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Abstract: The production of active pharmaceutical ingredients (APIs) and fine chemicals is accel-
erating due to the advent of novel microreactors and new materials for immobilizing customized
biocatalysts that permit long-term use in continuous-flow reactors. This work studied the scalability
of a tunable U-shape magnetic nanoparticles (MNPs)-based microreactor. The reactor consisted
of a polytetrafluoroethylene tube (PTFE) of various inner diameters (ID = 0.75 mm, 1.50 mm, or
2.15 mm) and six movable permanent magnets positioned under the tube to create reaction chambers
allowing the fluid reaction mixture to flow through and above the enzyme-loaded MNPs anchored
by permanent magnets. The microreactors with various tube sizes and MNP capacities were tested
with the preparative scale kinetic resolution of the drug-like alcohols 4-(3,4-dihydroisoquinolin-2(1H)-
yl)butan-2-ol (±)-1a and 4-(3,4-dihydroquinolin-1(2H)-yl)butan-2-ol (±)-1b, utilizing Lipase B from
Candida antarctica immobilized covalently onto MNPs, leading to highly enantioenriched products
[(R)-2a,b and (S)-1a,b]. The results in the U-shape MNP flow reactor were compared with reactions
in the batch mode with CaLB-MNPs using similar conditions. Of the three different systems, the one
with ID = 1.50 mm showed the best balance between the maximum loading capacity of biocatalysts in
the reactor and the most effective cross-section area. The results showed that this U-shaped tubular
microreactor might be a simple and flexible instrument for many processes in biocatalysis, providing
an easy-to-set-up alternative to existing techniques.

Keywords: magnetic nanoparticles; flow biocatalysis; lipase; kinetic resolution; microreactor; chiral
3D N-heterocycle

1. Introduction

Due to the extensive substrate specificity, good selectivity, mild reaction conditions,
and environmentally friendly nature, biocatalysis is a field that has gained increased
attention in recent years in the chemical, pharmaceutical, cosmetic, food industries, and
medicinal areas [1,2].

Among these biocatalysts, lipases (EC 3.1.1.3) represent a class of enzymes—produced
by various sources, including animal, vegetable, and microbiological ones—with the inherent
ability to hydrolyze fats and lipids. In addition to hydrolysis, they can catalyze interesterifica-
tion, transesterification, esterification, alcoholysis, acidolysis, and aminolysis processes [3].
The lipases generally have a very broad substrate range and recognize a variety of non-natural
substrates, which makes them appealing for applications in different sectors. One of their
most important applications is the synthesis of enantiopure active pharmaceutical ingredi-
ents (APIs) in the pharma industry, by exploiting the kinetic resolution approach, in which
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one enantiomer is selectively converted over the other with high enantiomeric selectivity,
producing highly enantiopure APIs [4,5].

One of the most often employed enzymes in biocatalytic applications is the lipase B
from Candida antarctica (CaLB)—which exhibits strong catalytic activity towards a wide
range of substrates with variable size and polarity with remarkable activity, selectivity, and
stability in various processes such as hydrolysis, transesterifications, Michael addition, and
so on—to prepare compounds that are particularly valuable for drug development [6–8].

Immobilization may improve the enzyme’s stability and ability to manufacture pure
products [9–11]. It may also improve storage stability and reduce the environmental burden
by making the biocatalyst separation and recovery easier, thereby significantly lowering
operational expenses. Immobilization techniques utilized for CaLB include adsorption, the
covalent approach, entrapment [12,13], and cross-linked enzyme aggregates [14]. These
processes are performed using several different matrices and supports, such as silica and
derivates [15–17], carbon nanotubes [18,19], and magnetic nanoparticles (MNPs) [20,21].

The MNP-based methods can benefit from the magnetic separability of the particles
from various chemical and biological materials at the micro- and nanoscale [22–24]. They
bring many advantages, which may be useful in biomedical applications and the phar-
macological field, including small size, large surface-to-volume ratio enabling improved
adsorption, and potential for manipulating them magnetically [25]. MNPs can undergo
easy surface modification through functionalization with different materials providing
further benefits such as strong enzyme affinity and binding [23,24,26]. Understandably,
MNPs and their derivatives are beneficial supports for enzyme immobilization.

Various forms of CaLB immobilized by the aid of MNPs (CaLB-MNPs) were utilized
as biocatalysts in a variety of applications such as the deacidification of rice bran oil [27],
biodiesel production from waste oil [28–30], the production of flavor esters [31], and diverse
hydrolysis and esterification reactions [32–34], including the kinetic resolution and dynamic
kinetic resolution of racemic compounds [20,35–37].

Even today, batch reactors are used most frequently in the pharmaceutical sector to
produce APIs [38–40]. However, upscaling batch processes from the laboratory scale to
larger scale requires substantial redesign. Microreactor technology using flow chemistry—
applying a system continuously injecting a fluid containing the starting material through
the reactor, resulting in a product stream—contributes to the simplification of the main
challenges of scaling up [38–41]. Flow chemistry has several benefits including the ease of
control and automation, the capacity to execute reactions that are challenging or very difficult
to make in batch mode in a safer way, and the enhanced selectivity, eco-friendliness, and
sustainability [40]. The flow systems, based mostly on microreactor technology, can potentially
improve about 50% of all chemical processes [42].

Microreactor technology is developing more and more in enzyme biotechnology and
biocatalysis for biocatalyst screening, evolution, and other high-throughput biocatalytic
processes. The manufacturing of pharmaceuticals and fine chemicals beneficially utilizes
immobilized and tailored biocatalysts, enabling long-term use in reactors operating under
a continuous flow regime [43]. Enzymatic microreactors—such as microfluidics chips, cap-
illary microreactors, and microtube reactors—become valuable instruments for analytical
processes [44], for kinetic studies of immobilized enzymes [45] and for parameter optimiza-
tion in biocatalysis and biotransformations [46], for example for the kinetic resolution (KR)
of secondary alcohols [47]. In the microreactor area, aiming tunable, scalable, and versatile
reactors, 3D printing proved to be a useful tool [48].

