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Abstract 
 

Since shape constrains limit of the degree of approximation, we will relax the 
constraints of shape in small parts of the interval  1,1I  and approximate a function f  in 

the k
pL  space,  p0 , 2,1,0 ork  , which contains all functions pLf   with  

p
k Lf  , by an 

intertwining (co-onesided) pair of splines and/or polynomials, to get global estimates in 
terms of Ditzian-Totik modulus of smoothness. 

We begin with improving Whitney's Theorem for onesided approximation by using 
Ditzian-Totik modulus of smoothness instead of  modulus, to get less degree of 
approximation of the function  ILf p  conditioning that   0fr

 . 
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1.  Introduction and Main Results 
Throughout this article, we use the following notations from (Hu et. al., 1997); 

Let   0,:11:|,,: 12101   syyyyyyyY ssss  . We denote by  sY0  the set of all 

functions f  such that     01   xfks  for   skyyx kk ,0,, 1   . 
That is, those that have  s0  sign changes at the points in sY  and one nonnegative near 1. In 

particular,  0
00 Y  denotes the set of all nonnegative functions on  1,1 . Functions f  and g  which 

belong to the same class  sY0  are said to be copositive. 

Copositive approximation is the approximation of functions f  from  sY0  class by 
polynomials and/or splines that are copositive with f. For  1,1 pLf , let  

pnppn PffE
nn

 inf: , 

denotes the degree of unconstrained approximation. 
The best onesided approximation of f  by means of algebraic poly-nomials nnP   in pL -

metric is given by         11,,:inf:
~

 xxQxfxPandQPQPfE nppn . 

A natural extension of (co)positive and onesided approximations is the concept of so-called 
intertwining (co-onesided) approximation. 
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Definition 1.1. For the set   0,:11:|,,: 12101   syyyyyyyY ssss  , the best 
intertwining polynomial approxima-tion of a function  1,1 pLf is given by 

        11,,:inf:
~

 xxQxfxPandQPQPfE nppn . 

We call  QP, an intertwining pair of polynomials for f  with respect to sY  if  sYQffP 0,  . 
Clearly, in the case 0s , the above definition becomes the definition of the best onesided 

polynomial approximation    pnpn fEYfE
~

,
~

0   

Denote by  
 IL

r
hthpr

p

ftf  0sup:, , the classical modulus of smoothness, where 
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The Ditzian-Totik modulus of smoothness which is defined for such an f  as follows 

 
 IL

r
hthpr

p

ftf  0sup:, . 

There were other attempts made, the most notable being the works of Sendov and Popov, who 
gave the so called  modulus, an averaged modulus of smoothness, defined for bounded measurable 
functions on  ba,  by      ILrpr

p
tfJtf ,,:,,   , where 

   












  J

rt
x

rt
x

rh
yyftxf r

hpr 
2

,
22

:,sup:,,  is the r-th local modulus of smoothness of f. 

Throughout this article, we use the following notations from (Bhaya, 2003) 

Let 1,1 11   nxx  and for each nj ,,1,0   set 
 njxx njj cos:: , 

, 
 1,:  jjj xxI

, 

jjjj xxIh  1::
 and   22 11: nnxxn  . 

At first, we have to give some estimates which formulate the relations between the above 
measures as follows      prprpr tftftf ,,,   ,  p1 , and    prpr tftf ,,   ,  p0 . 

First of all, we'll introduce a proof for Whitney's theorem for onesided approximation in 
 1,1pL  in Theorem I, which includes an equivalence between onesided approximation and Ditzian-

Totik modulus of smoothness, taking into consideration the counter example for this theorem, whereas 
the authors in (Hu et. al., 1997), considered that only  modulus is the correct modulus for the 
equivalence between onesided approximation and some modulus, which was proved in (Hu, 1995) by 
Hu, for a continuous function. It was stated in (Hu et. al., 1997) that “We also remark that is the 
“correct” modulus in      prpn nfrCfE 1,

~   ,  p1 , i.e., it can't be replaced by   or  , since the 

estimate  
ppn fcfE 

~ , certainly cannot be correct for all 
 1,1 pLf

, p . To see this, it is sufficient 

to consider the function f  such that   10 f  and   0xf , 0x , then 0
p

f  and   0
~

fEn ”. We can 

avoid the above counter example simply by assuming that 0
p

f , or more generally   0, tfr
 . 

