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a b s t r a c t 

This paper is concerned with the development and application of a frequency-dependent cohesive-zone 

model (CZM) for crack-growth analysis of low and high-cycle fatigue. The new model makes use of re- 

cent advances by combining a modified version of a recently developed frequency-dependent trapezoidal 

cohesive-zone model ( Salih et al., 2017 ) and a new loading-unloading hysteresis damage model with fast- 

track facility. The new combined model offers an alternative approach to capture frequency effects and 

at the same time deliver accuracy comparable to the loading-unloading hysteresis damage model along 

with the computational efficiency of the equally well-established envelope load-damage model . The model 

provides for the first time a methodology that accommodates frequency dependency yet delivers high 

computational efficiency. 

In order to demonstrate the practical worth of the approach, the frequency effect observed with fa- 

tigue crack growth in austenitic stainless-steel 304 is analysed. It is found that the crack growth decreases 

with increasing frequency up to a frequency of 5 Hz after which it levels off. The behaviour, which can 

be linked to martensitic phase transformation, is shown to be accurately captured by the new model. 

Crown Copyright © 2018 Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

Austenitic stainless-steel 304 is widely used in many structural

and mechanical applications common to automotive industries and

power plants, where toughness and resistance to corrosion are re-

quired ( Colin et al., 2010 ). The austenite phase in this stainless-

steel is unstable and easily transforms to martensite under plastic

deformation. Although, this feature makes this type of stainless-

steel a good candidate for many applications, it is important to ap-

preciate that for cyclic-loading applications the rate at which fa-

tigue cracks grow can vary significantly with the applied load fre-

quency. 

The strength of the austenitic stainless-steel is affected by

the martensitic content. Martensite formation depends on the

strain amplitude, temperature, grain size and the number of load-

ing cycles ( Ganesh Sundara Ranan and Padmanabhan, 1995; Ye

et al., 2006 ). The dependence on strain amplitude means that the

austenitic-martensitic phase transformation is significantly more

sensitive in this regard to low-cycle fatigue (LCF) as opposed to

high-cycle fatigue ( Ye et al., 2006; Baudry and Pineau, 1977 ). How-
Abbreviation: CE, Cohesive element; CZM, Cohesive-zone model; TCZM, Trape- 

zoidal cohesive-zone model. 
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ver, the transformation can occur with high-cycle fatigue (HCF)

s a result of plastic-strain accumulation ( Colin et al., 2010; Lebe-

ev and Kosarchuk, 20 0 0 ). The percentage of martensite in this

ase however tends to be small, and typically no greater than

% according to reference ( Müller-Bollenhagen et al., 2010 ). Fur-

her details on the effects of plastic-strain amplitude, temperature

nd chemical composition on the formation of the strain-induced

artensite is available in references ( Ye et al., 2006; Lebedev and

osarchuk, 20 0 0 ). 

As the austenitic-martensitic phase transformation depends on

he plastic deformation, which in turn is dependent on strain rate,

t follows that the frequency at which the cyclic load is applied

an have an effect on the martensitic content and consequentially

n fatigue crack-growth rates. Although, the meta-stable austenitic

tainless-steel type 304 is widely used in many applications, there

s limited work on the effect of frequency on the fatigue crack

rowth in this material. Exceptions are references ( James, 1972 )

nd ( Nikitin and Besel, 2008 ), where the influence of temperature

s discussed. 

The effect that the frequency has on fatigue crack growth in

ustenitic stainless-steel 304 under sinusoidal cyclic load with

tress ratios ( R = 0 and R = −1) and a maximum load of 10 KN

pplied in a standard environment at room temperature is in-

estigated as part of this study. However, fatigue experimenta-

ion is both time consuming and costly, so coupling this to a nu-

erical model that can capture frequency effects is of some im-

https://doi.org/10.1016/j.ijsolstr.2018.06.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
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Nomenclature 

List of symbols 

D 

c Cyclic damage 

D 

s 
(δ) 

Static damage 

D Total damage 

E Elastic modulus 

K coh Cohesive stiffness 

G c Total dissipated energy per unit area 

G 

p Dissipated plastic energy in the cohesive-zone per 

unit area 

N Number of cycles 

�N Number of cycles in the load envelope 

N u Number of required damage updates 

δc Critical separation 

δ1 Shape parameter for the linear and trapezoidal 

model respectively 

δ2 Second shape parameter of the trapezoidal model 

δp Plastic separation 

δp 
(N) 

Plastic separation after N number of cycles 

δcyc Cyclic displacement 

δ
cy c ( ma x ) 

(N) 
Maximum displacement reached at a loading cycle 

δ Applied separation (plastic separation plus the 

cyclic displacement) 

δmax The separation at the onset of unloading 

σ c Critical cohesive stress 

σ c rate 

(f) 
Frequency-dependent critical cohesive stress 

σ Cohesive stress 

σ Y Yield stress 

σ max The stress at the onset of unloading 

�o Critical cohesive energy 

ϑ Poisson’s ratio 

ortance. The academic literature reveals that the cohesive-zone

odel (CZM) is an attractive candidate for the modelling and sim-

lation of fatigue problems. The vast majority of CZMs discussed

n the literature however are limited to monotonic crack propaga-

ion. To use the CZM for fatigue analysis, it is required to accom-

odate cyclic damage accumulation within the traction separation

aw. There are two principal approaches reported in the literature

or identifying cyclic-damage formulation; these are the loading-

nloading hysteresis damage model and the envelope load-damage

odel . 

