
 

Journal Pre-proof

Investigation of Natural Convection and Entropy Generation in a

Porous Titled Z-Staggered Cavity Saturated by TiO2-Water Nanouid

Qusay Rasheed Al-Amir , Hameed K. Hamzah , Farooq H. Ali ,

M. Hatami , Wael Al-Kouz , Ahmed Al-Manea , Raed Al-Rbaihat ,

Ali Alahmer

PII: S2666-2027(23)00112-X

DOI: https://doi.org/10.1016/j.ijft.2023.100395

Reference: IJTF 100395

To appear in: International Journal of Thermofluids

Received date: 4 January 2023

Revised date: 8 June 2023

Accepted date: 9 June 2023

Please cite this article as: Qusay Rasheed Al-Amir , Hameed K. Hamzah , Farooq H. Ali ,

M. Hatami , Wael Al-Kouz , Ahmed Al-Manea , Raed Al-Rbaihat , Ali Alahmer , Investiga-

tion of Natural Convection and Entropy Generation in a Porous Titled Z-Staggered Cav-

ity Saturated by TiO2-Water Nanouid, International Journal of Thermofluids (2023), doi:

https://doi.org/10.1016/j.ijft.2023.100395

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition

of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of

record. This version will undergo additional copyediting, typesetting and review before it is published

in its final form, but we are providing this version to give early visibility of the article. Please note that,

during the production process, errors may be discovered which could affect the content, and all legal

disclaimers that apply to the journal pertain.

© 2023 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)



1 

 

Investigation of Natural Convection and Entropy Generation in a Porous Titled Z-

Staggered Cavity Saturated by TiO2-Water Nanofluid 

Qusay Rasheed Al-Amir
1
, Hameed K. Hamzah

1
,
 
Farooq H. Ali

1
, M. Hatami

2
, Wael Al-Kouz

3,4
, 

Ahmed Al-Manea
5
, Raed Al-Rbaihat

6
, Ali Alahmer

6,7,* 

 
1 

Mechanical Engineering Department, College of Engineering, Babylon University, Babylon, Iraq 

Babylon, Iraq 
2 

Ferdowsi University of Mashhad, Department of Mechanical Engineering, Mashhad, Iran 
3 

College of Engineering and Technology, American University of the Middle East, Kuwait 
4 

Department of Mechanical and Maintenance Engineering, School of Applied Technical Sciences, 

German 

Jordanian University, Amman 11180, Jordan 
5
Al-Furat Al-Awsat Technical University, Iraq 

6 
Department of Mechanical Engineering, College of Engineering, Tafila Technical 

University, Tafila 66110, Jordan 
7 

Department of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849 

 

*Corresponding author: aza0300@auburn.edu or a.alahmer@ttu.edu.jo (Ali Alahmer) 

 

Highlights                                                                   

· The entropy generation and natural convection in a Z-staggered cavity filled with a porous media 

filled with a TiO2-water nanofluid were investigated. 

· The fundamental equations are solved using the Galerkin Finite Element Method (GFEM), and the 

results are described in detail. 

· This study is essential for a variety of applications, including heat exchanger cooling of electronic 

equipment, solar pond, natural gas tank storage, material, and gas transference.  

· Increasing the volume fraction of nanoparticles enhanced the heat transfer but reduced the 

maximum values of streamlines owing to the more significant density of nanofluid. 

· The inclination angle considerably influenced natural convection; the most significant value of 

streamline occurred at an inclination angle (γ) of 60. 
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Abstract 

The natural convection within enclosures along with entropy generation minimization plays a 

crucial role in various applications, particularly when they involve the utilization of nanofluids and 

porous media. This phenomenon plays a crucial role in enhancing heat transfer, fluid flow, and 

overall system performance. By understanding and optimizing the natural convection and entropy 

generation processes, it becomes possible to improve the efficiency and effectiveness of various 

thermal management systems, such as heat exchangers, electronic cooling systems, and renewable 

energy devices. Moreover, the integration of nanofluids and porous media introduces additional 

complexities and opportunities for enhancing heat transfer and fluid flow characteristics within 

enclosures. The current study investigates entropy generation (Sgen) and natural convection in a Z-

staggered cavity filled with a porous media filled with a TiO2-water nanofluid. The symmetrical 

enclosures with dimensions of 0.6 L × 0.5 L are considered, and the media contain a porous 

material saturated with TiO2-water nanofluid. The wavy left and right vertical walls of the staggered 

enclosure were maintained hot and cold at temperatures (Th) and (Tc), respectively. All the straight 

horizontal walls were considered insulated and impermeable. The fundamental equations are solved 

using the Galerkin Finite Element Method (GFEM), and the results are described in detail. The key 

result was that raising the Rayleigh number (Ra) and nanoparticle volume fraction increased heat 

transmission. Specifically, increasing the Rayleigh number from (Ra=10
5
) to (Ra=10