 
Theorem I. (Whitney's Theorem for Onesided Approximation) 

For  1,1 pLf ,   0, Ifr
 , we have 

prpr IfwfE ),(~)(
~

1


  (1) 

Now, we get the way to approximate a differentiable function in  1,1pL , by an intertwining 

pair of splines by dividing the interval  1,1 , into small subintervals, each one contains at least four 
knots. 

The following theorem is proved in (Hu et. al., 1997), by Hu, Kopotun and Yu in the space 
 1,11 pW  for the case  p1  in terms of  modulus of smoothness. 
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Theorem II. (Intertwining Spline Approximations,  p0 ) 

Let  1,11  pLf  and let   0,11|,, 12101   syyyyyyyY ssss   and let 2r  be an integer. 

Let nT  be a given knot sequence such that there are at least  214 r  knots in each open intervals 

 1, ii yy , 1,,2,1  sj  , then there exists an intertwining pair of splines  SS ,  of order r  on the knot 

sequence nT , (i.e.  1,1, 2  rCSS  and  sYSffS 0,  ) such that, for 1,,2,1  ni   

piiriILp
fwICSS

i

)I,I,(1
2

)(
 

  (2) 

where C  is a constant depending on r  and on the maximum ratio 
i

in
i I

I 11
0max: 

  and iI  is an interval 

such that     22 1616
,




ririii zzI I . 

Consequently, if in addition  1,12  pLf , then 

piiriILp
IIfwICSS

i

),,(2
3

)(
 

  (3) 

The proof of the above theorem also yields a more general result on onesided spline 
approximation. 

Corollary III. Let  1,1 pLf ,  p0 , and let 2r  be an integer, then there exist splines S  

and S  of order r  on the knot sequence nT  , such that        1,1,  xxSxfxS , and for 1,,2,1  ni   

piirILpnn IIfCwSS
i

),,(
)(

  (4) 

where C  is a constant depending on r  and on the maximum ratio 
i

in
i I

I 11
0max: 

  and iΙ  is an interval 

such that     22 1616
,




ririii zzI Ι . 

The proof of the above corollary follows directly from the proof of theorem II which will be 
shown in Section 3, by omitting the inequality (15). Also, we'll use the previous theorem and its 
corollary to prove the following two theorems about onesided and co-onesided approximation, 
respectively, for large n. 
 
Theorem IV. (Onesided Polynomial Approximation in  1,1pL ,  p0 ) 

Let  1,1 pLf  and Nr . Then for every 1 rn , there exist polynomials nQP , , such that 

      11,  xxQxfxP  and 

prp
nfwrCQP ),()( 1   (5) 

 
Theorem V. (Intertwining Polynomial Approximation) 

Let  1,11  pLf ,  p0 , and let  12101 11|,,  ssss yyyyyyyY  , 0s . Then 

prpsn nfwnsrCYfE ),(),(),(
~ 11     (6) 

Also, there exists an intertwining pair of polynomials nQP ,  such that 

prp
nfwnsrCQP ),(),( 11     (7) 

Moreover, if  1,12  pLf , then 

prpsn nfwnsrCYfE ),(),(),(
~ 11     (8) 
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2.  Auxiliary Lemmas 
We begin with some properties of D-T modulus of smoothness which are needed in the proofs of our 
main results. Note that the first lemma is valid for the range  p0  which is proved by Ditzian and 
Totik (Ditzian and Totik, 1978) for  p1  and by Ditzian, Hristov and Ivanov in their paper (Ditzian 
et. al., 1995) for the other cases 
 

Lemma 2.1. For pLf  ,  p0 , we have prpr tfctf ),(),(    , for rm  . 

Another property which combining r  and r  is proved by Petrushev and Popov for  p1  
in (Petrusher and Popov, 1987) and by Devore, Leviatan and Yu for 10  p , in (DeVore et. al., 1992) 
is the next. 

Lemma 2.2. For pLf  ,  p0 , Nr , ,     




 
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1

0

1,,,
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n

i

p

pr
p

pijir nfrpcIf  . 

Lemma 2.3. (Whitney's Inequality) (Burkill, 1952) Let  ILf p ,  p0 . Then there exists 

nnQ  , a polynomial of degree n  such that    
prILn IIfCQf

p
,,  for nr  . 

Lemma 2.4. (Kopotun, 1997) For any polynomial nnQ  ,  p0  we have 

   ILnILn
p

pp
QQJ ~

1 . 

Lemma 2.5. (Sendov and Popov, 1988) If f  is bounded measurable function on   baba ,,, , 

then       


n

i i

b

a
xfnabdxxf

1

1  where    niabaxi 212  . 

The next lemma is proved in (Hu, 1995) by Hu for a continuous function, we can get a similar 
result for our case. 