Several studies combined the benefits of microreactor technology and the immobiliza-
tion of biocatalysts on magnetic nanoparticles for various diagnostic applications [49,50]
or for multipurpose applications, such as the microfluidic multiple-cell chip reactor filled
with enzyme-coated MNPs [51,52]. Microreactors applying MNP biocatalysts enabled
compartmentalization during small-scale biotransformation assays [53]. A magnetic os-
cillation microfluidic chip optimization of operating conditions for His-tagged enzymes
immobilized on affinity MNPs was utilized for the stereoselective synthesis of chiral com-
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pounds [54]. Recently, an easy-to-create MNP-based PTFE tube microreactor with six
adjustable permanent magnets under the tube was applied for the CaLB-MNP-catalyzed
enantiomer selective acylation of racemic alcohol, 4-(morpholin-4-yl)butan-2-ol in continu-
ous flow mode [55].

Inspired by the work on the use of the simple U-shape flow reactor [55], the main
goal of this study was to test the scalability of this simple MNP flow microreactor by
applying reactor body tubes of different inner diameters filled with different amounts
of MNP biocatalyst. Since CaLB-MNP-catalysis in the simple U-shape MNP reactor was
efficiently applicable for the small-scale KR of a drug-like secondary alcohol comprising a
nonplanar N-heterocyclic part [55], in this work, the scalability of the U-shape MNP-based
microreactor was tested with the CaLB-MNP-catalyzed preparative scale kinetic resolution
of further secondary alcohols as drug-like fragments.

2. Results and Discussion

The assessment of the structural features of active pharmaceutical ingredients (APIs)
of commercialized drugs showed that the most abundant ring fragment within APIs was
the phenyl ring. The aromatic phenyl ring is the most typical 2D fragment, since it con-
tains only sp2-hybridized heavy atoms resulting in the planarity of the ring. The further
ring fragments in the following three positions are saturated heterocycles such as mor-
pholine, piperidine, and piperazine [56]. These rings can be termed as 3D fragments
because they all contain at least one sp3-hybridized heavy atom, rendering them nonpla-
nar. An analysis of the drug-likeness of various molecules revealed that the presence of
such nonplanar fragments—resulting in less rigid and sterically more complex molecular
skeletons—enhanced the drug-likeness of the API candidates without significantly increas-
ing the molecular weight [57]. The easiness of the preparation of racemic 4-(morpholyn-
4-yl)butan-2-ol through the aza-Michael reaction of the N-heterocycle and methyl vinyl
ketone followed by a simple sodium borohydride reduction of the formed ketone [55]
inspired us to extend this methodology to synthesize further 3D-fragment-containing 4-
(N-heterocycle-substituted)butan-2-ols analogously. Thus, the racemic secondary alcohol
substrates for this study were prepared with the straightforward two-step aza-Michael addi-
tion of the 3D N-heterocycles isoquinoline or quinoline (HcNH, in Scheme 1) to methyl vinyl
ketone/sodium borohydride reduction synthesis sequence leading via the corresponding
ketones 3a,b to the desired racemic 4-(3,4-dihydroisoquinolin-2-(1H)-yl)butan-2-ol (±)-1a
and 4-(3,4-dihydroquinolin-1-(2H)-yl)butan-2-ol (±)-1b (Scheme 1).

2.1. Kinetic Resolution of Racemic 4-(3,4-Dihydroisoquinolin-2-(1H)-yl)butan-2-ol (±)-1a and
4-(3,4-Dihydroquinolin-1-(2H)-yl)butan-2-ol (±)-1b with CaLB-MNP Biocatalyst in Batch Mode

The biocatalyst chosen for this scalability study was the robust lipase B from Candida
antarctica immobilized by covalent binding onto magnetic nanoparticles (CaLB-MNPs),
because this form proved to be efficient and stable in various reaction modes including the
convenient U-shape MNP microreactor [55]. Thus, the applicability and scalability of the
U-shape MNP reactor were studied using the kinetic resolution of synthesized secondary
alcohols (±)-1a and (±)-1b with vinyl acetate and CaLB-MNPs in batch and continuous
flow modes (Scheme 1).
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Our efforts to analyze the enantiomeric composition of the products by GC were
successful only partially since we could separate the enantiomers of the acetates (±)-2a
and (±)-2b) only but not of the alcohols (±)-1a and (±)-1b) (see Sections S1.2. and S4.
of Supplementary Materials). Nevertheless, the calculation of the enantiomeric ratio (E)
characterizing the degree of enantiomer selectivity in the irreversible KR processes (Ref. [58]:
E = k(R)/k(S)) was feasible by using the conversion (c) and enantiomeric composition of the
product fractions (eeP).

First, the time course of the KRs in batch mode was analyzed at four different substrate
concentrations (12.5 mM, 25 mM, 50 mM, and 100 mM for both (±)-1a and (±)-1b)) for 24 h
(Figure 1).

Apparently, the kinetic resolution of the isoquinoline-containing alcohol (±)-1a
(Figure 1a) was slower than that of the quinoline-derived substrate (±)-1b (Figure 1b).
The KR process from (±)-1a achieved 50% conversion after 24 h only at the lower sub-
strate concentrations (12.5 mM and 25 mM) but not at the higher concentrations (50 mM
or 100 mM) (Figure 1a). The observation of conversion higher than 50% of the racemate
indicated that the enantiomer selectivity of the process favoring the (R)-enantiomer [(R)-1a]
was not exclusive. This was confirmed by the enantiomeric ratio (E) [58] calculated for
the process indicating a high but not outstanding value (E ~125 ± 28 within all the four
series of experiments from (±)-1a). Accordingly, the enantiopurity of the forming enan-
tiomer remained in the 96–98%ee range even at small degrees of conversion. The absolute
configuration of the product (R)-2b was assigned by analogy with the (R)-configuration of
the faster-reacting enantiomer of the isosteric 4-phenybutan-2-ol [59] or 4-(morpholyn-4-
yl)butan-2-ol [55] and was confirmed using our established calculation method [60].