6
) leads in an 

80% increase in heat transfer. However, as the density of the nanofluid increases, the highest values 

of streamlines decrease. Decreasing the Darcy number (Da) educed the maximum values of the 

streamlines and average Nusselt number (Nu). Additionally, increasing the heat generation factor 

(λ) from (λ=0) to (λ=5) decreases the Nusselt number by 30%. Furthermore, the most 

effective streamline value was achieved at an inclination angle (γ) of 60. 

Keywords: Natural convection; porous medium; nanofluid; staggered enclosure; corrugated wall 
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1. Introduction 

Natural convection (N.C.) inside enclosures has attracted a significant amount of interest 

due to its many practical applications. Solar collectors are one of these applications [1]. Based on 

the studies and review articles, there are various enclosure shapes, such as square and rectangular 

enclosures, with the highest number of publications [2,3]. Other enclosure shapes include triangular, 

rhombus, parallelogrammic, trapezoidal, and wavy. Recently, new shapes of more sophisticated 

enclosures have developed, known as combined enclosures, which they are formed by merging two 

simple enclosure shapes. This brings the combined enclosure shape closer to reality. In addition, 

incorporating nanoparticles into the porous media (P.M.) is a potential strategy for improving heat 

transfer (H.T.) [4–7]. Most previous studies have focused on simple shapes. Turan et al. [8] 

proposed a square enclosure and used FLUENT to examine the non-Newtonian fluid flow within 

the square enclosure. The influence of the tilt angle of the square enclosure was demonstrated in [9]. 

However, the square enclosure filled with nanofluid  was examined by Ho et al. [10]. The study 

revealed that introducing nanoparticles boosted the thermal rate of H.T. substantially. Kang et al. 

[11] investigated the effect of internal circular body positions in a square enclosure. Al-Zamily [12] 

investigated N.C. in a square enclosure filled with a nanofluid and porous medium across a broad 

range of Ra and Da numbers, nanofluid loading, and porous layer thickness. Al-Amir et al. [13] 

examined the effect of the Prandtl number (Pr) on N.C. filled by a nanoporous layer on the left layer 

with non-Newtonian fluid in the right layer separated by a wavy wall. The N.C. in different shapes, 

such as rectangular [14–17][18], triangular [19,20], square [21], trapezoidal [22,23], 

parallelogrammic [24,25], and rhombus [26], has been studied in the same manner as the square 

enclosure. Dutta et al. [27] analyzed the heat exchange and entropy production caused by 

magnetohydrodynamic (MHD)- N.C. in rhombic enclosures containing Cu-water nanofluids. 

According to their findings, the Sgen rate decreases as Ha increases for wide range of Ra and 

enclosure tilt angles. A computational analysis of Sgen for a rhombic enclosure with a 30° 

inclination angle and a porous material was provided in [28]. For any value of the Ra and Da 
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values, the most minor and maximum entropy generation (Sgen) was achieved for phase shift 

angles π/4 and 3π/4, respectively. Dutta et al. [29] examined the thermal energy transport mediated 

by MHD buoyancy within a quadrantal enclosure filled with nanofluid. Their findings demonstrated 

that reducing the enclosure's sector angle enhanced heat transmission rate and vice versa. In this 

approach, a geometrical variation has the same effect on how the Qrate is altered as Ra, ϕ, and Ha. 

Dutta et al. [30] evaluated the irreversibility properties in a quadrantal porous cavity heated 

uniformly from the bottom wall. It demonstrated that fluid friction irreversibility dominates at 

higher values of Ra (=10
6
) and Da (=10

-2
). Many review papers detailed earlier efforts considering 

many factors, such as the effect of various dimensionless numbers, inclination angle, nanofluid 

loading, aspect ratio, Sgen, MHD, and the inner body are available in [31–37] . 

It has also been shown that the corrugated technique improves H.T., which has piqued the 

interest of various researchers. Using a finite volume approach, Oztop et al. [38] investigated the 

effect of heat production within a wavy enclosure. The influence of different wavy patterns along 

with nanofluid and the Sgen has been studied by Esmaeilpour and Abdollahzadeh [39]. 

Furthermore, a comparison study of the influence of several nanofluid-filled complex wavy 

enclosures was conducted by Cho et al. [40]. Their results were crucial as they stated that the wavy 

surface affects Sgen. They also found Cu-water was the best choice compared to other nanofluids. 

