The Improved $6^{\text {th }}$ Order Runge-Kutta Method for Solving Initial Value Problems

Abbas Al-Shimmary ${ }^{1}$, Amina Kassim Hussain ${ }^{2}$, Sajeda Kareem Radhi ${ }^{3}$, Ahmed Hadi Hussain ${ }^{4}$
${ }^{1}$ Department of Electrical Engineering
College of Engineering
Mustansiriyah University
Baghdad, Iraq
${ }^{2}$ Department of Material Engineering
College of Engineering
Mustansiriyah University
Baghdad, Iraq
${ }^{3}$ Department of Remote Sensing
College of Remote Sensing and Geophysics
AL-Karkh University of Science
Baghdad, Iraq
${ }^{4}$ Department of Automobile Engineering
College of Engineering Al-Musayab
University of Babylon
Babil, Iraq

email: abbs.fadhil62@uomustansiriyah.edu.iq
(Received March 1, 2022, Accepted April 6, 2022)

Abstract

To numerically solve initial value problems (IVPs), in this paper we construct and apply an improved $6^{\text {th }}$ order Runge-Kutta method

Key words and phrases: Initial value problems, Runge-Kutta method, order conditions.
AMS (MOS) Subject Classifications: 65L05.
ISSN 1814-0432, 2022, http://ijmcs.future-in-tech.net
(IRK6M) which is based on the traditional Runge-Kutta method (RMK), but with two steps. The method produces results that were close to the $6^{\text {th }}$ order Runge-Kutta method (RK6M), but with fewer numbers of functions evaluations. We also determine the order conditions of the method. To show the method's effectiveness, an illustrative problem is solved. We compare our results to the exact solution as well as the (RK6M), so it is supported by Table and Figure using MATLAB.

1 Introduction

Differential equations appear in a variety of physical, chemical, biological, and engineering phenomena. Moreover, differential equations represent the majority of the laws that describe these phenomena. Many researchers have been interested in solving IVPs to obtain approximate solutions using different numerical methods. Some authors have improved the efficiency of RKM by increasing the Taylor series terms. Other researchers are currently working to improve the Runge-Kutta method for the fourth and fifth orders, but with a fewer number of functions evaluation, as shown in [1-5]. The main aim of this paper is to improve the RK6M to obtain the order conditions. Then we use an illustrative example to examine the method effectively.

2 Derivation of the method

Consider the traditional general form of IVP of the form

$$
\begin{equation*}
u^{\prime}=\phi(t, u(t)), u\left(t_{0}\right)=u_{0}, t \in[0,1] \tag{2.1}
\end{equation*}
$$

To get an approximate solution of $u(t)$, the approach of the IRK6M is proceed to compute u_{n+1} as an approximation to $u\left(t_{n}+h\right)$.

$$
\begin{equation*}
u_{n+1}=u_{n}+h\left(b_{1} K_{1}+b_{-1} K_{-1}+\sum_{i=2}^{7} b_{i}\left(K_{i}-K_{-i}\right)\right) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{gather*}
K_{1}=\phi\left(t_{n}, u\left(t_{n}\right)\right) \tag{2.3}\\
K_{-1}=\phi\left(t_{n-1}, u\left(t_{n-1}\right)\right) \tag{2.4}\\
K_{i}=\phi\left(t_{n}+c_{i} h, u_{n}+h \sum_{j=1}^{i-1} a_{i j} K_{j}\right) \tag{2.5}
\end{gather*}
$$

$$
\begin{equation*}
K_{-i}=\phi\left(t_{n}+c_{i} h, u_{n-1}+h \sum_{j=1}^{i-1} a_{i j} K_{-j}\right) \tag{2.6}
\end{equation*}
$$

For $c_{i} \in[0,1], i=2, \ldots, 7$ and satisfying the condition $c_{i}=\sum_{j=1}^{i-1} a_{i j}$, to determine the coefficients, we expand 2.5,2.6 using Taylor's series expansion and the results equated with $u\left(t_{n}+h\right)$ given by

$$
\begin{equation*}
u\left(t_{n}+h\right)=u\left(t_{n}\right)+h u^{\prime}\left(t_{n}\right)+\frac{h^{2}}{2!} u^{\prime \prime}\left(t_{n}\right)+\cdots+\frac{h^{6}}{6!} u^{(6)}\left(t_{n}\right)+o\left(h^{7}\right) \tag{2.7}
\end{equation*}
$$