On the other hand, the kinetic resolution of the quinoline derivative (±)-1b
(Figure 1b) was faster, achieving 50% conversion after 6 h at the lowest substrate con-
centration (12.5 mM) and after 24 h at the highest substrate concentration (100 mM). Like
the KR of isoquinoline-containing alcohol (±)-1a, the enantiomer selectivity of the CaLB-
MNP-catalyzed acylation of the quinoline-containing alcohol (±)-1b was high but not
exclusive (E ~104 ± 32 within all the four series of experiments from (±)-1b), indicated
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also by the conversions from racemates exceeding 50% at substrate concentrations below
50 mM.
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Based on these results, preparative scale KRs of racemic (±)-1a and (±)-1b were
performed at 25 mM substrate concentration (Table 1). First, the CaLB-MNP-catalyzed KR
of the isoquinoline-containing alcohol (±)-1a was performed at 25 ◦C utilizing a 1:20 mass
ratio of substrate to CaLB-MNP, resulting in the (R)-acetate [(R)-2a] with high enantiopurity
(96.7%ee) and the less reactive alcohol enantiomer [(S)-1a] in moderate enantiomeric excess
(76%ee; using the ee(S)-1a = c × ee(R)-2a/(1 − c) equation and the experimental c and ee(R)-2a
values) after 90 h from a reaction achieving 44% of conversion. The isolation involving
preparative TLC allowed the excellent (~94%) recovery of the ester fraction (R)-2a and
less efficient (~31%) recovery of the alcohol fraction (S)-1a. Interestingly, the sign of
optical rotation for the alcohol (S)-1a switched from negative at 356 nm to positive at
578 nm. The wavelength dependence of the optical rotation for the ester (R)-2a was much
less pronounced (the negative value at 365 nm decreased to 68% at 578 nm but without
changing the sign).

Table 1. Kinetic resolution of racemic 4-(3,4-dihydroisoquinolin-2(1H)-yl)butan-2-ol (±)-1a and
racemic 4-(3,4-dihydroquinolin-1(2H)-yl)butan-2-ol (±)-1b catalyzed by CaLB-MNP in batch mode.

Subst. Time (h) Temp. (◦C) Conv. (%) Product Yield 1 (%) ee 2 (%) E 3 [α]365
4 [α]578

4

(±)-1a 90 25 44 (R)-2a 41.3 96.7 137 +9.1 +6.2
25 44 (S)-1a 17.5 76.0 5 137 −6.4 +1.8

(±)-1b 30 25 41 (R)-2b 29.2 96.8 126 −29.8 −0.3
25 41 (S)-1b 13.1 67.3 5 126 +3.6 +12.2

(±)-1b 36 20 38 (R)-2b 24.6 97.9 180 −27.3 −0.3
(±)-1b 75 20 49 (R)-2b 41.2 95.4 136 −26.8 −0.4
(S)-1b 6 6 6 (S)-2b 6 60.2 87.2 +24.3 +0.3

1 From kinetic resolution of the corresponding substrate in batch mode after reaching the conversion as indicated
((±)-1a or (±)-1b (410 mg), CaLB-MNP (20 mg) and vinyl acetate (500 µL) in MTBE-hexane mixture (1:2 ratio,
10 mL) in a vial at 20 ◦C shaken in orbital shaker at 600 rpm). 2 Determined by chiral GC (see Supplementary
Materials) 3 Calculated from the conversion (c) and enantiomeric excess of the product fraction (ee(R)-2) according
to Chen et al. [58]. 4 Determined at 20 ◦C (c = 3, in ethanol). Acetate 2a,b samples were measured immediately
after dissolving. 5 Calculated from the conversion (c) and enantiomeric ratio by the ee(S)-1 = c × ee(R)-2/(1 − c)
equation. 6 Prepared by acetylation of (S)-1b (obtained after 49% conversion, using AcCl/5M NaOH in ethyl
acetate: see Sections S3.6 and S3.7 of Supplementary Materials).
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Next, the CaLB-MNP-catalyzed KR of the faster-reacting quinoline-containing alcohol
(±)-1b was performed at 25 ◦C utilizing a 1:20 mass ratio of substrate to CaLB-MNP as well.
This KR achieved reasonable conversion (41%) in a much shorter reaction time (30 h) as
was required for the isoquinoline-containing alcohol. The degree of enantiomer selectivity
was similar for the KRs from the two alcohols (E = 137 from (±)-1a; E = 126 from (±)-1b)),
allowing isolation of the (R)-acetate [(R)-2b] also in high enantiopurity (96.8%ee) with good
recovery (71%) and the less reactive (S)-alcohol [(S)-1b] in moderate enantiomeric excess
(67.3%ee; calculated from experimental c and ee(R)-2a values) with lower recovery (22%). To
enhance enantiopurity, the temperature was lowered to 20 ◦C using lower conversion for
the ester (R)-2b with improved ee, and higher conversion for the residual alcohol (S)-1b in
higher ee. As expected, higher enantiomer selectivity was found (E = 180 and 136, for the
reactions conducted for 38% and 49% conversions, respectively) and at lower conversion
(38%), it was possible to enhance the enantiomeric excess of (R)-2b to 97.9%ee (from 96.8%ee
at c = 41%), while at higher conversion (49%), the enantiopurity of (S)-1b improved to
87.2%ee (from 67.3%ee at c = 41%). The significant wavelength dependence of the optical
rotation could be observed in this case as well. The optical rotations for both the ester (R)-2b
and the alcohol (S)-1b were significantly higher at 365 nm than at 578 nm but without
changing the sign.

2.2. Kinetic Resolution Experiments with Racemic 4-(3,4-Dihydroisoquinolin-2(1H)-yl)butan-2-ol
(±)-1a and 4-(3,4-Dihydroquinolin-1(2H)-yl)butan-2-ol (±)-1b in Continuous Flow Mode
U-Shape Reactor Utilizing CaLB-MNPs