Hanif et al. [41] used a vertical cone in a P.M. to evaluate the heat and flow transfer rates in a 

hybrid nanofluid containing a suspension of hybrid nanoparticles (Cu-Fe3O4). Manaa et al. [42] 

tested thermo-solutal N.C. in a cubical enclosure that was differentially heated and contained a 

micropolar CNT/water nanofluid. Bhardwaj et al. [43] evaluated N.C. in a triangular enclosure with 

a corrugated (wavy) wall on its left using finite difference formulation. They demonstrated that the 

inclusion of a wavy wall generates more Sgen owing to increased fluid friction than that of a flat 

surface. However, the wavy wall also improves H.T. compared to the flat surface. Hussain [44] 

investigated the double-diffusive MHD free convection in an inclined wavy enclosure. Bhardwaj 

and Dalal [45] used the finite element method (FEM) to study the Sgen in a triangular with a wavy 
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corrugated wall filled by a porous medium. Sharma [46] proposed using FEM to examine steady-

state H.T. and predict the thermal conductivity of composite materials. They used a variety of 

meshing methods to mesh these intricately constructed composites. The mesh quality was assessed 

using the mesh metrics of element quality and skewness before conducting a convergence study in 

order to ensure mesh-independent results. Muthukumar [47]  examined the impact of uniform and 

non-uniform bottom wall heating on mixed convective heat transmission in a square porous 

chamber filled with nanofluid and surrounded by a magnetic field.  It has been shown that 

increasing the solid volume percentage increases the Qrate regardless of the magnetic field. 

Meshram [48] examined the effect of tilt  angle affected N.C. features and entropy production in a 

two-dimensional square enclosure saturated with a porous medium. Their results indicated that the 

variation in entropy production rate with an inclination angle is considerable for larger values of the 

Darcy number. Hatami [49] addressed N.C. between internal cylinders in a wavy enclosure using 

the response surface approach to figure out the optimal wavy profile. They also identified a crucial 

value for the inner cylinder diameter at which buoyancy-driven H.T. reduces. Abdulkadhim et al. 

[50] used a finite element method to calculate the magnetic field while considering internal heat 

generation and absorption inside a nanofluid-filled wavy enclosure with an inner circular body. 

Mokaddes et al.[51] studied the N.C. with inner heat-generating circular bodies in a hybrid 

nanofluid wavy enclosure using finite element formulation. Aboud et al. [52] employed a FEM to 

investigate N.C. inside a wavy enclosure with various inner body shapes, such as (circular, 

triangular, square, and rhombus). There is a lot of interest in this field of N.C. within the combined 

enclosure, such as I-shaped enclosures [53–56], U-shaped enclosures [57,58], and T-shaped 

enclosures [59–61]. Islam et al. [62] minvestigated numerical research about natural porous 

convection in a square cavity with partially corrugated vertical walls. The porous cavity was filled 

with Al2O3 nanoparticles with water. However, the study has critical limitations regarding H.T. 

within a staggered enclosure [63].  
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The significance of natural convection within enclosures extends beyond standalone 

applications and finds relevance in various fields. For instance, in the realm of heat exchanger 

cooling for electronic equipment, natural convection plays a vital role in dissipating excess heat 

generated during operation, ensuring optimal performance and preventing damage. Solar pond 

systems utilize natural convection to create thermal stratification, maximizing the efficiency of 

energy collection. In the context of natural gas tank storage, understanding natural convection is 

crucial for maintaining temperature uniformity and preventing stratification, which can impact the 

quality and stability of stored gas. Moreover, in material processing applications, such as casting 

and solidification, controlling natural convection is essential for achieving desired material 

properties and minimizing defects. Similarly, natural convection is of utmost importance in 

processes involving gas transfer, such as ventilation systems and chemical reactors, where efficient 

heat and mass transfer are critical for overall system performance. 

While the complexities of staggered shapes within enclosures have been explored in a few 

studies, the specific impact of corrugated walls, boundary conditions, and their interplay with 

entropy generation, heat transfer, and fluid structures is investigated in our research. Insights into 

how natural convection patterns and entropy generation are influenced by geometric variations are 

gained by examining the effects of corrugated walls. Additionally, the unique configuration of a 

staggered enclosure with corrugated walls, boundary conditions, and exposure to a porous medium 

saturated with nanofluid is investigated in our study. This combination of factors results in 

additional complexities being introduced to the problem, making it a compelling area for 

investigation. 

