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Abstract

Since shape constrains limit of the degree of approximation, we will relax the
constraints of shape in small parts of the interval | =[-11] and approximate a function f in

the LY space, 0< p<o, k=0,,0r 2, which contains all functions f eL, with £l L,, by an
intertwining (co-onesided) pair of splines and/or polynomials, to get global estimates in
terms of Ditzian-Totik modulus of smoothness.

We begin with improving Whitney's Theorem for onesided approximation by using
Ditzian-Totik modulus of smoothness instead of r-modulus, to get less degree of
approximation of the function f eL,(1) conditioning that »?(f)>0.
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1. Introduction and Main Results
Throughout this article, we use the following notations from (Hu et. al., 1997);

Let Yo={y, Vs Yo=—1<y <Y, <--<Ys<l=Yyg, »5>0. We denote by A’(Y,) the set of all
functions f such that (-1)**f(x)>0 for xe [y, i, Jk=0,---s.

That is, those that have 0<s< sign changes at the points in Y, and one nonnegative near 1. In
particular, A’ =A’(Y,) denotes the set of all nonnegative functions on [-11]. Functions f and g which
belong to the same class A°(Y,) are said to be copositive.

Copositive approximation is the approximation of functions f from A°’(Y,) class by
polynomials and/or splines that are copositive with f. For feLy[-11], let E,(f), :=inf, . |f —Pn||p,
denotes the degree of unconstrained approximation.

The best onesided approximation of f by means of algebraic poly-nomials B, eIl in L,--
metric is given by E,(f), = infﬂP—Q"p :P,Qell,and P(x)> f(x)>Q(x)-1< x< 1}.

A natural extension of (co)positive and onesided approximations is the concept of so-called
intertwining (co-onesided) approximation.
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Definition 1.1. For the set Yy={y,Vs|Yp=-1<y <Y, <-<ys<l=1Yq, 520, the best
intertwining polynomial approxima-tion of a function f e L [-11]is given by
Ey(1), =inf|P-Q| :P.Qe T, and P(x)2 f(x)2 Q(x)-1< x<1}.

We call {P,Q}an intertwining pair of polynomials for f with respectto Y, if P—f, f —QeA’(Y,).

Clearly, in the case s=0, the above definition becomes the definition of the best onesided
polynomial approximation E,(f,Y,), =E,(f),

Denote by a)r(f,t)p = SUPo<h<t

Arh(f)::Z:_O(—l)i(:jf(x+r[g]—ir].
The Ditzian-Totik modulus of smoothness which is defined for such an f as follows
Ahf“Lpu)'

There were other attempts made, the most notable being the works of Sendov and Popov, who
gave the so called r—-modulus, an averaged modulus of smoothness, defined for bounded measurable
functions on [a,b] by 7.(f.1,3)) =] (1), ) where

A’thL 0 the classical modulus of smoothness, where
p

a)rw(f 5t)p = SUPg<hst

a)r(f,x,t)p - sup{‘Arh(f , y)(: yi% c [x—r—zt, x+%t} N J} is the r-th local modulus of smoothness of f.

Throughout this article, we use the following notations from (Bhaya, 2003)

j=01--,n X=X ni=cos(jz/n) I = [Xj,XJ,IJ

Let x,=Lx,,=-1 and for each set , ,

hj ::|I J-|:: Xj_p =X and An(x);z wll—xz/n+l/n2 .
At first, we have to give some estimates which formulate the relations between the above
measures as follows of (f.t), <o, (f.t), <7, (f.t),,1< p<oo, and of (f.t), <e(f.,t),, 0< p<oo.

First of all, we'll introduce a proof for Whitney's theorem for onesided approximation in
L,[-11] in Theorem I, which includes an equivalence between onesided approximation and Ditzian-

Totik modulus of smoothness, taking into consideration the counter example for this theorem, whereas
the authors in (Hu et. al.,, 1997), considered that onlyr-modulus is the correct modulus for the
equivalence between onesided approximation and some modulus, which was proved in (Hu, 1995) by
Hu, for a continuous function. It was stated in (Hu et. al., 1997) that “We also remark that?is the
“correct” modulus in E,(f), sC(r)z—,(f,n")p, 1< p<w, i.e., it can't be replaced by w or »?, since the

fel[-11] p<o

estimate E,(f), < c||f||p , certainly cannot be correct for all . To see this, it is sufficient

to consider the function f such that '(©)=1 and f(x)=0, x=0, then ||, =0 and E,(f)>0". We can

avoid the above counter example simply by assuming that | f ||p >0, or more generally of(f,t)>0.