In the envelope load damage model, the maximum load of the

oading cycle is of principal interest rather than the complete

yclic-loading behaviour. All variants founded on this particular ap-

roach formulate a relationship for damage rate dD / dN , which for

onvenience is written here symbolically in the form of a deriva-

ive despite D being a path-dependent quantity. The damage D

s assumed to take the additive form D = D s + D c , where D c is a

yclic damage component and D s is a monotonic damage com-

onent. A full review of the different formulations for the cyclic-

amage rate that adopted in the literature can be found in refer-

nce ( B.L.V. Bak et al., 2014 ). 

On the other hand, in the loading-unloading hysteresis dam-

ge models , the entire loading-unloading cycle is considered and

epresented. This feature permits the modelling of complicated

ehaviour (such as friction and plasticity) at the cohesive inter-

ace and the crack tip surroundings ( B.L.V. Bak et al., 2014 ). The

rst loading-unloading hysteresis damage models was introduced

y De-Andrés et al. (1999) for fatigue crack growth simulation.

n this model, a cyclic damage factor D is proposed to quantify

he amount of dissipated energy in the fracture process after a

pecific number of cycles divided by the critical cohesive energy.
his work was soon followed with the introduction of variable-

nterfacial stiffness models; see for example Nguyen and Repetto

2001) and Yang et al. (2001) , where traction rate ˙ T is assumed

o be a function of incremental stiffness K ( δ) and separation rate ˙ δ,

.e. explicitly ˙ T = K (δ) 
˙ δ. A more sophisticated model is presented in

eference ( Roe and Siegmund, 2003 ), where two additional param-

ters δ� and σ f represent the accumulated cohesive length and

he fatigue limit, respectively. If the cohesive traction evaluated by

he model at the crack tip is less than σ f , then the model returns

n infinite life (no crack will propagate). Similar approaches have

een considered in references ( Ural et al., 2009; Beaurepaire and

chuëller, 2011 ). 

Although, fatigue behaviour is replicated reasonably well by the

oading-unloading hysteresis damage model, the approach from a

ractical viewpoint is considered rather costly in terms of the re-

uired computational time. In particular it is considered unfeasible

or the simulation of high-cycle fatigue, which can typically involve

xtremely large numbers of loading cycles. Although attempts to

educe the cost associated with hysteresis-damage models are con-

idered in references ( De-Andrés et al., 1999; Towashiraporn et al.,

005; Koutsourelakis et al., 2006 ), by involving extrapolation, these

odels suffer severe accuracy limitations. 

An extrapolation scheme to fast-track the crack growth rate has

ecently been developed by the authors of this work for speed-

ng up the loading-unloading hysteresis damage model ( Salih et al. ) ,

lthough frequency dependence is not considered. The proposed

ew loading-unloading hysteresis damage model with the fast-

rack facility is further extended in this paper to accommodate

requency-dependent behaviour. The new frequency-dependent 

ZM is discussed in Section 2 . Included there is information on the

oading-unloading hysteresis damage model and a brief descrip-

ion on the fast-track capability. The mathematical model is en-

oded into a UMAT subroutine for implementation in the commer-

ial finite element package ABAQUS; details on this are presented

n Section 3 . Section 4 focuses on investigating crack growth in

tainless steel 304 experimentally and numerically; this includes

etails about the analysis model (geometry, material properties,

nd boundary conditions) along with mesh sensitivity analysis and

he validation of the new model. Conclusions are presented in

ection 5 . 