To the best of our knowledge, no prior studies have specifically examined the effects of 

corrugated (wavy) walls on natural convection and entropy generation within a staggered enclosure, 

particularly from the left side walls. By addressing this research gap, our study contributes to the 

existing literature by shedding light on the distinct challenges and phenomena associated with such 

configurations. Our findings provide valuable insights into the interplay between wall geometry, 
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boundary conditions, and fluid dynamics, facilitating a deeper understanding of the natural 

convection process within enclosures. 

The importance of our research is emphasized in the concluding part of the introduction, 

where we highlight the diverse range of applications that can benefit from a deeper understanding 

of natural convection inside enclosures. Improved knowledge in this area has practical implications 

for enhancing heat exchanger efficiency, optimizing solar energy systems, ensuring stable gas 

storage, and enhancing various industrial processes involving fluid dynamics and heat transfer. By 

providing valuable insights and addressing the specific complexities of the investigated 

configuration, our study contributes to the advancement of these applications, enabling more 

efficient and effective thermal management and system design. 

2.  Definition of a Physical Problem        

The physical issue with the coordinate system under the study is described in Fig. 1. It contains 

of a staggering enclosure with an overlapping of the corners (right-top corner of the lower enclosure 

and left-bottom corner of the upper enclosure). The symmetrical enclosures with dimensions of 0.6 

L  × 0.5 L contain a P.M. saturated with TiO2-water nanofluid (Table 1). The enclosure is 

maintained at temperatures (Th) and (Tc) on the left and right wavy vertical walls, respectively. All 

straight horizontal walls are adiabatic and impermeable. A sinusoidal curve profile can follow the 

wavy vertical walls function and governing equations [64]. 

! = " sin (#$%)                                                                                                                                          (1) 

Where A is oscillation amplitude, and n is number of waves. 

The following assumptions underlay this study:  

1- Flow is two-dimensional, laminar, newtonian, and incompressible.  

2- The radiation heat exchange, Forchheimer’s inertia, and Joule heating are neglected [65].  

3- All thermophysical parameters are constant, except the variations in density, which 

introduce a body force element into the momentum equation's vertical component. 
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4- The porous medium's solid matrix and the nanofluid filling the pores are in thermal 

equilibrium.  

5- This study considers heat generation from viscous dissipation and Darcy dissipation. 

6- Gravitational force is exerted vertically downward.  

7- The Boussinesq approximations are undertaken to be valid.  

The thermophysical characteristics of the Titanium Oxide nanoparticle and water are listed in Table 

1. Different dimensionless parameters can be used to describe the present situation, such as the 

Rayleigh number (Ra = 10
3
, 10

4
, 10

5
, and 10

6
), the Darcy number (Da = 10

-1
, 10

-2
, 10

-3
, 10

-4
, and 

10
-5

), the oscillation amplitude (A = 0.02, 0.04, 0.06, 0.08, and 0.1 L), Volume fraction (∅ = 0, 

0.02, 0.04 and 0.06), and the inclination angle varied as (γ = 0
o
, 30

o
, 45

o
, 60

o
 and 90

o
). The non-

dimensional Heat generation factor (') ranged from 0 to 20. 

 

Fig. 1 Simplified diagram of physical of the present study 

Table 1 Properties of base fluids and nanoparticles (A. Al-Zamily [12]) 

Material/Properties ρ (kg/m
3
) Cp (J/kg.K) k (W/m.K) β (1/K) 

Water 997.1 4179 0.613 21*10
-5 

Titanium Oxide 4250 686.2 8.9538 0.9*10
-5 
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3. Governing Equation and Boundary Conditions 

According to the previous assumptions and physical definition, the following equations can be 

described our situation as follows [12]: 

*+∗

*- + *1∗

*2 = 0                                                                                                                                   (2) 

3∗ *+∗

*- + 4∗ *+∗

*2 = −78 9
:;<

*>
*- + 7 9

?;<
@*A+∗

*-A + *A+∗

*2A B − 78. 9
?;<

. +∗

C +  78DEFG(H − HI)JK$L            (3) 

3∗ *1∗

*- + 4∗ *1∗

*2 = −78 9
:;<

*>
*2 + 7 9

?;<
@*A1∗

*-A + *A1∗

*2A B − 78. 9
?;<

. 1∗

C + 78DEF  G (H − HI  )MNJ L        (4) 

3∗ *O
*- + 4∗ *O

*2 = PQ<<
P<

@*AO
*-A + *AO

*2AB + R°(H − HI)                                                                              (5) 

The corresponding boundary conditions in dimension manner are listed as: 