Theorem |. (Whitney's Theorem for Onesided Approximation)
For feL,[-11], o?(f,)1])>0, we have

E (D)~ W ([ ey
Now, we get the way to approximate a differentiable function in L,[-11], by an intertwining

pair of splines by dividing the interval [-11], into small subintervals, each one contains at least four
knots.

The following theorem is proved in (Hu et. al., 1997), by Hu, Kopotun and Yu in the space
W, [-11] for the case 1< p<oo in terms of 7—modulus of smoothness.
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Theorem I1. (Intertwining Spline Approximations, 0< p<w)

Let fely[-11] and let Yo={y.-,ys|Yo=-1<y <y, < <Ys<l=Yyg, }s>0 and let F 2 be an integer.

Let T, be a given knot sequence such that there are at least 4(r—1)° knots in each open intervals
(Yi.¥is1)s i=12,---,5-1, then there exists an intertwining pair of splines {§, S} of order r on the knot
sequence T,, (i.e. 5,SeC"?[-11] and S- f, f —SeA’(Y,)) such that, for i =1,2,---,n—1

||§_S”|_p(|i) SC|Ii|2W;p—l(f,v ’Ii)p (2)

. . . . = . .
where C is a constant depending on r and on the maximum ratio p:=max, ||II+|1| and I; is an interval
i

I

such that Ii c Ii C |.Z|—6(r—l)2 , Z|+6(r—1)2 J
Consequently, if in addition f e L3[-11], then
"g_S"Lp(li)SC|'i|3W§p_z(f"a|i|s|i)p @

The proof of the above theorem also yields a more general result on onesided spline
approximation.
Corollary Il1. Let f e Lp[— 11], 0< p<w, and let r>2 be an integer, then there exist splines S

and S of order r on the knot sequence T, , such that S(x)> f(x)> S(x),xe[-11], and for i=1,2,---,n-1

c 9
"S”_S”"Lp(h)gcwf(f’|i|’|i)p (4)
. . . . liz . .
where C is a constant depending on r and on the maximum ratio p:=max, ||II+|1| and I; is an interval
i
suchthat | cficlz (0.2 )

The proof of the above corollary follows directly from the proof of theorem II which will be
shown in Section 3, by omitting the inequality (15). Also, we'll use the previous theorem and its
corollary to prove the following two theorems about onesided and co-onesided approximation,
respectively, for large n.

Theorem 1V. (Onesided Polynomial Approximation in L [-11], 0<p<w)

Let fel,[-11] and reN. Then for every nxzr-1, there exist polynomials P,QeIl,, such that
P(x)> f(x)>Q(x)-1<x<1 and
[P-Qf, sCmw’(f.n™), (5)

Theorem V. (Intertwining Polynomial Approximation)

Let fely[-L1], 0<p<oo,andlet Y,={y,, Y5l Yo=-1<y; <Y, < <Ys<l=Yg,}, s20. Then

En(f.Y0), <C(r,9n'w/(f',n™h, (6)
Also, there exists an intertwining pair of polynomials P,QI1, such that
[P-Q|, <C(r.on™wi(f'.n™), (7)

Moreover, if f e L}[-11], then

En(f.Yo), <C(r,9n W/ (f",n"), (8)
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2. Auxiliary Lemmas
We begin with some properties of D-T modulus of smoothness which are needed in the proofs of our
main results. Note that the first lemma is valid for the range 0< p<o which is proved by Ditzian and

Totik (Ditzian and Totik, 1978) for 1< p<w and by Ditzian, Hristov and Ivanov in their paper (Ditzian
et. al., 1995) for the other cases

LemmaZ2.l. For fel,, 0<p<ow,wehave of (f,t), <cof(f,t),, for m>r.

Another property which combining o, and @f is proved by Petrushev and Popov for 1< p<w
in (Petrusher and Popov, 1987) and by Devore, Leviatan and Yu for 0< p<1, in (DeVore et. al., 1992)
is the next.

n-u-1 p _1\p
Lemma2.2 For fel,,0<p<w,r,uecN, Ziz: a)r(f UL, Ii)pgc(p,r,wa’(f,n l)p).

