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Abstract 

In this research, we provide a 5G-capable IoT infrastructure that optimizes spectrum 

and electricity. It uses energy harvesting or energy transfer to minimize its impact on 

the cellular network’s performance. The Internet of Things network comprises sensor 

nodes and a power-efficient cluster head that repurposes unused portions of the 

cellular frequency spectrum. The cluster leader is in charge of spectrum utilization, 

random sequencing of sensor nodes, or scheduling downtime for energy transfer. The 

cellular communication and transferred power from the cluster are converted into RF 

energy, which the sensor nodes then use. As long as the sensors have power, they will 

send the data they have acquired at the appointed time. Spectrum supply, energy 

availability, information transfer, and energy transfer all come into play as a result of 

the interaction between both the cellular and IoT network. This study demonstrates 

that, for a given amount of cellular traffic, an increase in the number of devices in the 

network leads to a multi-user gain due to the IoT network’s increased utilization and 

the broadcast aspect of the transfer of energy. The findings shed light on the kind of 

Internet of Things applications that might be feasible under various operational 

regimes. 
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Introduction 

Other forms of communication exist besides the more conventional human-to-human 

and human-to-machine channels, a new phenomenon named the Internet of Things 

(IoT) [1] is becoming increasingly noticeable, in which the machines in our 

environment communicate with each other through minimal human involvement and 

the ultimate goal of improving our quality of life. In this model, inexpensive sensors, 

actuators, and related devices work together to generate, exchange, process and act on 

data in pursuit of a common purpose. Health [2], smart metering [3], traffic control 

[4], intelligent buildings [5], agroecosystems [6], environmental control [7], etc., are 

only a few of the many potential uses. 

Broad area IoT systems can’t function without cellular technology [8]. Upcoming 

3GPP releases aim to improve cellular IoT communications to meet their specific 

needs in energy, spectrum and signaling overhead. In particular, widespread rollouts 

of low-throughput, low-power-consumption devices are expected to rely on new low-

complexity, narrowband radio technologies [9]. 

The goal of this work is to create a novel design for a cellular IoT scheme that is ready 

for the 5G future, one that achieves efficiency in both spectra (through opportunistic 

recycling of the energy through an energy harvesting system) and the electromagnetic 

spectrum (from cells) of acoustic signal transmission or RF power injection). A system 

like this makes it easy to see the trade-offs that must be made to maximize efficiency 

in terms of spectrum sharing, available energy, data, or energy transfer. To predict 

potential operational modes where such networks can function, we plan to create a 

mathematical model that can extensively explore these trade-offs. It’s possible that the 

combined traffic from thousands of sensors used in wide-area cellular IoT applications 

won’t be enough to justify the cost of dedicated cellular services. For instance, during 

the mooring of the climate system, every sensor may report only a tiny amount of data 

for a long time, say an hour and a full day, but then report everything at once. To 

extrapolate, for instance, the temperature/humidity ratios for all locations, it may be 

necessary to query a representative selection of these devices using the gathered data. 

As a result, this paper presents an Internet-of-Things system that strategically uses 

empty airwaves while cell phones aren’t in use [10]. 

Massive IoT deployments have energy as a critical design constraint. A green, 

relatively low-power architecture may be required for such networks even though 

individual nodes’ energy usage may be low. Moreover, it is planned that the vast 

majority of these gadgets will be installed in permanent locations outdoors. That’s why 

it’s crucial to devise a method of everlasting operation that doesn’t rely on external 

power sources or periodic battery swapping. Interest in energy collecting systems [11], 

[12], [13] has grown in response to these needs. Mechanical, electrical, thermal, solar, 

physiological, etc., energy can all be tapped into. Radiofrequency (RF) energy 

harvesting is a topic that has been discussed in recent years [14], [15]. Even though the 
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energy gained by RF harvesting is substantially lower than other sources like solar 

energy, its portability and usability in any environment at any time of day or night are 

significant benefits. More effective ways for collecting RF energy are expected to be 

developed soon [15], [16]. This paper, therefore, proposes a system consisting of 

cellular IoT nodes capable of either drawing RF power from nearby cellular signals or 

injecting RF power into the grid in times of need. 

The planned Internet of Things network uses two distinct types of nodes. An army of 

cheap and efficient sensor nodes makes up most of the Internet of Things (SN). Cluster 

heads (CLH) are the other variety; they’re more robust, manage the sensor nodes, and 

handle the RF power transfer procedures discussed in detail below. A real-world IoT 

solution may have multiple clusters, each with a cluster head. The focus of this 

research is on one such group. 