3∗ = 0 ;  4∗ = 0  ;     T = TU   at the hot left walls of the enclosure                                        (6) 

3∗ = 0 ;  4∗ = 0  ;     T = TV   at the cold right walls of the enclosure                                    (7) 

3∗  = 0 ;     4∗ = 0  ;     *O
*W = 0, at the insulated walls                                                             (8) 

The form of dimensionless following equations of the situation are presented below : 

*Y∗

*Z + *[∗

*W = 0                                                                                                                           (9) 

\∗ *Y∗

*Z + ]∗ *Y∗

*W = −78 *^
*Z + 7. 9

?;<P<
. @*AY∗

*ZA + *AY∗

*WA B − 78. 9
?;<P<

. Y∗

_` + 78 a;<
a<

  bc. de. f JK$L           (10) 

\∗ *[∗

*Z + ]∗ *[∗

*W = −78 *^
*W + 7. 9

?;<P<
. @*A[∗

*ZA + *A[∗

*WA B − 78. 9
?;<P<

. [∗

_` + 78 a;<
a<

  bc. de. f MNJL            (11) 

\∗ *g
*Z + ]∗ *g

*W = PQ<<
P<

@*Ag
*ZA + *Ag

*WAB + 'f                                                                                (12) 

The following describes the dimensionless variables in Equations 9 - 12.  

h = !
j ; k = %

j ; \∗ = 3∗. j
lF

; ]∗ = 4∗. j
lF

; d = m. j8

oEFlF
8 ; f = H − HI

Hp − HI
; bc = GD(H − HI)jq

�  " ; #$
= % "  ; &' = (

)*  ;  + = ,°. )* 
" ;  Δ/ = 0")

2                      

(13) 

 

 

While the thermophysical properties are defined as [66]: 

34 = (1 − 8)3 + 83<> 

(3?>)4 = (1 − 8)@3?>A + 8(3?>)<> 

(3B)4 = (1 − C)(3B) + C(3B)<> 

"D  =   2D  
@3. E>A4 

 

(14) 
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"4 =   24 
@3. E>A4 

 

2D  = (1 − R)2<> + R24  

S4 = S (1 − 8)*.T 

24 = @2<> + 22<>A − 28(2 − 2<>)
@2 + 22<>A + 8(2 + 2<>) 2            

The local Nu number of the hot sinusoidal-corrugated vertical walls using a dimensionless 

temperature is expressed as :  

VWXY = − ZJKK
ZK MH[\

H4  ]^                                                                                                          (15) 

The terms (∂θs/∂n)w is the normal temperature gradient to the hot sinusoidal-corrugated walls 

for the solid phase, respectively. The local Nu number is integrated along the hot wall surface 

yields the average Nussult number around the left lower and upper sinusoidal walls [38,53]. 

VW_` = Q
a ∫ VWXY cd a

e                                                                                                           (16)       

B= 1-L/2   and M = 0       For the left lower vertical wall 

B= 1- L/2  and M = L/2    For the left upper sinusoidal wall 

The stream function is used to describe fluid motion and is formed from the velocity components 

U∗  and V∗ . For 2-dimensional flow, the following are the relations between the components of 

velocity and stream function [66]:  

U∗ = hψ

hi ,              V∗ = − hψ

hk                                                                                                  (17) 

hlψ

hkl + hlψ

hil = hm∗
hi − hn∗

hk                                                                                                            (18) 

4. Entropy Generation and Bejan Number 

The local entropy production rate is calculated by adding the entropy produced by the two sources 

of heat flow and fluid friction [12]:  

opD4 = ȯpD4,rs + ȯpD4,ss                                                                                                      (19) 

ȯpD4,rs = ZPK
tul vMHt

Hw]* + MHt
Hx]*y                                                                                             (20) 

ȯpD4,ss = zPK
{|u v(W∗* + �∗*) + ( }2 vMH~∗

Hw ]* + MH`
Hx]*y + (H~∗

Hx + H`∗
Hw )*�y                              (21) 

฀฀฀฀฀฀฀฀฀
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dimensional flow, the following are 

The stream function is used to describe fluid motion and is formed from the velocity components 

dimensional flow, the following are 

left upper sinusoidal wall

The stream function is used to describe fluid motion and is formed from the velocity components 

left upper sinusoidal wall

left lower vertical wall

left upper sinusoidal wall

left lower vertical wall

                                                                                                                                                                                                              

yields the average Nussult number around the left lower and upper s

The local Nu number is integrated along the hot wall surface 

yields the average Nussult number around the left lower and upper sinusoidal walls