Lemma 2.3. (Whitney's Inequality) (Burkill, 1952) Let f e L,(I), 0< p<o. Then there exists
Q, €M, a polynomial of degree <n such that |[f -Q|_ BE Ca)r(f,|l|, I )p for r>n.

Lemma 24. (Kopotun, 1997) For any polynomial Q,eIl,, 0<p<w we have

/
9 PIQul 4y ~IRull gy
Lemma 2.5. (Sendov and Popov, 1988) If f is bounded measurable function on [a,bla,be %,

then j:f (¥~ (- 3"

f(x) where x =a+(b—a)2i -1)/2n.

The next lemma is proved in (Hu, 1995) by Hu for a continuous function, we can get a similar
result for our case.
Lemma 2.6. For feL,[-L1], 0<p<o, wehave E,(f), <E,(f), <2E,(f),.

Lemma2.7. For fely[-11], 0<p<o, wehave E (f), <E(f), <2E,(f),.

Proof
Denote by P and Q be the best onesided approximation, then by lemmas (2.4), (2.5) and (2.6),

we have
SO
<cBy(h)2
<2cE, (f)P
=2d|f Pl

= Z(leill)k f— P)(x)|] ’

< 2cnz n'|(f - P)x)|"

i=1
<2cn|f - P||z
<2nE,(f)p 9)
where P is the best approximation of f .o
Also, it is clear that o, (f,t), <o, (f,t), . But the next lemma shows that o, (f,t), and o, (f,1),

are equivalent. Namely we prove the following result;
Lemma 2.8. For 0< p<ow, fel,(l), wehave o, (f.]I),, <c(p)of (.]I],.
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Proof
Denote 1;,0<i<n-1 a partition of the interval I. Let Q eI, be the best polynomial

approximation of f on I;, satisfying Whitney's inequality, such that
En(P),a)) =||f _Q||||_p(|,) <ca (f.1) ) (10)
For n>r, then by definitions, lemmas (2.4), (2.2) and (2.7),
o (FJIDP = sty gy [0

:Zin:l“"oijst\)l\
SZ:ﬂ'Ii'oijst\)l\
<cy . hlf-Qlf,
<oy mEMN,

_ n ~ p
ScnIZ:izlEi(f)L

<hg]l| Lo,

et

o(lj)

A(f-Qy)

P

Lociiy

p(li)

n p
szczi:l E(f).

pli)

p
-2y It-al,

SZCZ?le,(f,Ii)Lp
p(li)
<Cof (f,n")P (11)

p(h)
for B and Q be the best onesided approximation in L,(I;), 0< p<e, of degree less than n. O

The following Lemma proved by Devore, Leviatan and Yu (DeVore et. al., 1992) for the case
0< p<1, and by Ditzian and Totik (Ditzian and Totik, 1978) for the other cases, that is, 1< p<w.

Lemma 2.9. For E,(f), with 0< p<c, we have for all nxr,E,(f), <c{r, p)a)f’(f,n‘l)p.

The auxiliary lemma below allows us to blend local overlapping polynomials into a smooth
spline with the same approximation order.

Lemma. 2.10. (Beatson Lemma) (Beatson, 1982) Let n>2 be an integer and d=2(r -1)*. Let
T={}"__ be a strictly increasing knot sequence with t,=a, ty=b. Let P, Q be two polynomials of
degree less than r. Then there exists a spline Se &, (T) such that

a. S(x) is a number between P(x) and Q(x), for all xe[a,b].
b. S=P on (-»,a] and S=Q on [b,x).
The following lemma, which is proved in (Hu et. al., 1997) by Hu , Kopotun and Yu plays a

main role in this chapter.
Lemma 2.11. Let p<w, and let S(x) be a spline of an odd order r(r=2m+1) on the knot

sequence {x; = cos(jz/n)f where n>c(Y,) is such that there are at least four knots x, in each

jEJ(Ys), ]
interval (y,y,,), i=0,--,s, and J(Y,)={L--,n}\{j,j 1| x; < y; <x;_; forsome 1<i<sj.
Then there exists an intertwining pair of polynomials R,P, elly,), for S with respect to Y,

such that

n-1
IR =R} <Cr 9P E_i(S1;Ul.)B0< p<oo (12)
j=I1
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We need finally, for our proofs, the next property of Ditzian-Totik modulus of smoothness,
which is proved in (Ditzian and Totik, 1978) by Ditzian and Totik, for L,[-11], 1< p<w. Also, Devore,