Since CaLB-MNP-catalysis in the simple U-shape MNP reactor was efficiently applica-
ble for the small-scale KR of the drug-like racemic 4-(morpholyn-4-yl)butan-2-ol comprising
a nonplanar N-heterocyclic part [55], in this work, the scalability of the U-shape MNP-based
microreactor was tested further with the CaLB-MNP-catalyzed KRs of the drug-like 3D
N-heterocycle-containing 4-(3,4-dihydroisoquinolin-2(1H)-yl)butan-2-ol (±)-1a and 4-(3,4-
dihydroquinolin-1(2H)-yl)butan-2-ol (±)-1b. The previously designed convenient U-shape
reactor made of a PTFE tube and six adjustable permanent magnets [55] was modified,
enabling variation in the inner diameter (ID) of the tube (Figure 2).
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The goal of these investigations was to vary the capacity of the maximum MNP bio-
catalyst’s loading in one reactor cell and determine and compare the operation parameters
without significant leaching—essentially, the process where a catalyst is lost in the fluid
reaction—of the biocatalyst (Figure 3). For the PTFE tube of 0.75 mm ID (cross-sectional
area (CSA) ~0.44 mm2), 6 mg of CaLB-MNPs was distributed in six reaction chambers.
To preserve the loading ratio, 18 mg (6 × 3 mg) and 36 mg (6 × 6 mg) CaLB-MNPs were
applied in the 1.50 mm ID (CSA ~1.8 mm2) and 2.15 mm ID (CSA ~3.6 mm2) reactors,
respectively. With the variable U-shape reactor in our hand, the continuous flow KR of the
drug-like N-heterocyclic alcohols (±)-1a and (±)-1b was performed at 25 ◦C using various
flow rates between 1 and 3 µL min−1 (Figure 3a,b).
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Figure 3. CaLB-MNP-catalyzed kinetic resolution in continuous flow mode within U-shape MNP
tube reactors of three different inner diameters at various flow rates using vinyl acetate as acylat-
ing agent and (a) the racemic 4-(3,4-dihydroisoquinolin-2(1H)-yl)butan-2-ol (±)−1a (12.5 mM) or
(b) the racemic 4-(3,4-dihydroquinolin-1(2H)-yl)butan-2-ol (±)−1b (25 mM) (in MTBE-hexane 1:2,
vinyl acetate (31.25 mM for (±)−1a, 62.5 mM for (±)−1b), 25 ◦C) as substrate. Effect of (c) concentra-
tion of (±)−1a,b on the conversion of the KR processes in the flow reactor with optimal diameter
(ID = 1.5 mm, at flow rate of 1 µL min−1).

It is considered that after finding the optimal tube diameter, numbering up the cells
seems easily implementable. A logical setup is to use the wave shape (consisting more of U
turns) reactor setup. For example, 9 turns with 10 cells after each turn would represent a
100-cell reactor holding up to 3.6 g of the MNP biocatalyst within a less than 2 m long tube
fitting onto a less than 20 cm × 20 cm plate. Such a plate would represent a multigram-
scale reactor, and such gram scale reactors are easily parallelizable with standard joining
elements. The U-shape reactor in this study approaches the first part of this geometry.

Due to the different activity of the CaLB-MNP biocatalyst towards the two investigated
racemic alcohols (±)-1a and (±)-1b observed in the batch mode (Figure 2 and Table 1), the
influence of the three different reactor sizes on the KRs was tested at different substrate con-
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centrations. Since the batch mode experiments revealed the KR of 4-(3,4-dihydroisoquinolin-
2(1H)-yl)butan-2-ol (±)-1a as slower than of the 4-(3,4-dihydroquinolin-1(2H)-yl)butan-2-ol
(±)-1b, a lower concentration (12.5 mM) was applied for (±)-1a (12.5 mM, Figure 3a) than
for (±)-1b (25 mM, Figure 3b) enabling it to reach 50% conversion from the corresponding
racemates quite conveniently within a short time.

The results indicated that highest conversions could be obtained in the 1.50 mm
tube setup with both substrates (Figure 3a,b). This can be explained by the insufficient
amount of biocatalyst per cell in the 0.75 mm tube reactor—although the flow could provide
full contact with the MNP-CaLBs, as shown in Figure 4a—meaning that this amount of
biocatalyst gets saturated with the substrate, resulting in low conversion values. In the
narrow 0.75 mm tube reactor, leaching also happened at the highest flow rate due to the
too-tight packing of MNPs and the highest linear velocity of the flow. Additionally, in
the case of too-tight packing, there is an increased possibility of microchannel formation
among the MNP particles, negatively influencing the efficiency. In the 2.15 mm tube system,
the tube is too wide, and the permanent magnet’s field is not strong enough to keep the
MNPs well distributed along the full cross-section area (Figure 4c). Consequently, the
possibility of leaching could be increased, and a significant portion of the flow could pass
through the reaction chamber without direct contact with the CaLB-MNP-filled space. This
effect decreased the rate of reaction considerably because from the fraction of fluid flowing
without directly contacting the MNP biocatalyst, just the diffusion allows the substrate to
reach the biocatalyst.
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Figure 4. Schematic behavior of a CaLB-MNP-containing reaction cell in a tubular MNP flow reactor
with tubes of different inner diameter (the rectangles below the tubes of various diameters show the
polarity and magnetic field withing the same permanent magnet). Panel (a) depicts the case when
the tube is too narrow, panel (b) shows an ideal case where the quantity of biocatalysts fits the tube
size, while panel (c) illustrates a case where the tube is too wide.

Presumably, the 1.50 mm tube system approaches the best ideal case (Figure 4b) where
the quantity of the MNP biocatalysts is sufficient for being not fully saturated, and the tube
size allows almost full contact with the MNP-filled area, but the linear velocity of the liquid
remains below the limit which causes leaching problems.

Leaching, essentially the process where a catalyst is lost in the fluid reaction, is a major
problem in flow chemistry processes [61]. The loading of biocatalyst particles influences the
flow because with the dispersion of MNPs provoked by the magnetic field, a certain area of
the biocatalyst is in contact with the through-flowing reaction medium. In small diameters,
leaching can happen due to the tight MNP biocatalyst loading and high linear velocity of
the liquid. When the diameter of the tube increases, the distance between the magnetic
nanoparticles and the permanent magnet also increases, weakening the anchoring forces
keeping the MNPs in the reaction chamber. Leaching of the particles being distant from the
permanent magnet can happen even at quite low linear velocities, which can result in a
loss of the biocatalysts (Figure 4c).