. Cohesive-zone model 

.1. Loading-unloading hysteresis damage CZM with fast-track feature

If cyclic load is applied to a standard CZM, the outcome is an

nfinite life. In order to capture a finite life, it is necessary to iden-

ify a cyclic damage accumulation mechanism within the cohesive

odel. This damage will monotonically increase with the number

f cycles leading to the failure of the cohesive element. The pro-

osed cohesive model for fatigue is described mathematically as

( δ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

K coh δ if δ < 0 (
σmax 

δmax −δp 

)
( δ − δp ) H ( δ − δp ) if 0 ≤ δ ≤ δmax (

1 − D 

s 
( δ) 

)
K coh δ if δmax < δ < δc 

0 if δ ≥ δc 

(1) 

here K coh represents the cohesive stiffness, σ ( δ) , σ c , σ max and

max are the cohesive traction, the critical cohesive stress, the

tress and the separation at the point of unloading, respectively

see Fig. 1 ). In the figure, σ max(1) and δmax(1) are the value of

he maximum stress and separation after the first loading cycle

nd accordingly σ max(2) and δmax(2) after the second loading cy-

le. To ensure that the first part of the second relationship of

q. (1) ( i.e. σ max /( δmax − δp )) returns the cohesive stiffness K 
coh 
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Fig. 1. The loading-unloading representation of the CZM. 
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when there is no damage at δ ≤ δ1 and δp = 0 the value of σ max 

and δmax are set to be equal to σ c and δ1 , respectively. Here δc , δ1 ,

δ2 , δ and δp are the critical cohesive separation, the separation at

which the permanent damage starts, the separation at which the

material deterioration starts, the applied separation and the rem-

nant separation after unloading, respectively. The Heaviside func-

tion H ( δ − δp ) in Eq. (1) is defined to equal zero if δ is smaller

than δp and one in any other condition. Finally, D 

s 
(δ) 

is a mono-

tonic damage variable. 

The damage mechanism adopted in this model consists of two

parts: a cyclic damage D 

c and a monotonic damage D 

s 
(δ) 

. The cyclic

damage D 

c is a result of the accumulation of plastic deformation

and is a consequence of two different effects: (i) cyclic plasticity

build-up, represented by the increase in cyclic plastic deformation

δp when the separation δ ≤ δ2 and; (ii) a further increase in δp 

as a result of the void growth and coalescence when δ > δ2 . The

monotonic damage D 

s 
(δ) 

is a result of material deterioration of the

non-cyclic variety, D 

c and D 

s 
(δ) 

combine additively to give the total

damage, i.e. 

D = D 

c + D 

s 
( δ) 

(2)

The monotonic damage variable D 

s 
(δ) 

is evaluated from 

D 

s 
( δ) 

= 

⎧ ⎨ 

⎩ 

1 − δ1 

δ
if δ1 ≤ δ < δ2 

1 − δ1 ( δc − δ) 

δ( δc − δ2 ) 
if δ2 ≤ δ ≤ δc 

(3)

The choice of δ1 and δ2 is arbitrary (since there are no evidence

of the right shape of the traction-separation law). The value of δ1 

is set to a relatively small value to ensure a very stiff connection

in the undamaged cohesive elements, while δ2 is set to be close to

δc to capture the local dissipated energy at the crack tip as a result

of local plastic deformation, since the focus of the model is crack

propagation in ductile materials. These choices is similar to what

is advised in reference ( Scheider et al., 2006 ), for definiteness δ1 

and δ2 are set as 

δ1 = 

σc 

K coh 

(4)

δ2 = 0 . 75 × δc (5)
The applied separation δ is determined by adding the applied

yclic displacement δcyc to the remnant separation δp , i.e. 

= δp + δcyc (6)

The plastic remnant δp is updated by adding the result of in-

egrating the cyclic-plasticity rate ( d δp 
(N) 

/d N ) to its value from the

revious plastic separation, i.e. 

p 

( N+�N ) 
= δp 

( N ) 
+ 

∫ N+�N 

N 

(
d δp 

( N ) 
/d N 

)
dN 

′ (7)

here N is the number of cycles, �N is the number of cycles be-

ween updates in the damage state, δp 
( N+�N ) 

is the updated plas-

ic separation, δp 
(N) 

is the previous plastic separation, and d δp 
(N) 

/d N

s the cyclic-plasticity rate (the derivative format is used here for

onvenience). 

The mean value theorem for integration is used to approximate

he integral in Eq. (7) , where d δp 
(N) 

/d N is assumed to be defined

nd smooth on the interval ( N, N + �N ). Integration provides 
 N+�N 

N 

(d δp 

( N ) 
/d N) d N 

′ = 

(
d δp 

( N ) 
/d N 

)
( α) 

× �N (8)

here α is a value that belongs to the interval [ N, N + �N ] and

( d δp 
(N) 

/d N ) (α) is an intermediate value of the rate d δp 
(N) 

/d N. 

A suitable approximation for ( d δp 
(N) 

/d N ) (α) is 

d δp 

( N ) 
/d N 

)
( α) 

≈
δ

cy c ( max ) 

( N ) 

C 
(9)

here C is a material parameter greater than unity and δ
cy c ( ma x ) 

(N) 
is

he maximum displacement reached at the end of a loading cycle. 

