and the type features that con-

tain missing values. Combination between DRF and LLS

leads to the optimal estimation of missing values by LLS.

Table 6 Error generation by

different numbers of trees in

DRF

# Trees Communities and crime DNA P53 mutants SPLICE GIS

10 0.981 0.074 0.980 0.222 0.395

20 0.973 0.062 0.887 0.174 0.388

30 0.952 0.063 0.884 0.115 0.388

40 0.911 0.082 0.858 0.102 0.376

50 0.850 0.081 0.782 0.091 0.367

60 0.490 0.086 0.762 0.082 0.358

70 0.215 0.068 0.715 0.076 0.357

80 0.112 0.072 0.483 0.074 0.366

90 0.110 0.068 0.398 0.070 0.354

100 0.108 0.064 0.377 0.066 0.354

110 0.108 0.073 0.279 0.065 0.350

120 0.105 0.075 0.279 0.062 0.359
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Fig. 6 continued
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6 Conclusion and future directions

In this study, a new DRFLLS approach for missing values

and problem of estimating the optimal number of nearest

neighbors is proposed. To attain this goal, RF was devel-

oped through replacement of the correlation function of the

original RF with seven different types of similarity mea-

sures. These measures include simple similarity, Pearson

similarity coefficient and fuzzy similarity (M1, M2, M3,

M4 and M5). We obtained the optimal estimation of

missing values by LLS that depends on the values of

nearest neighbors generated by developed random forest

(DRF). We investigated the feasibility of the new method

using six datasets obtained from different disciplines. The

DRFLLS method is evaluated using two imputation accu-

racy measures: PC and NRMSE where the value that yields

Table 7 Relative importance of each similarity measure

Database name Total #

trees

Max level of

trees

Max # nodes

in tree

RFSSa RFPCa RFFSM1a RFFSM2a RFFSM3a RFFSM4a RFFSM5a

Communities and

crime

80 128 98,048 1.13 1.07 0.75 0.94 1.25 0.91 1.39

DNA 100 181 362,000 1.12 1.01 0.85 0.87 1.23 1.07 1.46

P53 mutants 120 255 226,695 1.06 1.21 1.12 0.39 0.52 0.74 0.88

SPLICE 60 61 194,590 0.82 1.21 1.07 0.69 0.59 0.80 0.67

GIS 25 9 9009 0.75 1.36 1.33 0.63 0.46 0.33 0.68

Max level of trees = No. of features of that dataset

Max number of nodes in tree = No. of records 9 No. of features in each dataset

*The relative importance of each similarity measure

Fig. 6 continued
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the highest PC and the least NRMSE represents the optimal

value. The DRFLLS considerably showed a high perfor-

mance and accuracy with regard to missing value problem.

The experimental results show that an improvement in

estimating missing values can be achieved by the proposed

DRFLLS tool in comparison with other proposed methods.
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