Data in Figure 3 clearly show that the specific activity of the CaLB-MNPs is the best in
the 1.50 mm tube system under each condition. For example, in the KRs of (±)-1a at the
flow rate of 1 µL min−1 (Figure 3a), the 3-fold higher amount of CaLB-MNP in the 1.50 mm
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reactor as compared to the 0.75 mm reactor (18 mg vs. 6 mg) led to 52.4% conversion,
which was 4.6-fold higher than was observed in the 0.75 mm system (11.4%), meaning
1.5-fold higher specific activity. On the other hand, the specific activity of CaLB-MNP in the
1.50 mm reactor allowing 52.4% conversion with 18 mg of the biocatalyst was more than
twofold higher than in the 2.15 mm system since the somewhat lower 50.3% conversion in
the 2.15 mm reactor was reached with double the amount of biocatalyst (36 mg). Worth
noting is that, in all cases, the 1.50 mm system provided the highest conversion.

After finding the optimal setup for the inner diameter (1.50 mm) and flow rate
(1 µL min−1), the effect of the concentration of the substrates (±)-1a and (±)-1b on the KR
in the continuous flow setup was investigated (Figure 3c). The results were in line with
the observed differences between the KR processes with (±)-1a and (±)-1b in batch mode
(Figure 1a,b, respectively). It was apparent that at a low (12.5 mM) substrate concentration,
the specific activity of CaLB-MNP was high enough to achieve ≥50% conversion. The
more significant drop in conversion with increasing concentration of (±)-1a as compared to
(±)-1b can be rationalized by assuming that the Michaelis constant of (±)-1b may be lower
(KM < 50 mM) than that of (±)-1a (KM > 50 mM).

Next, the operational stability of the system under the optimal conditions (ID = 1.50 mm,
flow rate = 1 µL min−1) was studied with the 100 mM concentration of the substrates (±)-
1a,b at 20 ◦C for 48 h (Figure 5a,b).
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mic 4-(3,4-dihydroquinolin-1(2H)-yl)butan-2-ol (±)-1b (in MTBE-hexane 1:2, vinyl acetate (250 mM), 
20 °C, 1 µL min−1). Interchange (c) of the KRs of racemic (±)-1a and (±)-1b in four alternating cycles 
(the arrows in Panels a and b correspond the reaction times of the cycles in Panel c). The bars repre-
sent the conversion for (±)-1a (red) and for (±)-1b (blue) in the reaction mixture after 16 h long run 
at 20 °C (washing with solvent for 1 h at 5 µL min−1 was applied between cycles). 

Figure 5. Time course of the KRs at 100 mM substrate concentration in the U-shape reactor
(ID = 1.5 mm) with (a) the racemic 4-(3,4-dihydroisoquinolin-2(1H)-yl)butan-2-ol (±)-1a, or with
(b) the racemic 4-(3,4-dihydroquinolin-1(2H)-yl)butan-2-ol (±)-1b (in MTBE-hexane 1:2, vinyl acetate
(250 mM), 20 ◦C, 1 µL min−1). Interchange (c) of the KRs of racemic (±)-1a and (±)-1b in four
alternating cycles (the arrows in Panels a and b correspond the reaction times of the cycles in Panel c).
The bars represent the conversion for (±)-1a (red) and for (±)-1b (blue) in the reaction mixture after
16 h long run at 20 ◦C (washing with solvent for 1 h at 5 µL min−1 was applied between cycles).
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The high substrate concentration was selected for these series of investigations because,
at lower conversions (~25–28% for (±)-1a; and ~41–44% for (±)-1b), the operational stability
study is more visible if the conversion remains far below the theoretical limit of a fully
selective KR (50%). It is notable that the KR of (±)-1a stabilized after 6 h, while for (±)-1b,
more than 12 h was required to reach the stationary state. After stabilization, the KR
process remained stable with both substrates for at least 24 h, up to the 48-h length of
time of this study. During the long-term runs of the U-shape reactor used to investigate
the steady-state stabilization (Figure 5a,b), the outflowing reaction mixture was collected
between the 16th-40th h (~1.5 mL). The products isolated from this mixture (Table 2) were
indistinguishable from those isolated from the KR of (±)-1 in batch mode.

Table 2. Continuous flow kinetic resolution of racemic 4-(3,4-dihydroisoquinolin-2(1H)-yl)butan-2-ol
(±)-1a and racemic 4-(3,4-dihydroquinolin-1(2H)-yl)butan-2-ol (±)-1b catalyzed by CaLB-MNPs.

Subst. Conv. 1 (%) Product Yield (%) ee 2 (%)

(±)-1a 25.4 (R)-2a 21 93.1
25.4 (S)-1a 36 3 4

(±)-1b 43.7 (R)-2b 39 91.8
43.7 (S)-1b 34 3 4

1 From kinetic resolution of the corresponding substrate in U-shape reactor (ID = 1.5 mm, 18 mg of CaLB-
MNPs) after reaching stationary state ((±)-1a or (±)-1b (100 mM), vinyl acetate (250 mM) in MTBE-hexane
mixture (1:2 ratio) at 20 ◦C and at flow rate of 1 µL min−1) collected for 24 h. 2 Determined by chiral GC
(see Supplementary Materials) 3 The high polarity of the alcohol enabled only noncomplete recovery of (S)-1a
from the silica gel during preparative TLC. 4 The ee of (S)-1a and (S)-1b could not be detected directly using GC.

To investigate the reusability of the CaLB-MNP preparation in the U-shape reactor system
(ID = 1.50 mm), four cycles of 17 h long experiments—reaction runs with 100 mM (±)-1a
or (±)-1b at 1 µL min−1 for 16 h, exceeding the time required reaching the stationary state,
followed by washing with substrate-free solvent with 5 µL min−1 flow rate for 1 h—were
performed (Figure 5c). The results of KRs with alternating substrates demonstrated the
recyclability of the CaLB-MNP biocatalyst from one reaction to another one.

Finally, the space time yields (STY) in the KR processes starting from 100 mM (±)-1a,b
could be compared [55]. The KR process in batch mode revealed STYB = 0.9 mmol L−1 h−1

and 1.9 mmol L−1 h−1 for the acetate formation ((R)-2a and (R)-2b, respectively). When the
KR process was performed in continuous flow mode in the U-shape reactor (ID = 1.5 mm)
and considering the total U-shape volume (VU-shape = 236 µL), an STYU-shape = 1.6 mmol L−1

h−1 and 2.8 mmol L−1 h−1 could be determined for (R)-2a and (R)-2b, respectively. How-
ever, considering only the volume of the MNP-filled reaction chambers (VU-shape = 56 µL)
of the U-shape MNP reactor, an STYfilled = 6.7 mmol L−1 h−1 and 11.6 mmol L−1 h−1 for
(R)-2a and R)-2b, respectively, could be calculated.