The choice for the approximation of Eq. (9) is expedient since

t relates the change in the cyclic plasticity to the loading con-

itions through δ
cy c ( ma x ) 

(N) 
with the ability to capture any material

yclic behaviour through the material parameter C , which can be

uned by comparing the numerical results with the experimental

ata to accommodate the cyclic behaviour of a particular mate-

ial. Substitution of Eq. (9) into Eq. (7) yields an extremely simple

yclic-plasticity incremental rule, i.e. 

p 

( N+�N ) 
≈ δp 

( N ) 
+ 

δ
cy c ( max ) 

( N ) 

C 
�N (10)

For the conventional loading-unloading hysteresis damage

odel �N is equal to 1. However, if the extrapolation scheme is

pplied to fast-track the crack propagation, the increment �N is

et to have an integer value significantly greater than one for com-

utational practicality ( Salih et al. ). Although, the value of �N can

ffect the accuracy of the result, an acceptable estimation of �N

an be evaluated at the first integration point at the crack tip for

he specified loading conditions by running a one cycle analysis

nd apply the following relationship 

N = int 

( 

δc − δ
cy c ( max ) 

( 1 ) 

N u × δp 

( 1 ) 

) 

(11)

here int is a function that returns the nearest integer to the argu-

ent, δp 
(1) 

and δ
cy c ( ma x ) 

(1) 
are the cyclic plasticity after the first load-

ng cycle and the maximum cyclic displacement reached at the

rst loading cycle, respectively. The parameter N u represents the

umber of required updates of the cyclic damage. 

For simplicity �N is assumed to be invariant for the whole pro-

ess and at the end of the N + �N cycles δmax and σ max are deter-

ined with 

max = δp 

( N+�N ) 
+ δ

cy c ( max ) 

( N ) 
(12)

nd 
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Fig. 2. Mode I Trapezoidal frequency-dependent CZM. 
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F  

l  
max = 

{ 

σc if δ1 < δmax ≤ δ2 (
1 − D 

s 
( δmax ) 

)
× σc if δ2 < δmax ≤ δc 

(13) 

here D 

s 
( δmax ) 

is the static damage of Eq. (3) with δ replaced by

max evaluated from Eq. (12) . 

The accumulated dissipated energy ( �G ) at the end of any load-

ng cycle is given by 

G = 

⎧ ⎨ 

⎩ 

1 

2 

[ σc ( δmax + δp − δ1 ) ] if δmax ≤ δ2 

1 

2 

[ σc ( δmax + δ2 − δ1 ) − σmax ( δ2 − δp ) ] if δmax > δ2 

(14) 

The calculated values of δmax and σ max from Eqs. (12) and

13) along with the updated separation δ from Eq. (6) are applied

n Eq. (1) at the next loading cycle. 

The number of cycles is updated after the end of a loading cy-

le through the relationship N i + 1 = N i + �N . However, if the sepa-

ation in the cohesive element reaches the critical cohesive separa-

ion in a number of cycles less than N i + 1 , then the exact number

f cycles at which the cohesive element failed satisfies the rela-

ionship 

 f = N i +1 − int 

( 

δmax − δc 

δ
cy c ( max ) 

( N ) 
/c 

) 

(15) 

hich is important for the determination of an accurate crack

ength-number of cycles curves. 

.2. Frequency-dependent CZM for fatigue 

To produce a frequency-dependent CZM that can be used for

he analysis of high and low-cycle fatigue, it is necessary to link

he fatigue model introduced in Section 2.1 with a frequency-

ependent critical stress, the TCZM with the frequency-dependent

ritical stress is shown is Fig. 2 . The same concept of the rate-

ependent cohesive model with critical stress limit introduced in

eference ( Salih et al., 2016 ) is adopted here to produce an em-

irical formula for the frequency-dependent critical stress ( σ c rate 

( f ) 
) .

he stress σ c rate 

( f ) 
increases with the frequency up to a specific limit

c 
( limit ) 

and is assumed to behave exponentially and is represented

athematically by 

c rate 

( f ) 
= σ c 

( limit ) 
× exp 

(
− f o 

f 

)
(16) 
here σ c 
( limit ) 

is the maximum value for the increase in the

requency-dependent critical stress, its value evaluated from tun-

ng with the experimental data at loading frequency of 50 Hz. The

alue of the base frequency f o is set to ensure that at 0.05 Hz

he frequency-dependent critical stress equals the yield stress at

 proof strain equal to 0.1%. Note also that Eq. (16) arises out of a

heological model satisfying the differential equation d σ c rate 

( f ) 
/d τ =

σ c rate 

( f ) 
, where τ represents a dimensionless time and for frequency

oading is related to frequency by τ = f 0 / f . Although the particular

orm of Eq. (16) is not unique it provides a relatively simple model

or the desired response of σ c rate 

( f ) 
. Note that as f → ∞ the func-

ion σ c rate 

( f ) 
asymptotically approaches the constant value σ c 

( limit ) 
,

hich is an effect observed experimentally as discussed in refer-

nce ( Salih et al., 2016 ). This behaviour arises from the saturation

f fracture energy with rate and for austenitic stainless-steel 304 it

an be linked to the saturation of the austenitic-martensitic phase

ransformation. In essence the frequency-dependent fatigue model

onsists of the model outlined in Section 2.1 apart from σ c rate 

( f ) 
re-

lacing σ c . This is illustrated graphically in Fig. 1 and described

athematically by Eq. (1) . 