Time and frequency slots for the cellular network coexist with the IoT network. 

Examples of such systems include OFDM and SC-FDM, which LTE networks use in 

the uplink and downlink, respectively. Continued work is being put into standardizing 

the 5G wireless connectivity, also known as 5G New Radio or 5G NX [17]. In theory, 

the 5G NX would be constructed with an improved, flexible air interface similar to 

OFDM. The radio assets are then time and frequency slotted, a repeated process for 

LTE and 5G. Cellular resource blocks are the time and frequency intervals so created. 

At each transmit period, the cellular ground station distributes these spectrum 

resources to several users or regulates traffic data (TTI). It is assumed that the TTIs of 

the wireless network and the time slot architecture of the IoT connection coincide. 

Given the massive complexity but also power consumption increases, it is not expected 

that sensor networks will employ the same communications as the wireless network. 

We propose that SNs' radios are tuned to a fixed, limited frequency, for instance, 

covering a few wireless accessible spectral bands, to interact with the clusters via a thin 

physical layer designed for low power consumption, as per the most up-to-date IoT 

standards from 3GPP [9]. 

This is how the projected IoT network will function. The cellular network, at each TTI, 

makes independent use of the IoT network’s allotted cellular resource blocks. 

Spectrum detection at the tuned frequency is performed at each TTI by the IoT cluster 

head. It has been discovered that the IoT network makes opportunistic use of this 

frequency whenever the cell connection is not using it. When a window of opportunity 

presents itself, the CLH must determine whether to use it to send RF energy to the SNs 

or receive data from them. Whenever an information exchange is to be made, the CLH 

will pick an SN at random for scheduling purposes. But if the choice is to transfer 

energy, the CLH will send signals for Rf power collection. When not actively 

transmitting data, SNs conduct RF energy harvest by absorbing either the natural 

cellular network signals or the signal supplied by the CLH. In this third section, we 

delve into the intricate interplay among sensing, energy harvesting, or data/energy 
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transfer operations; cellular or IoT data movement models; signaling between the CLH 

with SNs; retransmission due to collisions; and more. 

Through spectrum collaboration with the cellular network or energy harvesting and 

transmission, our work provides the first energy- or spectrum-efficient 5G Internet of 

Things network, setting it apart from earlier 5G IoT models. Here, we focus on a 

framework wherein the RF waves power the sensor nodes. Cluster heads are proposed 

for usage in IoT networks for management and, where necessary, power transmission. 

The energy for Internet of Things devices is provided by either the cell link or the 

cluster’s base station. The availability of airwaves for sensor network transfer is 

sufficient along a generally idle path, but more energy transfer is required for a feasible 

operation when cell traffic is heavy. In this research, we not only develop a more 

precise mathematical model to characterize cellular and IoT traffic than earlier work 

in the research, but we also conduct extensive experiments to examine these tradeoffs. 

We demonstrate that, for a given amount of cellular traffic, a more significant number 

of sensors leads to greater utilization of the IoT network and, ultimately, a benefit for 

multiple users because energy is transferred throughout the network in a broadcast 

fashion. 

It’s been said that 5G will make the Internet available to anything and everything. By 

2021, there will likely be over 28 billion linked devices, with over 15 million 

connections between machines [18]. This makes providing connectivity for the 

Internet of Things (IoT) a top priority for the 5G network [19]. Self-sufficiency in 

network operation is a cornerstone of the Internet of Things [20]. In this regard, 

energy harvesting has been gaining popularity as a viable strategy [20, 21]. In this 

research, we propose a spectrum-sharing Internet of Things network that harvests and 

transmits energy to coexist with other 5G services. 

There has been a lot of discussion in the scientific literature about RF energy 

harvesting systems lately. Depending on the scenario, a realistic node can only 

interpret information or gather RF signal energy, but predictive control rules must be 

created for each circumstance [22, 23]. A user equipment (SU) with infinite backlog 

traffic rather than a simple energy usage concept needs to execute error-free sensing 

and calculate the ideal schedule for balancing data transmissions, spectral 

measurements, and energy harvesting in a perceptual radio network, as proposed by 