Leviatan and Yu (DeVore et. al., 1992) showed that it is valid for 0< p<1 as well.
Lemma 2.12. For feL,[-11], 0< p<o, we have E,(f )Lp[fu] < Ca)r“’(f , n“)Lp[fu] :

3. Proof of theMain Theorems
3.1. Proof of Theorem |

The lower bound is clearly valid from definition.
For the upper bound, denote by P and Q best onesided approximation of f by polynomials of
degree less than r from above and below in the space L,. Then by definitions and lemmas (2.4), (2.12)

and (2.8), we have
1
£ (h, <[P0 <ilo|P-9],
:|||ilJ Erfl(f)oo
< 2|||lpEr 1(F)y

<2|||pa) (f ).,

< Cw;

(13)

3.2. Proof of Theorem |1

Let d:=2(r-1), m:==[(n+d-1)/d] and z :=z;. Note that z :=—1 for i<0 and Z =1 for i>m. We first
construct overlap-ing polynomial pieces of degree less than r on the coarser partition T, = {z}", .
We call the interval I;[z,Z,,] contaminated if Z <y, <z,, for some vy, eY,. By assumption,
there exists exactly one y; in each of the contaminated interval I_mj , j=L---,s and there is at least one
non-contaminated interval between I, and I, ,thatis my<m+2<my;, j=1--s-1.
If m;,, =m;,, (i.e., if there is only one non-contaminated interval between I_ and I, .. )» then

the following construction is not needed, and the next two paragraphs can be skipped .
In this case m; +2<m,,,, by Whitney's Theorem for Onesided Approximation (Theorem I) on

each of the interval [Z,Z ,], i=m;+1,---,m;,, -2, there exist two polynomials R and Q of degree less
than r such that P(x)> f(x )>Q( ) for all xe[z,z,,] and
[R-Ql 7. =@ (.fil[z.2.2)5 (14)
We define p and ¢ on [z,z,,] byp =R and ¢ =Q if (-1)*'>0,andp, =Q and q =P if
(-1 <o.

Hence (-1 (pi(x)- f(x))20, ( (@ (x)- f(x)<0 and

i - q'"Lp[Z zZ, " Q"L 2.7,
< caf [z mz])p
<cof (f'[i[z.2., )y (15)

where, in this step we have used lemma (2.1).
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We should emphasize that when we speak of a polynomial on an interval we mean the
restriction to the interval; hence it is considered undefined outside. Near each point y;, we construct

local polynomials differently. More precisely, we approximate f’' on [ZmH,Zm , j=L--s, from

j+2

above and below by two polynomials 5mj and Qmj of degree less than r —1. Then 5mj (x)> f'(x)> (Smj (x)

for all xe|z, .z

1o Zmes J and

L 102 2 ) (16)

Define p,, =P, and g, =Qp if (<1750 ,and P, = Qn, and Gy =P, otherwise.

“ﬁn, _aml

]S Ca);”_l(f', |mJ

Lp [ijfl’zmﬁz

It's easy to check that p, = .[ " J.tz P, (t,)dtdt, + f(y;) and qp, :J-X .[ - Qn (t)dt,dt, + f(y;) satisfy the
! Yi vYi ! ! Yi !

Yi

inequalities
X tz
[po, = am | =] 1B, )~ G, 0t
Y Lp zmj—lvzmjﬂ]
ij+2 t,
<

I j B, )~ Q t et

Z
mj-1 “mj-1 - S
] ]
Lp[zqu,zm“z]

p p

ZmJ+2 t,

J J[ﬁmj (t) -G () Btct, | dx

S Zms
mj—1 “mj-1

IN
——

NI

1

z p p

mj+2

7 Jemfi, ‘(ﬁni (t)-Qn )t | o

Z,

IA
—

mj -1

[ e [P, -G

P p
I d
| i L, [ij _is ij I ]J X]

i i
— 2|~ ~
SC(mj )‘Imj “ij _Qmj

IA

Lp[zmj—l»zmj+2]

SR, el 1l B
SC(mj)‘lmj a)r—l(f s‘lmj ‘s[zmj—lszijrZ])p' (17)
Having constructed the overlapping local polynomials which are "intertwining" with f and

have the right approximation order, we now blend them for smooth spline approximation S and S on
the original knot sequence T, with the same properties. If both I;_, and I, are non contaminated and

i<m, then p_, and p, overlap on I;, which contains d -1 interior knot from T,.
By Beatson's lemma (2.10), there exists a spline § of order r on I; on these knots connects
with p_, and p ina C'? manner at z =z; and Z,, =z, , respectively.