. Implementation of the new cohesive-zone model in ABAQUS 

In this study, the commercial finite element solver ABAQUS

 ABAQUS 2013 ) is chosen to be the vehicle for performing the nu-

erical analysis. In ABAQUS, the cohesive model can be identified

ither in the form of cohesive surface or by implementing cohesive

lements in the numerical model along the crack path. Introducing

 new cohesive model to ABAQUS is achieved with the cohesive

lement through a user-defined material (UMAT) subroutine. 

.1. Implementation and testing of the new CZM 

The new frequency-dependent CZM is implemented in ABAQUS

y using a UMAT subroutine. To test the subroutine and to demon-

trate the benefit of using the fast-track feature, a three-element

odel (3-EM) (two material elements linked through a cohesive

lement) is initially used as shown in Fig. 3 . Shown in Table 1 are

he properties of the bulk material element and the cohesive el-

ment. The boundary conditions are displacement fixed in all di-

ections at the bottom edge and a constant cyclic displacement

pplied at three loading frequencies (0.05, 0.1 and 30 Hz) with

 = 0 and 7.3 mm maximum amplitude at the top edge (see Fig. 3 ).

igs. 4 to 6 shows the cyclic stress with the real time at different

oading frequencies. From these curves, the behaviour of the new
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Table 1 

Stainless-steel 304 Material and cohesive properties. 

Bulk material Young’s modulus ( E ) (GPa) Poisson’s ratio ( ϑ) 

193 0.29 

Cohesive elements G c (N/m) K coh (GPa/m) σ c (MPa) δc (m) δ1 (m) δ2 (m) 

,470,39 19,700 340 0.0 0 0168 0.0 0 0 0173 0.0 0 0126 

�N σ c 
( limit ) 

(MPa) f o ( Hz ) C 3-EM C Full-model 

1 4 400 0.008 40 775 

Fig. 3. Implementation of the cohesive element in the finite element model. 

 

 

 

 

 

 

 

 

Table 2 

Chemical composition (wt. %). 

C Si Mn Ni Cr N S P 

0.021 0.35 1.48 8.03 18.13 0.072 0.004 0.033 

T  

a  

f

4

 

i  

t

4

 

s  

d  

F  

i  

2  

A  

2  

m  

i  

a

 

h  

c  

R  
frequency-dependent model is illustrated. Increasing the frequency

increases the critical stress of the cohesive model and at the same

time the advantage of the fast-track feature is illustrated by com-

paring the number of cycles required to finish the analysis (both

analyses involve real fatigue cycles of about 26 cycles). Application

of the fast-track feature provides a reduction in CPU-time of the

order of �N 

− 1 . 

4. Experimental and numerical study on fatigue crack growth 

in stainless steel 304 

4.1. Experimental study 

The effect of frequency on fatigue crack growth has been inves-

tigated experimentally on the austenitic Stainless-steel type 304.
Fig. 4. Cyclic stress levels in the cohesive eleme
his material is recognized to be sensitive to strain rate, suffering

 strain-induced phase transformation, making it a good candidate

or testing out the new fatigue model. 

.1.1. Material properties 

The meta-stable austenitic stainless-steel (AISI type 304) used

n this study has the material composition and mechanical proper-

ies tabulated in Tables 2 and 3 , respectively. 

.1.2. Specimen preparation 

An electrical discharge machine (EDM) was used to cut the

pecimens from a rectangular cross section stainless-steel bar with

imensions 0.003 × 0.04 × 4 m. The shape and dimensions of the

atigue specimens are shown in Fig. 7 . The specimens were fin-

shed by using different wet silicon carbide papers (320, 600, 1200,

50 0, and 40 0 0) and then polished with diamond solution (9 μm).

fter polishing, a stress relieving process (heating to 400 ± 5 °C for

0 minutes and left to cool in an oven) has been performed to re-

ove any residual stresses. The specimens were subsequently pol-

shed with diamond solution (6 μm) to remove any oxide and to

chieve a very fine surface finish. 

Fatigue tests were performed using an Instron 8801 servo-

ydraulic fatigue testing machine rated with a maximum load

apacity of 100 kN. Six loading frequencies with a loading ratio

 = 0 {50, 30, 5, 0.5 0.1, 0.05 Hz} and three with R = −1 {30, 0.1,
nt with the time (real time) at f = 0.05 Hz. 