Lemma 2.6. For  1,1 pLf ,  p0 , we have        fEfEfE nnn 2
~ . 

Lemma 2.7. For  1,1 pLf ,  p0 , we have      pnpnpn fEfEfE 2
~

 . 

Proof 
Denote by P

~  and Q
~  be the best onesided approximation, then by lemmas (2.4), (2.5) and (2.6), 

we have 
p

p

p
pn QPfE

~~
)(

~
  

p
n fEc  )(

~  
p

n fcE  )(2  
p

Pfc


 2  
p

x
xPfsub 




 


))((2

1
 

p
i

n

i

xPfncn ))((2
1

1  


  

p

p
Pfcn  2  
p
pn fnE )(2  (9) 

where P  is the best approximation of f . □ 

Also, it is clear that  ),(),( tftf rpr  . But the next lemma shows that pr tf ),(  and ),( tfr  

are equivalent. Namely we prove the following result; 
Lemma 2.8. For  p0 ,  ILf p , we have   prr IfpcIf ),(),(   . 
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Proof 
Denote 10,  niIi  a partition of the interval I . Let niQ   be the best polynomial 

approximation of f  on iI , satisfying Whitney's inequality, such that 

)()()( ),()(
ipipip ILirILiILn IfcQffE   (10) 

For rn  , then by definitions, lemmas (2.4), (2.2) and (2.7), 
p

L

r
hIh

p
Lr

I
I

fsubIf
)(

)(
),(),( 0




   

p

L

r
h

Ih

n

i i
iI

fsubI
)(

),(
01 


  

p

L
i

r
h

Ih

n

i i
iI

QfsubI
)(

),(
01 


  

p

Li
n

i i
iI

QfIc
)(1 

  
 

p

L

n

i i
iI

fEnc
)(1

1 )(
~


 

  

p

L

n

i i
iIp

fEcn
)(1

1 )(
~ 

  

p

L

n

i i
iIp

fEc
)(1

)(2  
  

p

L

n

i i
iIp

Qfc
)(1

2  
  

p

L

n

i ir
iIp

Ifc
)(1

),(2  
   

p

Lr
Ip

nfC ,
)(

),( 1   (11) 

for iP
~  and iQ

~  be the best onesided approximation in  ip IL ,  p0 , of degree less than n . □ 

The following Lemma proved by Devore, Leviatan and Yu (DeVore et. al., 1992) for the case 
10  p , and by Ditzian and Totik (Ditzian and Totik, 1978) for the other cases, that is,  p1 . 

Lemma 2.9. For  pn fE  with  p0 , we have for all      prpn nfprcfErn 1,,,   . 

The auxiliary lemma below allows us to blend local overlapping polynomials into a smooth 
spline with the same approximation order. 

Lemma. 2.10. (Beatson Lemma) (Beatson, 1982) Let 2n  be an integer and  212  rd . Let 

   iitT  be a strictly increasing knot sequence with at 0 , btd  . Let P , Q  be two polynomials of 

degree less than r . Then there exists a spline  TS r  such that 
a.  xS  is a number between  xP  and  xQ , for all  bax , . 
b. PS   on  a,  and QS   on  ,b . 

The following lemma, which is proved in (Hu et. al., 1997) by Hu , Kopotun and Yu plays a 
main role in this chapter. 

Lemma 2.11. Let p , and let  xS  be a spline of an odd order  12  mrr  on the knot 
sequence     sYJjj njx


 cos , where  sYcn   is such that there are at least four knots jx  in each 

interval  1, ii yy , si ,,0  , and      sixyxjjnYJ jjjs   1somefor |1,\,,1 1 . 

Then there exists an intertwining pair of polynomials  ncPP 21,  for S  with respect to sY  

such that 

 



 pIISEsrCPP

n

j

p
pjjr

pp

p
0,),(),,(

1

1
1121   (12) 
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We need finally, for our proofs, the next property of Ditzian-Totik modulus of smoothness, 
which is proved in (Ditzian and Totik, 1978) by Ditzian and Totik, for  1,1pL ,  p1 . Also, Devore, 

Leviatan and Yu (DeVore et. al., 1992) showed that it is valid for 10  p  as well. 

Lemma 2.12. For  1,1 pLf ,  p0 , we have        1,1
1

1,1 , 


 
pp LrLn nfCfE  . 