3. Materials and Methods
3.1. Materials

The details regarding materials and solvents, the origin of recombinant lipase B from
Candida antactica (CaLB), and the synthesis of 4-(3,4-dihydroisoquinolin-2(1H)-yl)butan-
2-ol (±)-1a, 4-(3,4-dihydroquinolin-1(2H)-yl)butan-2-ol (±)-1b, 4-(3,4-dihydroisoquinolin-
2(1H)-yl)butan-2-yl acetate (±)-2a, 4-(3,4-dihydroquinolin-1(2H)-yl)butan-2-yl acetate (±)-
2b, 4-(3,4-dihydroisoquinolin-2(1H)-yl)butan-2-one 3a, and 4-(3,4-dihydroquinolin-1(2H)-
yl)butan-2-one 3b are given as supplementary information.

The following sections were analogous to previously published methods [55] with
minor modifications, as detailed below.

3.2. Analytical and Separation Methods

The optical rotations were measured on a Perkin-Elmer 241 polarimeter at two different
lines of mercury (at 365 nm and 578 nm) in ethanol (the acetates 2a,b were measured



Catalysts 2023, 13, 384 11 of 17

immediately after dissolving). The polarimeter was calibrated with measurements of both
enantiomers of menthol.

NMR spectra were recorded in the indicated deuterated solvents on Bruker DRX-500 or
DRX-300 spectrometers operating at 500 MHz or 300 MHz for 1H, and 126 or 75 MHz for
13C. NMR signals are given in ppm on the δ scale.

Infrared (IR) spectra were recorded on a Bruker ALPHA FT-IR spectrometer (in ATR
mode), and wavenumbers (ν) of bands are listed in cm−1.

The gas chromatographic (GC) analyses were performed with an Agilent 4890 gas chro-
matograph equipped with FID detector using H2 carrier gas (injector: 250 ◦C, detector: 250 ◦C,
head pressure: 12 psi, and split ratio: 50:1) using a Hydrodex β-6TBDM column
(25 m × 0.25 mm × 0.25 µm film of heptakis-(2,3-di-O-methyl-6-O-t-butyldimethylsilyl)- β-
cyclodextrin; Macherey & Nagel). The details on the method used and the retention times of com-
ponents in the kinetic resolution reactions are given in Table S1 in the Supplementary Materials.

3.3. Assaying the Kinetic Resolution of 4-(3,4-Dihydroisoquinolin-2(1H)-yl)butan-2-ol (±)-1a and
4-(3,4-Dihydroquinolin-1(2H)-yl)butan-2-ol (±)-1b by CaLB-MNP Biocatalyst in Batch Mode

The activity assays were performed in clean screw-capped vials (4 mL) using CaLB-
MNPs (5 mg) as a biocatalyst in the reaction mixture containing various concentrations
(12.5 mM, 25 mM, 50 mM, or 100 mM) of racemic 4-(3,4-dihydroisoquinolin-2(1H)-yl)butan-
2-ol (±)-1a or 4-(3,4-dihydroquinolin-1(2H)-yl)butan-2-ol (±)-1b and vinyl acetate (31.5 mM,
62.5 mM, 125 mM, or 250 mM, respectively) in a mixture of methyl t-butyl ether (MTBE)-
hexane (1:2 ratio, 1 mL).

For sampling, aliquots (20 µL) taken from the reaction mixtures were diluted with
ethanol (480 µL) and analyzed using GC as described in Section 3.2.

3.4. Kinetic Resolution of 4-(3,4-Dihydroisoquinolin-2(1H)-yl)butan-2-ol (±)-1a and
4-(3,4-Dihydroquinolin-1(2H)-yl)butan-2-ol (±)-1b by CaLB-MNPs Biocatalyst at Preparative
Scale in Batch Mode

Into a 20 mL screw-cap vial, the racemic substrate 4-(3,4-dihydroisoquinolin-2(1H)-
yl)butan-2-ol (±)-1a or 4-(3,4-dihydroquinolin-1(2H)-yl)butan-2-ol (±)-1b (410 mg, 2 mmol;
in all cases), CaLB-MNPs (20 mg), and vinyl acetate (500 µL) were added to a mixture of
methyl t-butyl ether (MTBE)-hexane (1:2 ratio, 10 mL), and the resulting suspension was
shaken at room temperature (as detailed in Table 1) in a Vibramax 100 shaker (Heidolph,
Schwabach, Germany) for the reaction time indicated in Table 1. The CaLB-MNPs were
removed by anchoring with a neodymium magnet and decanting the supernatant. The
resuspended CaLB-MNPs were washed with a mixture of methyl t-butyl ether (MTBE)-
hexane (1:2 ratio, 2 × 2.5 mL), dried in a fume hood overnight at room temperature, and
stored in a refrigerator until further use. After removing the volatiles from the combined
solutions via vacuum rotary evaporation, the resulting products were separated with
preparative thin-layer chromatography (silica gel, eluted with CH2Cl2:MeOH 20:1) to
give the formed (R)-acetate (R)-2a or (R)-2b and the residual (S)-alcohol (S)-1a or (S)-1b,
respectively.