The local Nu number is integrated along the hot wall surface 
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Local Sgen may be expressed in dimensionless shape [13]: 

�pD4 = ZJKK
ZK vMH[

H�]* + MH[
HI]*y + Γ v(F∗* + �∗*) + &' }2 vMH�∗

H� ]* + MH�∗
HI ]*y + (H�∗

HI + H�∗
H� )*�y       (22) 

The value of Γ in the above equation is taken as 0.01, and the local Sgen in dimensionless form 

becomes: 

�pD4 = opD4. X�l
ZK Mtu

∆t]*
                                                                                                      (23) 

Total Sgen in a dimensionless form is generated by integrating local Sgen across all computing 

domains as follows: 

�̇pD4,t = ∫ �pD4. c�                                                                                                               (24) 

The Bejan number illustrates the strength of irreversibility induced by Q and Sgen as [38]: 

��t = �̇�JP,�� 
�̇�JP,�                                                                                                                         (25) 

As BeT approaches 1, the irreversibility of H.T. becomes dominating. The irreversibility of the 

viscous effect dominates the processes when BeT is significantly lower than 1/2. The H.T. and 

viscous effects produce equal Sgen when BeT = 1/2. 

The following boundary conditions develop in the dimensionless forms:  

U = 0 ;   V = 0  ;     θ = 1 , ψ = 0  at the hot left walls of the enclosure                                (26) U = 0 ;   V = 0  ;     θ = 0, ψ = 0 at the cold right walls of the enclosure                              (27) 

U = 0 ;   V = 0  ;     H[
HI = 0 , ψ = 0 at the insulated walls                                                    (28) 

 

5. Numerical Procedure  

The Galerkin FEM ( GFEM) is employed to solve the Equations (9-12) with the boundary 

conditions (26-28). Each flow variable within the computational domain is represented by a 

different order of Triangular Lagrange finite elements. The governing equations are formulated 

toward the weak (or weighted-integral) formulation. The GFEM was employed to solve the energy 

and momentum equations, yielding the following results: 

฀฀฀฀฀฀฀฀฀

Numerical Procedure 

FEM

Numerical Procedure 

; H[
HI

θ =H[ =
= 1 ψ0, ψ

The following boundary conditions develop in the dimensionless forms: 

=
The following boundary conditions develop in the dimensionless forms: 

viscous effect dominates the processes when 

when Be

viscous effect dominates the processes when BeT is significantly lower than 1/2. 
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induced by 
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� �Φ�. U∗ . ∂U∗ 
∂X + Φ�. V∗ . ∂U∗ 

∂Y ¤ c¥. c¦ = −R2 � ∂Φ�∂X �∂U∗ 
∂X + ∂V∗ 

∂Y ¤
§§

c¥. c¦

+ �. ����� .  Φ" #∂%U∗'∂X% + ∂%U∗'∂Y% () − �2,- . �����  Φ"/∗0
) 13. 14

+ �2 (67)��6�� 7�   :-. ;<. =>�?  Φ"@A
) 13. 14 

(29) 

 #Φ". U∗'. ∂V∗'∂X + Φ". V∗'. ∂V∗'∂Y ( 13. 14 = −�2  ∂Φ"∂Y #∂U∗'∂X + ∂V∗'∂Y ()) 13. 14
+ �. ����� .  Φ" #∂%V∗'∂X% + ∂%V∗'∂Y% () 13. 14 − �2,- . �����  Φ"C∗0

) 13. 14
+  �2 (67)��6�� 7�   :-. ;<. DE=?  Φ"@A

) 13. 14 

(30) 

            

 #Φ". U∗'. ∂θ'∂X + Φ". V∗'. ∂θ'∂Y ( 13. 14 = �G����  Φ" #∂%θ'∂X% + ∂%θ'∂Y% ()) + H  Φ"@A
) 13. 14 

(31) 

 

  Next, the variables' ranges are then subjected to the following base extensions: 

/∗ = I /J∗
K

LMN Φi(3, 4),     C∗ = I CJ∗
K

LMN Φi(3, 4), ; = I ;J∗
K

LMN Φi(3, 4),
@ = I @J∗

K
LMN Φi(3, 4)    

(32) 

 

However, the residual pattern of equations is derived by integrating the weak appearance of 

equations across the discrete region: 

:(1)Q = I /R∗
S

R=1  TWI UZ∗ ΦZ
S

R=1 [ . ∂ΦZ∂X + WI VZ∗ ΦZ
S

R=1 [ . ∂ΦZ∂Y \ Φ"13. 14)