First, we calculate the successive derivatives of the equation 2.1 up to the sixth derivative as follows

$$
\begin{gather*}
u^{\prime \prime}(t)=\phi_{x}+\phi_{u} \phi \tag{2.8}\\
u^{\prime \prime \prime}(t)=\left(\phi_{x^{2}}+2 \phi_{u x} \phi+\phi_{u^{2}} \phi^{2}\right)+\phi_{u}\left(\phi_{x}+\phi_{u} \phi\right) \tag{2.9}\\
u^{(4)}(t)=\left(\phi_{x^{3}}+3 \phi_{x^{2} u} \phi+3 \phi_{x u^{2}} \phi^{2}+\phi_{u^{3}} \phi^{3}\right)+\phi_{u}\left(\phi_{x^{2}}+2 \phi_{u x} \phi+\phi_{u^{2}} \phi^{2}\right) \\
+\left(3 \phi_{u^{2}} \phi+3 \phi_{x u}+\phi_{u^{2}}\right)\left(\phi_{x}+\phi_{u} \phi\right) \tag{2.10}
\end{gather*}
$$

$$
\begin{array}{r}
u^{(5)}(t)=\left(\phi_{x^{4}}+4 \phi_{x^{3} u} \phi+6 \phi_{x^{2} u^{2}} \phi^{2}+4 \phi_{x u^{3}} \phi^{3}+\phi_{u^{4}} \phi^{4}\right)+\phi_{u}\left(\phi_{x^{3}}+3 \phi_{x^{2} u} \phi+\right. \\
\left.3 \phi_{x u^{2}} \phi^{2}+\phi_{u^{3}} \phi^{3}\right)+\left(3 \phi_{u^{2}} \phi+3 \phi_{x u}+\phi_{u^{2}}\right)\left(\phi_{x}+\phi_{u} \phi\right) \\
u^{(6)}(t)=\left(\phi_{x^{5}}+5 \phi_{x^{4} u} \phi+10 \phi_{x^{3} u^{2}} \phi^{2}+10 \phi_{x^{2} u^{3}} \phi^{3}+5 \phi_{x u^{4}} \phi^{4}+\phi_{u^{5}} \phi^{5}\right)+\phi_{u}\left(\phi_{x^{4}}+\right. \\
\left.4 \phi_{x^{3} u} \phi+6 \phi_{x^{2} u^{2}} \phi^{2}+4 \phi_{x u^{3}} \phi^{3}+\phi_{u^{4}} \phi^{4}\right)+\left(3 \phi_{u^{2}} \phi+3 \phi_{x u}+\cdots+\phi_{u} \phi\right) \tag{2.12}
\end{array}
$$

By plugging 2.8-2.12 into 2.7, we get

$$
\begin{align*}
& u_{n+1}=u_{n}+h \phi+\frac{h^{2}}{2!}\left(\phi_{x}+\phi_{u} \phi\right)+\frac{h^{3}}{3!}\left(\left(\phi_{x^{2}}+2 \phi_{u x} \phi+\phi_{u^{2}} \phi^{2}\right)+\phi_{u}\left(\phi_{x}+\phi_{u} \phi\right)\right)+\ldots \\
& +\frac{h^{6}}{6!} u^{(6)}\left(\phi_{x^{5}}+5 \phi_{x^{4} u} \phi+10 \phi_{x^{3} u^{2}} \phi^{2}+10 \phi_{x^{2} u^{3}} \phi^{3}+5 \phi_{x u^{4}} \phi^{4}+\phi_{u^{5}} \phi^{5}\right)+\phi_{u}\left(\phi_{x^{4}}+\right. \\
& \left.4 \phi_{x^{3} u} \phi+6 \phi_{x^{2} u^{2}} \phi^{2}+4 \phi_{x u^{3}} \phi^{3}+\phi_{u^{4}} \phi^{4}\right)+\left(3 \phi_{u^{2}} \phi+3 \phi_{x u}+\cdots+o\left(h^{7}\right)\right. \tag{2.13}
\end{align*}
$$

Define $F_{n}=\sum_{k=0}^{n}\binom{n}{k} \phi_{x^{n-k} u^{k}} \phi^{k}$, for $n=1, \ldots, 5,2.13$ can be written as

$$
\begin{array}{r}
u_{n+1}-u_{n}=h \phi+\frac{h^{2}}{2!} F_{1}+\frac{h^{3}}{3!}\left(F_{2}+\phi_{u} F_{1}\right)+\frac{h^{4}}{4!}\left(F_{3}+\phi_{u} F_{2}+\left(3 \phi_{u^{2}} \phi+3 \phi_{x u}+\phi_{u^{2}}\right)\right. \\
\left.F_{1}\right)+\frac{h^{5}}{5!}\left(F_{4}+\phi_{u} F_{3}+\left(3 \phi_{u^{2}} \phi+\ldots\right)+\frac{h^{6}}{6!}\left(F_{5}+\cdots+o\left(h^{7}\right)\right.\right. \tag{2.14}
\end{array}
$$