3.4.1. 4-(3,4-Dihydroisoquinolin-2(1H)-yl)butan-2-yl Acetate (R)-2a

Yield: 200.9 mg, 41.3%. Amber oil.
[α]365

20 = +9.1 and [α]578
20 = +6.2 (c 3, EtOH) for the sample with an ee = 96.7%

from GC. IR (ATR, film, cm−1): 3023, 2923, 1734, 1496, 1455, 1371, 1239, 1131, 1097, 1017,
740 cm−1. 1H NMR (500 MHz, CDCl3) δ 7.14 (qd, J = 6.3, 3.1 Hz, 3H), 7.07–7.02 (m, 1H), 5.02
(ddd, J = 7.6, 6.3, 5.2 Hz, 1H), 2.96 (t, J = 6.0 Hz, 2H), 2.82 (t, J = 6.0 Hz, 2H), 2.67–2.60 (m,
1H), 1.98 (dddd, J = 13.6, 9.5, 7.6, 6.1 Hz, 1H), 1.87 (ddd, J = 13.7, 9.5, 4.7 Hz, 1H), 1.32–1.26
(m, 7H). 13C NMR (126 MHz, CDCl3) δ 170.7, 133.9, 128.7, 126.6, 126.4, 125.8, 69.6, 55.8, 54.3,
50.8, 33.3, 29.7, 28.6, 21.4, 20.2.
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3.4.2. 4-(3,4-Dihydroisoquinolin-2(1H)-yl)butan-2-ol (S)-1a

Yield: 71.6 mg, 17.5%. Amber oil.
[α]365

20 = −6.4 and [α]578
20 = +1.8 (c 3, EtOH) for the sample with an ee = 76.0% (via

calculation from c and ee(R)-2a). IR (ATR, film, cm−1): 3354, 3065, 3023, 2965, 2965, 2809, 1599,
149, 1455, 1372, 1342, 1134, 1092, 935, 740 cm−1. 1H NMR (500 MHz, CDCl3) δ 7.20–7.14 (m,
2H), 7.13 (dt, J = 6.3, 3.7 Hz, 1H), 7.05 (dd, J = 7.1, 1.9 Hz, 1H), 4.51 (s, 1H), 4.03 (ddd, J = 9.0,
6.1, 2.6 Hz, 1H), 3.88 (d, J = 14.9 Hz, 1H), 3.78 (d, J = 15.0 Hz, 1H), 3.11–3.04 (m, 1H), 2.98
(d, J = 6.1 Hz, 2H), 2.97–2.89 (m, 1H), 2.89–2.76 (m, 2H), 1.79 (tt, J = 9.7, 4.6 Hz, 1H), 1.68
(dtd, J = 14.6, 4.6, 2.5 Hz, 1H), 1.24–1.19 (m, 3H). 13C NMR (126 MHz, CDCl3) δ 133.9, 133.4,
132.8, 128.7, 126.7, 126.6, 126.1, 68.8, 56.5, 55.6, 50.2, 33.5, 31.2, 28.0, 27.0, 23.5.

3.4.3. 4-(3,4-Dihydroquinolin-1(2H)-yl)butan-2-yl Acetate (R)-2b

Yield: 142 mg, 29.2%
[α]365

20 = −29.8 and [α]578
20 = −0.3 (c 3, EtOH) for the sample with an ee = 96.8% from

GC. IR (ATR, film, cm−1): 3065, 3017, 2929, 2843, 1733, 1601, 1504, 1457, 1370, 1237, 1121,
1019, 741 cm−1. 1H NMR (500 MHz, CDCl3) δ 7.08 (td, J = 7.8, 1.8 Hz, 1H), 7.00–6.95 (m,
1H), 6.61 (t, J = 7.7 Hz, 2H), 4.99 (tdd, J = 7.6, 5.6, 1.5 Hz, 1H), 3.42–3.24 (m, 4H), 2.78 (t,
J = 6.4 Hz, 2H), 2.09 (s, 3H), 1.98 (dq, J = 6.8, 2.3 Hz, 2H), 1.88 (dt, J = 8.3, 4.3 Hz, 2H), 1.29
(d, J = 6.3 Hz, 3H. 13C NMR (126 MHz, CDCl3) δ 170.7, 129.3, 127.1, 116.6, 69.4, 49.5, 47.8,
32.3, 29.7, 28.0, 21.4, 20.3.

3.4.4. 4-(3,4-Dihydroquinolin-1(2H)-yl)butan-2-ol (S)-1b

Yield: 53.8, mg, 13.1%
[α]365

20 = +3.6 and [α]578
20 = +12.2 (c 3, EtOH) for the sample with an ee = 67.3% (via

calculation from c and ee(R)-2a). IR (ATR, film, cm−1): 3372, 3063, 3020, 2925, 2864, 1601,
1504, 1456, 1345, 1302, 1208, 1129, 1061, 740 cm−1. 1H NMR (500 MHz, CDCl3) δ 7.13–7.06
(m, 1H), 6.98 (dd, J = 7.3, 1.6 Hz, 1H), 6.77–6.71 (m, 1H), 6.64 (t, J = 7.3 Hz, 1H), 3.97 (dtd,
J = 10.9, 6.3, 5.1, 2.5 Hz, 1H), 3.43 (ddt, J = 16.0, 14.6, 8.2 Hz, 2H), 3.31 (dq, J = 15.5, 5.8 Hz,
2H), 2.79 (t, J = 6.4 Hz, 2H), 2.01–1.95 (m, 2H), 1.82–1.71 (m, 2H), 1.27 (d, J = 6.2 Hz, 4H).
13C NMR (126 MHz, CDCl3) δ 145.5, 129.3, 127.1, 123.2, 117.1, 112.5, 66.9, 49.5, 49.2, 35.4,
28.0, 24.1, 22.7.

3.5. Design and Assembly of the U-Shape MNP Reactor

The U-shape MNP reactor system (Figure 2) was designed by the AutoCAD (2020 stu-
dent version) program and printed with a Rankfor100 3D printer (CEI Conrad Electronic
International, Ltd., New Territories, Hong Kong). This study used neodymium disc mag-
nets, 4 mm × 2 mm, N35 (Euromagnet Ltd., Budapest, Hungary) as permanent magnets,
and polytetrafluoroethylene (PTFE) tubes with ID 0.75 mm, 1.50 mm, and 2.15 mm as the
reactor body and connection parts. The inner part of the U-shape reactor was a proper
exchangeable holder allowing the adjustable positioning of six permanent magnets in
the closest possible vicinity to the PTFE tube reactor, thereby creating six sites where the
magnets could anchor the CaLB-MNPs biocatalysts inside the tube (Figure 2). A SpinSplit
continuous flow syringe pump (SpinSplit Technical Research and Development LLC, Bu-
dapest, Hungary) equipped with two glass syringes of 0–5 mL volume was coupled to the
tubular reactor part of the reactor module.