+ �2 TI /R∗  ∂Φ"∂X ∂ΦZ∂X)
13. 14 + I CR∗  ∂Φ"∂X ∂ΦZ∂Y)

13. 14S
R=1

S
R=1 \

+ �. ����� . I /R∗
S

R=1  ]∂Φ"∂X . ∂ΦZ∂X + ∂Φ"∂Y . ∂ΦZ∂Y ^ dXdY) + �2,- . �����  WI UZ∗ ΦZ
S

R=1 [ Φ") 13. 14

+ �2 (67)��6�� 7�   :-. ;<. =>�?  WI θZ ΦZ
S

R=1 [ Φ") 13. 14 

(33) 

R  T)  TWI URW =1 U∗ ΦS [

equations across the discrete regionequations across the discrete region

However, the residual pattern of equations is derived by integrating the weak appearance of 

equations across the discrete region

However, the residual pattern of equations is derived by integrating the weak appearance of 

(3, 44)
3 4),

Next, the variables' ranges are then subjected to the following base extensionsNext, the variables' ranges are then subjected to the following base extensions

Y (
Next, the variables' ranges are then subjected to the following base extensions

'( +
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:(2)Q = I CR∗
S

R=1  TWI UZ∗ ΦZ
S

R=1 [ . ∂ΦZ∂X + WI VZ∗ ΦZ
S

R=1 [ . ∂ΦZ∂Y \ Φ"13. 14
Ω

+ �2 TI /R∗  ∂Φ"∂X ∂ΦZ∂X
Ω

13. 14 + I CR∗  ∂Φ"∂X ∂ΦZ∂Y
Ω

13. 14S
R=1

S
R=1 \

+ �. ����� . I CR∗
S

R=1  ]∂Φ"∂X . ∂ΦZ∂X + ∂Φ"∂Y . ∂ΦZ∂Y ^ dXdY
Ω

+ �2,- . �����  WI VZ∗ ΦZ
S

R=1 [ Φ"
Ω

13. 14

+ �2 (67)��6�� 7�   :-. ;<. DE=?  WI θZ ΦZ
S

R=1 [ Φ"
Ω

13. 14 

(34) 

:(3)Q = I @R
S

R=1  TWI UZ∗ ΦZ
S

R=1 [ . ∂ΦZ∂X + WI VZ∗ ΦZ
S

R=1 [ . ∂ΦZ∂Y \ Φ"13. 14 + �. I @R
S

R=1  ]∂Φ"∂X . ∂ΦZ∂X + ∂Φ"∂Y . ∂ΦZ∂Y ^ dXdY
ΩΩ

+ H  WI @R ΦZ
S

R=1 [ Φ"
Ω

13. 14 

(35) 

 

Where The superscript k represents the relative index, whereas the subscripts I and j represent the 

residual and node number, respectively. The number of iterations is determined by M. Integrals are 

also produced using second-order Gaussian quadrature. The Newton-Raphson iteration approach is 

used to iteratively calculate the residual equations using the following closure form of all field 

variables: 

` = ∑ bΓ",ZceN − Γ",Zc bQ,L bΓ",ZceNb ≤ 10hj (36) 

Where ` denotes the tolerance; Γ and t are any of the computed field variables and the iteration 

number, respectively. 

6. Results and Discussion 

In this work, the triangular mesh distribution is presented in Fig. 2. The grid sensitivity 

assessments are carried out to find the grid-independence solutions for the field variables, as 

indicated in Table 2. The mean Nusselt number is chosen to predict the mesh independence since it 

is a global parameter that does not change while the solution is stable. In the same table, five 

meshes were tested with an average Nu on the surface for Da = 10
-3

, Ra = 10
5
, k = 0.02, λ = 10, A 

฀฀฀฀฀฀฀฀฀
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= 0.04 L, and n = L/6. After 22024 elements with a finer grid, the average Nusselt number changes 

insignificantly. The sensitivity is established to be exceptional, confirming the current 

computational analysis. Based on the results presented in Table 2, a comparative finer mesh with 

26548 elements has been selected to solve the whole equations of the current study. 