 
 
3.  Proof of the Main Theorems 
3.1. Proof of Theorem I 

The lower bound is clearly valid from definition. 
For the upper bound, denote by P

~  and Q
~  best onesided approximation of f  by polynomials of 

degree less than r  from above and below in the space pL . Then by definitions and lemmas (2.4), (2.12) 

and (2.8), we have 

  QPIQPfE p
p

pr
~~~~

)(
~ 1

1  

 )(
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1

1

fEI rp  

 )(2 1

1

fEI rp  

 ),(2
1

IfI rp
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.),( pIfC r
  (13) 

 
3.2. Proof of Theorem II 

Let  212:  rd ,   ddnm /1:   and dii zz : . Note that 1: iz  for 0i  and 1:iz  for mi  . We first 

construct overlap-ing polynomial pieces of degree less than r  on the coarser partition  m
iin zT 0:  . 

We call the interval  1, iii zzI  contaminated if 1 iii zyz  for some si Yy  . By assumption, 

there exists exactly one iy  in each of the contaminated interval 
jmI , sj ,,1  and there is at least one 

non-contaminated interval between 
jmI  and 

1jmI , that is 12  jjj mmm , 1,,1  sj  . 

If 21   jj mm  (i.e., if there is only one non-contaminated interval between 
jmI  and 

1jmI ), then 

the following construction is not needed, and the next two paragraphs can be skipped . 
In this case 12  jj mm , by Whitney's Theorem for Onesided Approximation (Theorem I) on 

each of the interval  2, ii zz , 2,,1 1  jj mmi  , there exist two polynomials iP  and iQ  of degree less 

than r  such that      xQxfxP ii   for all  2,  ii zzx  and 

    .),,,( 2, 2
piiirZZLii zzIfQP

iip




  (14) 

We define ip  and iq  on  2, ii zz  by ii Pp :  and ii Qq :  if   01   js , and ii Qp :  and ii Pq :  if 

  01   js . 

Hence        01   xfxpi
js ,        01   xfxqi

js  and 

   22 ,, 


iipiip zzLiiZZLii QPqp  

  piiir zzIfc ),,,( 2   

  piiir zzIfc   ),,,( 21
  (15) 

where, in this step we have used lemma (2.1). 
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We should emphasize that when we speak of a polynomial on an interval we mean the 
restriction to the interval; hence it is considered undefined outside. Near each point iy , we construct 
local polynomials differently. More precisely, we approximate f   on  

21
,

 jj mm zz , sj ,,1 , from 

above and below by two polynomials 
jmP

~  and 
jmQ

~  of degree less than 1r . Then      xQxfxP
jj mm

~~
  

for all  
21

,



jj mm zzx  and 

    .),,,(~~
211

, 21
pmmmr

ZZL
mm jjj

jmjmp
jj

zzIfcqp  


  (16) 

Define 
jj mm Pp

~
:~   and 

jj mm Qq
~

:~   if   01   js  , and 
jj mm Qp

~
:~   and 

jj mm Pq
~

:~   otherwise. 

It's easy to check that      
x

y
i

t

y
mm

i i
jj

yfdtdttPp
2

211
~  and      

x

y
i

t

y
mm

i i
jj

yfdtdttQq
2

211
~  satisfy the 

inequalities 

 
 21

2

,

2111 )(
~

)(
~



  

jmjmp
i i

jjjj

zzL

x

y

t
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p

mm dtdttQtPqp  

 
 21

2

1

2

1
,

2111 )(
~

)(
~





 

  

jmjmp
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jm jm

jj

zzL

z

z

t

z

mm dtdttQtP  

 
p

I

p
z

z

t

z

mm dxdtdttQtP
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jm jm

jj

1

2111

2

1

2

1
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~

)(
~


































   



 

 

 
p

I

p
z

z

mmmj dxdtdttQtPImc
jm

jm

jjj

1

2111

2

1
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~

)(
~
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

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
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
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




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
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





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
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 
p

I

p

zzL
mmmj dxQPImc

jmjm
jjj

1

,

2

21

~~
)(

























 



 

 21 ,

2 ~~
)(




jmjmp

jjj zzL
mmmj QPImc  

  .),,,()( 211

2

pmmmrmj jjjj
zzIfImc     (17) 

Having constructed the overlapping local polynomials which are "intertwining" with f  and 

have the right approximation order, we now blend them for smooth spline approximation S  and S  on 