Moreover, the graph of § lies between those of p_, and p, and hence
sen(pi_i (%)= f(x) = sen(pi () £ (x)) = sen(S ()~ f(x)), xe ;.
Similarly, considering the overlapping polynomials q_, and g, we construct a spline §

satisfying sgn(q;_; (x)— f (x))=sgn(q; (x)— f (x))=sgn(§ (x)- f(x)), xel;.
Also,
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”g_S|pSzp[ﬂpi—l_qi—dp"'ﬂpi_qi|p} (18)

By (15), this gives
S -8l ;,=cor.fitz..2.2D,
SC|I_i|2a)|fp(f”|Ii|a[2i—l’2i+2])p' (19)

The blending of the overlapping polynomial pieces involving contaminated intervals can be
done in the same way. The spline pieces S and § thus produced also satisfy the estimate above with a
slightly larger interval in place of [z ,.Z.,] on the right-hand side ([z_,,Z.,] at worst), which will
make no difference in the rest of the proof. We define the final spline S on each I, as follows;

If there is only one local polynomial p, over I, set S to this polynomial, if there are two
polynomials overlapping on I;, then there must be a blending local Spline S, set S to§. It is clear
from its construction that S—f eA’(Y,) on the whole interval [-11], and SeC'™*. Similarly, we
construct SeC"* such that f —-SeA’(Y,).

Now, recall that all neighboring intervals |, =[z,z,,] in the original partition T, are comparable
in size and each interval I_i:[zdi,zd(m)] contains no more than d such intervals. Therefore, the

inequality (1) follows directly from (14) and (15).
Now, (2) is a direct consequence of the previous inequality and (2.1). m
3.3. Proof of Theorem IV
It follows from Corollary III (with T, = {x; ) that there exist splines S and S of an integer r such that
S(x)> f(x)>9(x), xel and
||§—S||Lp(|,i) <cof (,[1]1))p. (20)
Since |Ij|~|l j|=hj =A(x) and xel , then
E (S Ul LD <E L (S=f. 01Ul ) +E L (f,1; Ul ),

< |§— S"Lp(IjUIj”) +cof (f,h),

<cof(f,h)),. 21)
Hence

E (S, Ul <caf (fh) (22)
And similarly,

E (S, 1, Ul <cof (f.h),. (23)

Lemma (2.11) implies the existence of the polynomials B,P,,R and P, of degree less than or
equal to c(m)n such that B(x)> S(x)> P, (x), R(x)>S(x)> P(x) and by using (2.2) we get

n-1
[R-Rl; <" B UL,
j=1

n-1
<cPY wf (1.}
j=1

<c(r, ms p.mof (f,nH5 (24)

And similarly,
[R - By <af(f.n7™)5 (25)
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Now, the polynomials B and P, are what we are looking for, since P >S> f >S>P, and
= P_Is sIP . Is P
[R-Rl; <[R-Rl;+[5- <, IR -~
<Cof(f,n . (26)
Inequality (5) holds and the proof is completed. m
3.5. Proof of Theorem V

Theorem II implies the existence of intertwining pair of spline {§, S} of order r for f on the knot

) fon "
sequence {x; }J.EJ(YS), recall that J(Y,)= (1=11% < v, <, forsomel i) satisfying

||§—S”Lp(|j) sc||j|a>:11(f',||j|,|j)p, (27)
Where r is an odd integer such that m+1<r<m+2.

Now, Since A, (x)~n™", therefore
||§ - S” = el (07, (27)

Now, theorem IV implies that there exist intertwining pairs of polynomials {5152} and {R,PR,}

for S and S, respectively, satisfying the inequalities (24) and (25) as the previous proof .
Finally , {51 Pz} is an intertwining pair of polynomials for f satisfying the inequalities (6), (7)
and (8).

4. Conclusion
We have improved some results on onesided and co-onesided polynomial and spline approximation.
Also, we have relaxed some shape constrains in small parts of the interval [-1,1], and approximate a

function f in the space L[-11], 0<p<w, r =0, 1, or 2 by co-onesided pair of splines and/or

polynomials to get global estimates with less degree of approximation in terms of Ditzian-Totik
modulus of smoothness.
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