S. Salih et al. / International Journal of Solids and Structures 152–153 (2018) 228–237 233 

Fig. 5. Cyclic stress levels in the cohesive element with the time (real time) at f = 0.1 Hz. 

Fig. 6. Cyclic stress levels in the cohesive element with the time (real time) at f = 30 Hz. 

Table 3 

Mechanical properties. 

Yield strength (MPa) Tensile strength (MPa) Elongation after fracture (%) Hardness 

Rp 0.2% Rp 0.1% HRB 

305 340 637 58 85 
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.05 Hz} were tested with a sigmoidal cyclic load that applied with

0 kN maximum load. During the test the applied displacement

as recorded along with the number of cycles at different crack

engths, which enabled the setting of the applied displacement

n the FE model. The fatigue specimens containing an edge crack

ere manufactured to ASTM standard E647. The crack length was

easured using a high-resolution camera and analysed using an

mage processing program. By correlating the number of pixels in

he fatigue crack with the number of pixels in a 1 mm mark, the

c  

c  
rack length was measured at each side of the specimen and the

verage is used. 

.1.3. Experimental results 

The experimental fatigue results demonstrate that the loading

requency has an effect on the crack-growth rate of the austenitic

tainless-steel 304 at room temperature. It is clear from Fig. 8 that

rack-growth rate decreases and the fatigue life increases with in-

reasing the frequency. This effect is only observed at frequen-

ies lower than around 5 Hz. Although, it is recognised that cracks

an grow faster at lower frequencies due to microstructural effects
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Fig. 7. Fatigue test specimen. 

Fig. 8. Crack length against number of cycles at different frequencies. 

Fig. 9. Martensite % as a function of temperature and plastic strain ( Müller- 

Bollenhagen et al., 2010 ). 

Fig. 10. The crack tip temperature as a function of the crack length at f = 50 Hz . 

Fig. 11. Crack length against number of cycles for R = −1. 

Fig. 12. Boundary conditions and loading for FE model. 

Fig. 13. Applied cyclic displacement at R = 0, f = 0.05Hz & �N = 800. 
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Fig. 14. Importance of the number of cohesive elements in the cohesive-zone. 

Fig. 15. Crack length as function of loading cycles at R = 0, f = 0.05Hz & �N = 800. 

Fig. 16. Crack length as function of loading cycles at R = 0, f = 0.1Hz & �N = 800. 
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g  
r other damage mechanisms such as creep or corrosion ( James,

972; Nikitin and Besel, 2008 ), creep and corrosion are unlikely to

ccur in air at room temperature for the material under considera-

ion. It is conjectured therefore that the phase transformation from

ustenite to martensite is most likely the key factor influencing

his behaviour. This transformation depends not only on the plas-

ic strain but also on the temperature see Fig. 9 . It is known that

or each temperature there is a specific critical plastic strain, below

hich no phase transformation occurs ( Baudry and Pineau, 1977 ).
n addition, it is clear from Fig. 9 that at each temperature there

s a saturation limit for the austenite-martensite transformation.

or this, reason the frequency effect is not seen above 5 Hz, which

eans the martensitic content has reached its saturation limit for

he specific temperature despite plastic strain increasing. It is ob-

erved from Fig. 9 that the maximum percentage of martensite at

3 °C is about 30%. In this study, the temperature at the tip area

as 25–28 °C for the steady crack growth period for loading ratio

 = 0 and R = −0.33. 

The result of this study is in agreement with reference ( Müller-

ollenhagen et al., 2010 ), where no noticeable difference was ob-

erved in the fatigue behaviour between frequencies of 90 Hz and

0 KHz. However, it is not in complete agreement with the re-

ults of reference ( James, 1972 ), where it is contended that crack

rowth decreases with increasing frequency as a consequence of

elf-heating leading to higher temperatures, which is known to in-

ibit the phase transformation. 

It is clear from Fig. 10 that for the case of loading at R = 0

nd R = −0.33 the increase in temperature is negligible for a crack

ength up to 40% of the ligament length and after this length

he temperature starts to increase slightly. Although, at R = −1 the

emperature is higher and increased gradually up to a length of

5% of the ligament length followed by large increase in temper-

ture up to 140 °C at the point of failure, the crack still grows at

 faster rate at lower frequency as shown in Fig. 11 . The results

f this study show that the self-heating of the specimen happens

nly in the case of reversed loading leading to an increase in the

emperature although not sufficient to result in faster crack growth

t higher frequency as mentioned in ( James, 1972 ). 