3.6. Kinetic Resolution of 4-(3,4-Dihydroisoquinolin-2(1H)-yl)butan-2-ol (±)-1a and
4-(3,4-Dihydroquinolin-1(2H)-yl)butan-2-ol (±)-1b by CaLB-MNPs Biocatalysts in the
Continuous Flow U-Shape Reactor

The variable U-shape reactor was used for the continuous flow kinetic resolution of
the designed substrate alcohols (±)-1a and (±)-1b with PTFE reactor tubes of different IDs
(0.75 mm, 1.50 mm, and 2.15 mm). Different quantities of CaLB-MNPs (6 × 1 mg, 6 × 3 mg,
and 6 × 6 mg for IDs of 0.75 mm, 1.50 mm, and 2.15 mm, respectively) were suspended in
1 mL of a mixture of methyl t-butyl ether (MTBE)-hexane (1:2 ratio) for the different reactor
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tubes, and the suspended CaLB-MNPs were supplied at a 50 µL min−1 flow rate into the
reactor’s six chambers in the counter-current direction of the later fluid flow, filling the last
chamber first and the first chamber last.

Experiments were performed by pumping solutions of the substrate 4-(3,4-dihydroiso-
quinolin-2(1H)-yl)butan-2-ol (±)-1a (12.5 mM) and 4-(3,4-dihydroquinolin-1(2H)-yl)butan-
2-ol (±)-1b (25 mM), and vinyl acetate (31.5 or 62.5 mM, respectively) in a mixture of
methyl t-butyl ether (MTBE)-hexane (1:2 ratio) through the U-shape reactor filled with
CaLB-MNPs at various flow rates (1, 2, 3 µL min−1) at 25 ◦C.

For the series of experiments of reusability of the CaLB-MNP preparation in the U-
shape reactor system (ID = 1.50 mm), four alternating cycles of 17 h long experiments
composed of reaction runs with 100 mM (±)-1a or (±)-1b, and vinyl acetate (250 mM) in
a mixture of methyl t-butyl ether (MTBE)–hexane (1:2 ratio) at 1 µL min−1 for 16 h were
conducted, followed by washing with a substrate-free solvent with 5 µL min−1 flow rate
for 1 h at 20 ◦C.

For the preparative scale experiment, the U-shape MNP tube reactor was fed with
racemic 4-(3,4-dihydroisoquinolin-2(1H)-yl)butan-2-ol (±)-1a or 4-(3,4-dihydroquinolin-
1(2H)-yl)butan-2-ol (±)-1b (205 mg, 1 mmol, each) and vinyl acetate (924 µL, 2.5 equiv.) in
10 mL of solution with MTBE–hexane 1:2 as the solvent at a flow rate of 1 µL min−1. After
collecting the outflowing solutions during a 24 h period, the volatiles were removed using
vacuum rotary evaporation and the resulting products were separated with preparative
thin-layer chromatography (silica gel, eluted with CH2Cl2:MeOH 20:1) to give the formed
(R)-acetate (R)-2a or (R)-2b and the residual (S)-alcohol (S)-1a or (S)-1b, respectively.

The analysis of the collected samples was carried out similarly as described for the
KRs in batch mode (see Section 3.3).

3.6.1. 4-(3,4-Dihydroisoquinolin-2(1H)-yl)butan-2-yl Acetate (R)-2a

Yield: 9 mg, 21% for the sample with an ee = 93.1% from GC.

3.6.2. 4-(3,4-Dihydroisoquinolin-2(1H)-yl)butan-2-ol (S)-1a

Yield: 22 mg, 36%.

3.6.3. 4-(3,4-Dihydroquinolin-1(2H)-yl)butan-2-yl Acetate (R)-2b

Yield: 15.5 mg, 39% for the sample with an ee = 91.8% by GC.

3.6.4. 4-(3,4-Dihydroquinolin-1(2H)-yl)butan-2-ol (S)-1a

Yield: 16.6 mg, 34%.

4. Conclusions

This study performed kinetic resolutions of the drug-like fragments 4-(3,4-dihydroisoq-
uinolin-2(1H)-yl)butan-2-ol (±)-1a and 4-(3,4-dihydroquinolin-1(2H)-yl)butan-2-ol (±)-1b
with Lipase B from Candida antarctica immobilized on MNPs in batch and in continuous
flow modes. The batch mode KRs showed the usefulness of these substrates for the
preparation of the enantiomeric forms (the acetates (R)-2a,b and the alcohols (S)-1a,b) in
moderate-to-high enantiomeric excess and allowed the thorough characterization of the
novel compounds including their absolute configuration and optical rotation.

The kinetic resolutions of the compounds (±)-1a and (±)-1b in an enhanced version of
a U-shape MNP-based continuous flow microreactor with variable inner-diameter tubing
proved that, in this type of reactor, the effectivity of the CaLB-MNP biocatalyst could be
enhanced compared to the reaction made in the batch mode.

In the continuous flow mode, the most important consideration was to avoid the MNP
biocatalyst leaching at relatively high loading within the reactor tubes of different inner
diameters (0.75 mm, 1.50 mm, and 2.15 mm). The experiments at various flow rates (1–3 µL
min−1) with the alcohol solutions (12.5 mM of (±)-1a and 25 mM of (±)-1b) revealed that
in the investigated flow rate regime, the tube with a 1.50 mm ID resulted in the highest
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conversions and best specific biocatalyst activities, because this tube size allowed good
filling capacity without leaching but with good MNP distribution, providing efficient
contact between the reaction medium and the MNP particles. The possibility of being
scalable enhanced the usefulness of this MNP-based U-shape tubular continuous flow
microreactor as a handy and adaptable tool for further diverse biotechnological processes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13020384/s1: Materials and methods for the preparation
of CaLB-MNP biocatalyst [55,62]; Synthesis of the racemic alcohols (±)-1a, (±)-1b and the racemic
acetates (±)-2a, (±)-2b and (S)-acetate (S)-2b [63–66]; Table S1: GC method and retention times
for analysis of the kinetic resolution reactions by chiral GC; Figures S1–S32: GC chromatograms,
1H- and 13C-NMR, and IR spectra of compounds (±)-1a,b, (±)-2a,b, (R)-2a,b, (S)-1a,b and (S)-2b;
Figures S33–S36: typical GC chromatograms for the KRs of (±)-1a,b in batch mode and in the
continuous flow U-shape reactor.
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