Yin et al. [24]. Using a transmitter, decoder, and energy harvester, Zhang & Ho [25] 

determine the rate-energy areas for a MIMO system. By taking into account, the SU 

transmit power, and SU density in a particular area, Lee et al. [16] use stochastic 

geometry to optimize the geographical SU throughput. It is hypothesized in the 

research that such a secondary user (SU) can harvest energy from a primary user (PU) 

if the SU is physically close enough to the PU. Zheng et al. [26] investigate a system in 

which SUs with energy collecting capabilities transmit to Pus to improve the latter’s 

efficiency in exchange for additional spectrum access. 
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Ku et al. [27] optimize the solar energy sensor network’s transmission range using 

Markov decision techniques to increase the network throughput. Chan et al. [28] use 

the 4-D continuous Markov chains model with adaptive load cycling to provide 

everlasting operations with QoS supply in a regenerative braking sensor network. 

Similar to busy/idle models, the channel used in this paper can be in one of two states. 

However, the idea of opportunistic access is disregarded in both of these papers. See 

[29], [30] for an analysis of a system wherein SUs harvest Rf energy from PU signals 

and then use this power to generate optimal SU channel access policies based on a 

mixture of Markov decision processes with some of the states hidden from view. The 

incoming flow is presumed to follow a Bernoulli distribution. The SUs in the slotted 

system considered in [31] is in charge of energy harvesting, spectrum detection, and 

transmission, one after the other. Energy detection is the interactive basis of spectrum 

sensing. Together, the optimal sensing time, fusion rule, or sensing threshold are what 

makes the difference when it comes to maximizing SU throughput. RF energy transfer 

is not assumed here. 

Kim and Hwang [32] consider an N SU, M channel cognitive radio network. Packets 

arrive at Pus and SUs according to Bernoulli processes or are queued up for infinite 

amounts of time. When the queues of the Pus are not empty, the Pus will transmit on 

their designated channels. A channel is chosen randomly, imperfect sensing is 

performed, and if the route is accessible, the SUs begin transmitting. While this paper’s 

model is comparable to ours, it does not consider energy collecting, transmission, or 

SU battery life. 

Another article, [33], uses a 2-dimensional constant Markov chain model deriving 

from the premise of decoupled SU queues to examine the SU queue PMF or the packet 

waiting times under the assumption of perfect channel sensing. The same authors, in 

[34], generalize their analysis to multi-interface setups with imperfect sensing. The 

concepts of energy harvesting and consumption are ignored in both works. 

When compared to the prior literature, this work introduces numerous new ideas. To 

start, it presents the first model for a spectrum- and energy-efficient 5G wireless IoT 

network by proposing the reuse of a portion of the cellular spectrum and the collection 

of both ubiquitous cellular RF signals and the injection of RF energy to increase energy 

efficiency. Second, a Markov Chain model is used to analyze the resulting trade-offs in 

light of a more realistic scenario than that presented in the prior literature. This 

scenario assumes that the cellular network uses retransmissions, that both networks 

queue incoming packets, that incoming traffic is bursty rather than continuous, and 

that spectrum utilization is imperfect.  
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2.Method  

PROPOSED MODEL OF THE SYSTEM 

Figure 1 depicts the proposed topology for 5G cellular IoT networks, within which the 

IoT networks coexist with the harvesting or transmitting IoT network. Technology for 

cellular networks is similar to orthogonal frequency division multiplexings (OFDM). 

Without considering the IoT network, the mobile phone base station distributes users 

and prioritizes traffic over the available bandwidth in this sub-band at each TTI. We 

can extrapolate that this means a TTI will last for T s. A typical TTI in an LTE network 

would be one millisecond or one subframe time. A fluctuating TTI ratio is predicted 

for 5G NX [17]. To avoid interference with cellular modems, the proposed IoT network 

works in time slots that are in sync also with the TTI design of the mobile network. 

 

 
 

Fig. 1. Conceptualized energy and frequency-sharing 

 

A cluster head (CLH) or Ns sensor node makes up an Internet of Things network (SNs). 

The CLH is highly effective and wired to a steady supply of power. A real-world IoT 

solution may have multiple clusters within each cluster head. In this study, we 

concentrate on one such subset. When an IoT network first goes live, the CLH syncs 

up with the TTI design of the wireless network by listening. For the IoT to function, 

the CLH must identify the windowed cellular sub-band spectrum and coordinate the 

transmission of sensor nodes to coincide with these windows to gather their sensor 

data and provide wireless power and data to the nodes. It is expected that the CLH 

uses a wired connection or a different band, such as 802.11, to send the data collected 

to an application database. 