 

Fig. 2 Un-Structural mesh distribution of the present study 

Table 2 Grid independent test average Nusselt number on the surface at (Da = 10
3
, Ra = 10

5
, φ = 

0.02, λ = 10, A = 0.04 L, and n = L/6) 

 
Grid Domain 

elements 

Boundary 

elements 

Time 

(Sec) 

Nuavh |lmmnm| (%) Nuavl Error (%) |pqrs| Error (%) 

G1 4165 289 16 2.4801 - 1.7230 - 1.7304 - 

G2 6206 356 20 2.4925 0.49 1.7228 0.012 1.7367 0.36 

G3 10069 489 24 2.5495 2.23 1.7306 0.45 1.7389 0.126 

G4 22024 792 42 2.5842 1.34 1.7335 0.167 1.7417 0.16 

G5 26548 792 50 2.5830 0.046 1.7338 0.017 1.7421 0.022 

 

The computer code was validated using the same problem that Al-Zamily [12] studied for a square 

enclosure comprising multi-layers, porous medium, and nanofluid with varying values of Ra and 

volume fraction (k), as shown in Table 3. Fig. 3 depicts the initial validation for the isotherm and 

streamline contours. Fig. 4 displays the second validation study, which compares the contours of the 

stream function for case-1 at Ra = 10
5
, Da = 10

-3
, λ = 0, and Lbm = L/5. Furthermore, the current 

computational numerical analysis is validated against the previous study published by Al-Zamily 

[12]  with Sgen owing to friction flow and heat flow within the enclosure with Ra = 10
4
, Da = 10

-3
, 

Φ = 0, and λ = 0 as shown in Fig. 4. The findings of the two studies show a significant level of 

agreement. These comparisons provided a high confidence level in the proposed computational 
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investigation to address the physical problem. Fig. 5 compared the effects of Sgen for a porous 

cavity when Ra = 10
4
, Da = 10

-3
, Φ = 0, λ = 0 with the results of Ali Meerali Jasim Al-Zamily [12]. As 

observed, the domain of Sgen in all three domains is identical to that of a previous study, confirming the 

accuracy of the present numerical approach in predicting Sgen. Furthermore, the results of the average Nu 

for this case of study at different Ra and Φ numbers are presented in Table 3, which also approves the results 

of the current study.  

Table 3 Comparison of the average Nusselt number along the hot wall 
Da = 0.1 Al-Zamily [12]        Present study  Error (%) 

Ra t = 0 t = 0.05 t = 0.1 t = 0 t = 0.05 t = 0.1 t = 0 t = 

0.05 

t = 0.1 

10
4
 2.2 2.27 2.34 2.1939 2.2603 2.3465 -0.27 -0.429 0.277 

10
5
 4 4.05 4.1 3.9619 3.9910 4.0025 -0.96 -1.147 -2.43 

10
6
 7.1 7.25 7.4 7.1316 7.2513 7.3284 0.44 0.0179 -0.97 

10
7
 11.9 13.001 13.2 12.075 12.654 12.810 1.449 -2.742 3.04 

 

Isotherms Streamlines 

Present Study 

 

Al-Zamily  [12] 

 

Present Study 

 

Al-Zamily  [12] 

 
  

 
 

 

Fig. 3 Comparison of streamlines and isotherms between Al-Zamily  work [12] and the present 

study 
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Fig. 4 Stream function comparison for a different volume fraction between Al-Zamily [12] and the 

present study of case-1, Ra = 10
5
, Da = 10

-3
, λ = 0, and Lbm = L/5 
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Fig. 5 Entropy generation due to friction (Sgen,μ) and total entropy generation (Sgen,T) comparison 

between Al-Zamily [12] and the present study Ra = 10
4
, Da = 10

-3
, φ= 0, and λ = 0 

 

Fig. 6 depicts the streamlines for staggered enclosure when the tilt angle is zero at different Ra 

and Da numbers. As observed, increasing the Ra number increased the intensity of streamlines as 

well as their maximum values. Furthermore, increasing the Da improves the absolute values of 

streamlines in maximum and minimum values in most cases. The physical reason is increasing the 

N.C. current intensity with increasing Ra and Da. Fig. 7 demonstrates the isotherm lines for the 

cases presented in Fig. 6. It can be observed that higher Ra numbers provide a more N.C. effect, 

shifting higher temperatures from the left-side wavy to the right-side flat walls. Furthermore, 

temperatures are raised from the bottom to the top walls. Additionally, higher Da numbers resulted 

in increased H.T. from the left to the right side, and higher temperatures towards the top wall of the 

staggered enclosure. This is due to the domination of the N.C. mode with increasing the Ra and Da, 

which in turn change the isotherms lines shape from the vertical shape at low Ra and Da 

(conduction mode) into more horizontal shape lines (N.C. mode). Fig. 8 provides information about 

the entropy generation and Bejan number at different Rayleigh numbers and Darcy numbers in each 

of the preceding situations. The figure illustrates the influence of high Rayleigh numbers on entropy 

generation, showing that as the Rayleigh number increases, convection becomes the dominant 
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