After some algebraic simplification, we get a system of nonlinear equations whose solution represents the so-called order conditions

3 Order conditions

Using the Taylor series expansion up to order six for $k_{1}, k_{2}, \ldots, k_{7}$ and k_{-1}, \ldots, k_{-7} which were used in equations 2.3-2.6, we have

$$
\begin{gather*}
K_{1}=\phi \tag{3.15}\\
k_{-1}=\phi+\frac{h}{2} F_{1}+\frac{h^{2}}{6}\left(F_{2}+\phi_{u} F_{1}\right)+\frac{h^{3}}{24}\left(F_{3}+\phi_{u} F_{2}+\left(3 \phi_{u^{2}} \phi+3 \phi_{x u}+\phi_{u^{2}}\right) F_{1}\right) \\
+\frac{h^{4}}{120}\left(F_{4}+\phi_{u} F_{3}+\left(3 \phi_{u^{2}} \phi+3 \phi_{x u}+\phi_{u^{2}}\right) F_{1}\right)+\cdots+o\left(h^{7}\right) \tag{3.16}\\
k_{7}=\phi+\frac{h}{2} c_{7} F_{1}+\frac{h^{2}}{6}\left(c_{7}^{3} F_{2}+2 c_{7} a_{21} \phi_{u} F_{1}\right)+\frac{h^{3}}{24}\left(c_{7}^{3} F_{3}+2 c_{7}^{2} a_{21}^{2} \phi_{u} F_{2}+\left(3 \phi_{u^{2}} \phi\right.\right. \\
\left.\left.+3 \phi_{x u}+\phi_{u^{2}}\right) F_{1}\right)+\frac{h^{4}}{120}\left(c_{7}^{4} F_{4}+2 c_{7}^{3} a_{21}^{3} \phi_{u} F_{3}+\left(3 \phi_{u^{2}} \phi+\cdots+o\left(h^{7}\right)\right)\right) \tag{3.17}\\
k_{-7}=\phi+\frac{h}{2}\left(1-c_{7}\right) F_{1}+\frac{h^{2}}{6}\left(\left(1-c_{7}\right)^{2} F_{2}+\left(1-2 c_{7} a_{21}\right)^{2} \phi_{u} F_{1}\right)+\frac{h^{3}}{24}\left(1-c_{7}\right)^{3} F_{3}+(1) \\
\left.\left.-2 c_{7} a_{21}\right)^{3} \phi_{u} F_{2}+\left(3 \phi_{u^{2}} \phi+3 \phi_{x u}+\phi_{u^{2}}\right) F_{1}\right)+\cdots+o\left(h^{7}\right) \tag{3.18}
\end{gather*}
$$

Substituting the above formulas 3.15-3.18 into 2.2, we get.

$$
\begin{array}{r}
u_{n+1}=u_{n}+h\left(b_{1}-b_{-1}\right) F_{1}+h^{2}\left(b_{-1}+b_{2}+b_{3}+\cdots+b_{7}\right)+\frac{h^{3}}{2}\left(b_{-1}+\left(1-2 c_{2}\right) b_{2}+\ldots\right. \\
 \tag{3.19}\\
\left.-\left(1-2 c_{7}\right) b_{7}\right)\left(F_{2}+\phi_{u} F_{1}\right)+\ldots
\end{array}
$$

Comparing 3.19 with 2.7 , we get a system of nonlinear equations as shown in Table 1.

By choosing some parameters as free, we obtain the others which are presented by Table 2.

Table 1: Order condition of (IRK6M)