.2. Numerical study 

.2.1. Analysis model: geometry and boundary conditions 

Shown in Fig. 12 is a finite element model for fatigue specimens

sed in the experimental trials done in Section 4.1 . The model con-

ists of 23,618 plane-stress elements of which 22,988 (type CPS4),

90 (type CPS3), and 240 cohesive elements (type COH2D4). De-

ails on material properties for both the cohesive element and the

ulk material elements are presented in Table 1 , the numerical

nalysis was done at six loading frequencies (0.05, 0.1, 0.5, 5, 30,

0). The critical cohesive stress σ c for tests performed at the load-

ng frequency 0.05 Hz is set to be equal to the yield stress of the

aterial. Likewise the value of the parameter C is set by tuning

he model with the experimental results at the same loading fre-

uency of 0.05 Hz. The value of C is applied for all the analysis

erformed at different frequencies yielding good agreement with

xperimental results and thus provides good supporting evidence

or the validity of the approximation in Eq. (16) . 

Fig. 12 shows the applied boundary conditions for the model,

hich consists of a uniform cyclic displacement in the y-direction

pplied at the top surface with the bottom surface is fixed in all

irections. A number of stages are involved (see Table 4 ) in in-

rementing the applied displacement in order to accurately cap-

ure the experimental loading conditions (the displacement values

re recorded from the fatigue test). The first stage involves the

pplication of a ramp function to increase the load from zero to

.65 × 10 − 5 m. This is followed by stages with a sinusoidal cyclic

oad at R = 0, where the number of cycles at each stage is set to

nsure a match with the loading conditions incurred in the fatigue

xperiment. The loading conditions are tabulated in Table 4 and

resented for one loading frequency in Fig. 13 . 

.2.2. Mesh sensitivity analysis 

A mesh sensitivity analysis was preformed to confirm the con-

ergence of the analysis results. It has been found that crack

rowth-rate predictions show a remarkable insensitivity to mesh,
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Table 4 

Cyclic amplitude with the number of cycles at that amplitude. 

f = 0.05 Hz f = 0.1 Hz f = 0.5 Hz f = 0.5, 30 and 50 Hz 

Max δ (mm) N (cycles) Max δ (mm) N (cycles) Max δ (mm) N (cycles) Max δ (mm) N (cycles) 

Stage 2 0.073 6400 0.073 80 0 0 0.073 5600 0.073 80 0 0 

Stage 3 0.076 3200 0.0735 6400 0.0745 4800 0.0735 2400 

Stage 4 0.078 2400 0.076 4800 0.076 4800 0.074 4800 

Stage 5 0.08 1600 0.0795 3200 0.077 40 0 0 0.075 40 0 0 

Stage 6 0.082 1600 0.08 2400 0.078 3200 0.076 3200 

Stage 7 0.084 1600 0.083 2400 0.08 3200 0.0765 3200 

Stage 8 0.085 1600 0.085 2400 0.082 2400 0.078 2400 

Stage 9 0.86 1600 0.09 2400 0.083 2400 0.079 2400 

Stage 11 0.087 1600 0.096 1600 0.085 2400 0.08 2400 

Stage 12 0.09 800 0.10 1600 0.089 2400 0.081 2400 

Stage 13 0.092 800 0.102 1600 0.092 2400 0.083 2400 

Stage 14 0.096 800 0.104 800 0.096 2400 0.086 2400 

Stage 15 0.10 800 0.106 800 0.10 2400 0.088 2400 

Stage 16 0.102 800 0.108 800 0.108 2400 0.092 2400 

Stage 17 0.104 800 0.112 800 0.116 2400 0.094 2400 

Stage 18 0.112 800 0.116 800 0.132 800 0.098 1600 

Stage 19 0.12 800 0.12 800 0.144 800 0.102 1600 

Stage 14 0.152 800 0.124 800 0.176 800 0.108 1600 

Stage 16 0.206 until failure 0.13 800 0.206 until failure 0.12 1600 

0.206 until failure 0.132 800 

0.148 800 

0.206 until failure 

Fig. 17. Crack length as function of loading cycles at R = 0, f = 0.5Hz & �N 800. 

Fig. 18. Crack length as a function of loading cycles at R = 0, f = 5, 30 and 50Hz & 

�N 800. 
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.e. increasing the overall number of bulk and cohesive elements

as little impact on predictions. Greatest mesh sensitivity however

s displayed in the cohesive zone and a reasonable estimate for the

ize of this zone is obtainable from the relationship: 

 coh = 

E 

2 π

G Ic 

σ 2 
c 

(17)

hich for the loading considered provides a value of 12.5 mm. 

The effect of varying the number of cohesive elements used in

he cohesive zone is illustrated in Fig. 14 . The results confirm that

easonable predictions are possible with only a small number of

lements in the cohesive-zone and convergence is obtained when

he number of cohesive elements is higher than 50. 