the original knot sequence nT  with the same properties. If both 1iI  and iI  are non contaminated and 

mi  , then 1ip  and ip  overlap on iI , which contains 1d  interior knot from nT . 

By Beatson's lemma (2.10), there exists a spline iS  of order r  on iI  on these knots connects 

with 1ip  and ip  in a 2rC  manner at dii zz   and )1(1   idi zz , respectively. 

Moreover, the graph of iS  lies between those of 1ip  and ip , and hence 

              xfxSxfxpxfxp iii  sgnsgnsgn 1 , iIx . 
Similarly, considering the overlapping polynomials 1iq  and iq , we construct a spline iS  

satisfying               xfxSxfxqxfxq iii  sgnsgnsgn 1 , iIx . 
Also, 
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.2 11













  

iii I

p
ii

I

p
ii

p

I

p
ii qpqpSS  (18) 

By (15), this gives 
  piiirILii zzIfcSS

ip

),,,( 21)(    

  .),,,( 21
2

piiiri zzIfIc    (19) 

The blending of the overlapping polynomial pieces involving contaminated intervals can be 
done in the same way. The spline pieces iS  and iS  thus produced also satisfy the estimate above with a 
slightly larger interval in place of  21,  ii zz  on the right-hand side (  32 ,  ii zz  at worst), which will 

make no difference in the rest of the proof. We define the final spline S  on each iI  as follows; 

If there is only one local polynomial ip  over iI , set S  to this polynomial, if there are two 

polynomials overlapping on iI , then there must be a blending local Spline iS , set S  to iS . It is clear 

from its construction that  sYfS 0  on the whole interval  1,1 , and 2 rCS . Similarly, we 

construct 2 rCS  such that  sYSf 0 . 
Now, recall that all neighboring intervals  1,  iii zzI  in the original partition nT  are comparable 

in size and each interval  )1(,  iddii zzI  contains no more than d such intervals. Therefore, the 

inequality (1) follows directly from (14) and (15). 
Now, (2) is a direct consequence of the previous inequality and (2.1). ■ 

 
3.3. Proof of Theorem IV 

It follows from Corollary III (with  jn xT  ) that there exist splines S  and S  of an integer r  such that 

     xSxfxS  , Ix  and 

.),,(
)( pjjrIL

IIfcSS
ip

  (20) 

Since  xhI jjj ~I  and Ix , then 

pjjrpjjrpjjr IIfEIIfSEIISE ),(),(),( 111111     

pjrIIL
hfcSS

jjp

),(
)( 1




 

.),( pjr hfc   (21) 

Hence 

pjrpjjr hfcIISE   ),(),( 11
  (22) 

And similarly, 
.),(),( 101 pjrpjjr hfcIISE    (23) 

Lemma (2.11) implies the existence of the polynomials 121 ,, PPP  and 2P  of degree less than or 
equal to  nmc  such that      xPxSxP 21  ,      xPxSxP 21   and by using (2.2) we get 







1

1
1121 ),(

n

j
pjjr

pp

p
IISEcPP   







1

1

),(
n

j

p
pjr

p hfc   

p
pr nfmpsrc 

 ),(),,,,( 1  (24) 

And similarly, 
p
pr

p

p
nfPP ),( 1

21
   (25) 



283 Eman S. Bhaya and Hawraa A. Fadhil 
 

 

Now, the polynomials 1P  and 2P  are what we are looking for, since 21 PSfSP   and  
p

p

p

p

p

p

p

p
PPSSPPPP 212121   

.),( 1 p
pr nfC    (26) 

Inequality (5) holds and the proof is completed. ■ 
 
3.5. Proof of Theorem V 

Theorem II implies the existence of intertwining pair of spline  SS ,  of order r  for f  on the knot 

sequence  
)( sYJjjx


, recall that    

 sixyxjj

n
YJ

jjj
s 


 1 somefor |1,

,,1

1

  satisfying 

pjjrjIL
IIfIcSS

jp
  ),,(1)(

  (27) 

Where r  is an odd integer such that 21  mrm . 
Now, Since   1~  nxn , therefore 

prp
nfcnSS ),( 1

1
1 


    (27) 

Now, theorem IV implies that there exist intertwining pairs of polynomials  21, PP  and  21, PP  

for S  and S , respectively, satisfying the inequalities (24) and (25) as the previous proof . 
Finally ,  21, PP  is an intertwining pair of polynomials for f  satisfying the inequalities (6), (7) 

and (8). 
 
 
4.  Conclusion 
We have improved some results on onesided and co-onesided polynomial and spline approximation. 
Also, we have relaxed some shape constrains in small parts of the interval ]1,1[ , and approximate a 

function f  in the space ]1,1[r
pL ,  p0 , r  =0, 1, or 2 by co-onesided pair of splines and/or 

polynomials to get global estimates with less degree of approximation in terms of Ditzian-Totik 
modulus of smoothness. 
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