Order method	Order conditions
First order	$b_{1}-b_{-1}=1$
Second order	$b_{-1}+\sum_{i=1}^{7} b_{i}=\frac{1}{2}$
Third order	$\sum_{i=2}^{7} b_{i} c_{i}=\frac{5}{12}$
Sixth order	$\sum_{i=2}^{7} b_{i} c_{i}^{4}=\frac{1}{5}$
	$\sum_{i=3}^{7} b_{i} c_{i}^{2}\left(\sum_{j=2}^{i-1} a_{i j} c_{j}\right)=\frac{1}{10}$
	$\sum_{i=3}^{7} b_{i} c_{i}\left(\sum_{j=2}^{i-1} a_{i j} c_{j}^{2}\right)=\frac{1}{15}$
	$\sum_{i=3}^{7} b_{i}\left(\sum_{j=3}^{i-1} c_{j}\left(\sum_{k=2}^{j-1} a_{i j} a_{j k}\right) c_{k}\right)=\frac{1}{20}$
	$\sum_{i=3}^{7} b_{i}\left(\sum_{j=2}^{i-1} a_{i j} c_{j}^{3}\right)=\frac{1}{20}$
	$\sum_{i=3}^{7} b_{i} c_{i}\left(\sum_{j=3}^{i-1}\left(\sum_{k=2}^{j-1} a_{i j} a_{j k}\right) c_{k}\right)=\frac{1}{30}$
	$\left.\sum_{i=3}^{7} b_{i}\left(\sum_{j=3}^{i-1}\left(\sum_{k=2}^{j-1} a_{i j} c_{j} a_{j k}\right) c_{k}\right)\right)=\frac{1}{40}$
	$\sum_{i=3}^{7} b_{i}\left(\sum_{j=3}^{i-1}\left(\sum_{k=2}^{j-1} a_{i j} a_{j k}\right) c_{k}^{2}\right)=\frac{1}{60}$
	$\sum_{i=3}^{7} b_{i}\left(\sum_{j=4}^{i-1}\left(\sum_{k=3}^{j-1}\left(\sum_{m=2}^{k-1} a_{i j} a_{j k} a_{k m}\right) c_{m}\right)\right)=\frac{1}{120}$

Table 2: Set of coefficients of Butcher's tableau for (IRK6M)

$1 / 3$	0.3333							
$2 / 3$	0	0.6667						
$1 / 3$	0.1101	0.1120	0.1112					
$5 / 6$	0.3281	-0.1879	0.5264	0.1667				
$1 / 6$	0.5165	0.7894	-0.2493	0.3333	-1.2232			
1	0.2858	-0.1429	0.2755	0.3072	0.1418	0.1326		
$\frac{-187}{400}$	$\frac{213}{400}$	$\frac{-1}{15}$	$\frac{41}{120}$	0	$\frac{83}{300}$	$\frac{-7}{60}$	0	

4 Numerical examples

In this section, we test the problem where the IRK6M and RK6M are applied to show the efficiency of the method and the approximate solution compared with the exact solution. The problem is solved for $t \in[0,1]$.

4.1 Problem 1

$u^{\prime}=t \cos u, u(0)=1$, (an oscillatory problem), where the exact solution is $u(t)=e^{s i n t}$.

Table 3: Numerical Solutions Using RK6M, IRK6M of problem 1.

t	Exact	IRK6M	RK6M	IRKM $_{\text {Error }}$	RK6M $_{\text {Error }}$
0.1	1.1050	1.1048	1.1048	0.0002	0.0002
0.2	1.2198	1.2142	1.2194	0.0056	0.0004
0.3	1.3438	1.3325	1.3432	0.0113	0.0006
0.4	1.4761	1.4589	1.4753	0.0172	0.0008
0.5	1.6151	1.5923	1.6140	0.0228	0.0011
0.6	1.7588	1.7309	1.7574	0.0279	0.0014
0.7	1.9045	1.8726	1.9028	0.0319	0.0017
0.8	2.0490	2.0145	2.0470	0.0345	0.002
0.9	2.1887	2.1536	2.1864	0.0351	0.0023
1.0	2.3198	2.2862	2.3172	0.0336	0.0026

Figure 1: Numerical Solutions of Probem 1

Acknowledgment. The author would like to thank Mustansiriyah University (www.uomustansiriyah.edu.iq) Baghdad, Iraq for its support in the present work.

References

[1] Abbas Fadhil Al-Shimmary, Solving initial value problem using RungeKutta 6th order method, ARPN Journal of Engineering and Applied Sciences, 12, no. 13, (2017), 3953-3961.
[2] Higinio Ramos, Mufutau Ajani Rufai, An adaptive pair of one-step hybrid block Nyström methods for singular initial-value problems of LaneEmdenFowler type, Mathematics and Computers in Simulation, 1, no. 193, (2022), 497-508.
[3] Faranak Rabiei, Fudziah Ismail, Fifth-order improved RungeKutta method with reduced number of function evaluations, Australian Journal of Basic and Applied Sciences 6, no. 25, (2012), 97-105.
[4] Aliyu Umar Mustapha, Abdulrahman Ndanusa, and Ismail Gidado Ibrahim, A fourth-order four-stage trigonometrically-fitted improved Runge-Kutta method for oscillatory initial value problems, 2021.
[5] A. L. Abbas, Sajeda Kareem Radhi, Amina Kassim Hussain, Haar wavelet method for solving coupled system of fractional order partial differential equations, Indonesian Journal of Electrical Engineering and computer Science, 21, no. 3, (2021), 1444-1454.