.2.3. Numerical results 

The cohesive zone model introduced in Section 2 is used to

imulate the fatigue tests performed in Section 4.1 and the nu-

erical results confirm that the new cohesive model can pre-

ict crack growth behaviour at different loading frequencies with

ood accuracy and with a significant reduction in the required CPU

ime. The advantages of the new frequency-dependent CZM over

he available models in the literature (e.g. ( De-Andrés et al., 1999;

owashiraporn et al., 2005; Koutsourelakis et al., 2006; B.L. V Bak

t al., 2014 )) are the ability to capture the frequency effect and its

implicity. It does not require the formation of a relationship to

ink the damage to the number of cycles as in previous work. An-

ther advantage of the model is that it can be applied to both low

nd high-cycle fatigue analysis, since the number of cycles in the

oad envelope �N that used for the fast-track procedure is auto-

atically set according to the problem under consideration. 

The numerical predicted curves for crack growth with the num-

er of cycles along with experimental curves for different loading

requencies are shown in Figs. 15 to 18 . Fig. 15 presents the result

t loading frequency f = 0.05 Hz which is used to tune the cohe-

ive parameters (i.e. f o and C ) for the new model since σ c rate 

( f ) 
for

his loading frequency set to be equal to the material yield stress

t 0.1% strain and δc set to be equal to the crack tip opening dis-

lacement measured on a CT specimen. By using these cohesive

roperties, the fixed parameter C was determined first by tuning

he analysis result with the experimental data at 0.05 Hz. The value

f critical stress limit σ c 
( limit ) 

is then evaluated by tuning with the
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Table 5 

Percentage difference in predicted and experimentally determined crack lengths. 

N (cycles) f = 0.05 Hz f = 0.1 Hz f = 0.5 Hz f = 50 Hz 

a (mm) Error % a (mm) Error % a (mm) Error % a (mm) Error % 

80 0 0 0.98 −19.30 0.50 −19.80 0.38 −6.62 0.30 7.64 

12,0 0 0 2.18 −0.40 1.04 −7.60 0.79 −10.00 0.56 −2.15 

17,0 0 0 3.96 −1.94 1.77 0.09 1.36 −10.00 0.89 −4.40 

20,0 0 0 5.586 2.20 2.25 −6.25 1.75 −10.00 1.15 −5.66 

24,0 0 0 7.75 0.96 3.10 2.10 2.42 −8.80 1.50 −9.58 

28,0 0 0 4.19 4.24 3.25 −4.40 2.00 −8.51 

32,0 0 0 5.60 −5.86 4.25 −1.16 2.60 −7.80 

36,0 0 0 8.17 0.27 5.50 −1.44 3.29 −7.00 

40,0 0 0 7.40 8.82 4.22 −3.00 

44,0 0 0 5.50 0.60 

48,0 0 0 7.25 4.10 

52,0 0 0 9.50 −1.32 
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xperimental result at loading frequency (50 Hz). Finally, the value

f the base frequency f o was found using Eq. (16) by applying the

alue of σ c 
( limit ) 

and the cohesive parameters at 0.05 Hz. Predictions

btained with these settings when compared with data at other

requencies (i.e. 0.1, 0.5, 5 and 30 Hz) provide good support for the

orm of Eq. (16) and the new model. The predicted and experi-

entally obtained crack growth at loading frequencies of 0.1 Hz

nd 0.5 Hz are shown in Figs. 16 and 17 , respectively, with the

esults at 5, 30, and 50 Hz shown in Fig. 18 . It is clear from the

esults that the predicted growth rate by the new model at differ-

nt loading frequencies is in good agreement with the experimen-

al results. The percentage of error in the estimated crack length

(estimated length-measured length)/measured length) × 100%] is

hown in Table 5 , where the minus sign signifies that the model

s under estimating the crack length. From the results in Table 5 ,

t is clear that the predicted crack length matches the measured

ength to an acceptable level of accuracy. 

. Conclusion 

Presented in the paper is a new frequency-dependent trape-

oidal cohesive-zone model with fast-track facility that can be

sed for low and high-cycle fatigue simulation. The following con-

lusions can be drawn from the results presented: 

• Loading frequency has an effect on the crack-growth in

austenitic stainless-steel 304 at room temperature. 

• Fatigue cracks grow faster at lower frequency and slower at

higher frequency in austenitic stainless-steel 304 as a result of

a likely increase in martensitic content. 

• Crack growth rates are similar for frequencies above 5 Hz. 

• The rate-dependent critical stress increases with loading fre-

quency up to 5 Hz and takes up a nearly constant value at fre-

quencies higher than 5 Hz. 

• The new frequency-dependent CZM model has been shown to

give an acceptable prediction with a significant reduction in the

computational time of the order of �N 

− 1 . 

• The number of elements in the cohesive-zone has a minor ef-

fect on the crack growth prediction. 

• A limitation of the model is that it does consider the effect of

R-ratio, and this should be considered in future works. 
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