Sensor networks are less potent than others, but there are many of them. They are 

powered by small batteries and have strict power limits. These nodes are responsible 

for data collection and storage of sensory information. If they have the information 

and the power to transmit it, they will transmit for the entire slot period when the 



 

American Journal of Interdisciplinary Research and Development 

ISSN Online: 2771-8948 

Website: www.ajird.journalspark.org 

Volume 08, Sep., 2022 

28 | P a g e  
 

 

cluster head schedules it. In either case, they resort to energy harvesting, which can 

happen either via a broadcast from the cell site or UEs. 

 
 

Fig 2: Structure of LOT networks 

 

The cellular band sub-band for Internet of Things data transmission is also used for 

the RF energy transfer. The CLH chooses whether this empty sub-band will be used 

for power or data transmission. The OFDM-like signals discussed above, for instance, 

might also be utilized to transport RF energy. Because of this, SNs can gather either 

signal with the same antenna and electronics. If this assumption turns out to be false 

in the real world, Internet of Things devices may be built with separate cellular signals 

and RF transmission collecting circuitry. Both harvesting strategies relied on a 

capacitor near the sensor nodes' receiving antenna to store the generated electrons 

[15]. 

Figure 2 depicts the slot architecture of the wireless IoT network. The CLH performs 

a channel sense for cellular communication for Ts seconds at the start of each slot. This 

research does not attempt to predict how long Ts will take. It depends on various 

variables beyond our control, including signal-to-noise ratio (SNR), sensing technique 

employed, computational resources available in the CLH, etc. Based on this, we 

estimate that Ts is less than 1 TTI. For the paper’s proposed cellular IoT and 5G 

coexistence to work, spectrum sensing must evolve to accommodate the longer slot 

lengths of 5G networks.  

If the CLH determines that the channel is in use, it will do nothing until the slot time 

expires. See Fig. 2a for visual evidence.  Whenever an SN is planned, it is planned 

uniformly at random; if it is decided to schedule an SN, then the likelihood that any 

given SN will be scheduled is N1s. To maintain the unidirectional nature of the 

coordination communications between the CLH and SNs. 

At a time coordinated to be Tc, the schedule decision is sent to the SN. CLH waits for 

the scheduled SN’s transmission during the utilization duration Tu 14 T Ts Tc. When 

an SN has data or enough energy to transmit, it listens for a scheduling message and 

sends it. Without any other means of obtaining energy, an SN will resort to harvesting. 

The harvesting of an unscheduled SN, and perhaps a scheduled SN without sufficient 

data or energy to perform RF transmission, is depicted in Figures 2a and 2b. This 

occurs even though the CLH is not actively transmitting. This could happen if the CLH 

either successfully detects the cellular signal or fails to do so and instead plans to send 
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out another SN. In the above-described channel access paradigm, the coordinating 

messages are assumed to flow solely in one way, from CLH to SNs. The limited power 

from the SNS made this decision necessary, as it is impossible to anticipate all SN units 

to communicate routinely. Our work in Section 6 demonstrates that increasing the 

number of SNs used effectively addresses this deficiency. 

When a cellular packet is lost in transit, the hybrid ARQ technique utilized by modern 

wireless networks causes it to be reissued up to N+1 times. However, the IoT network 

as a whole can handle packet loss without affecting the functionality of the application. 

To create a temperature, humidity, etc., map, a climate monitoring application, for 

example, typically interpolates data from numerous sensors. It is common practice to 

build redundancy and tolerance for data gaps in such procedures. Additions to the SNs' 

functionality, such as ARQ, would raise their overall complexity and power 

consumption. As a result, SNs only employ forward error correction and do not 

retransmit lost packets. 

 

3.CELLULAR Or IoT TRAFFIC MARKOV CHAIN MODELING 

The above model suggests a trade-off between transmission time and harvesting time: 

allocating more excellent harvesting time results in more energy harvested but fewer 

spectrum possibilities for transmissions. It’s possible that there won’t be enough juice 

to go around if much time is spent on broadcasts. This research aims, in part, to 

evaluate this trade-off. Markov chains, which describe the cellular above or IoT traffic 

models, are used for the analysis. We make the following presumptions to begin 

building our models. 

It is assumed that the channel sensing is not flawless. Missed detections occur with 

probability pMD when the CLH wrongly determines that the cellular subchannel is 

empty. Similarly, a false alarm occurs when the CLH erroneously determines that the 

sub-channel is busy when it is not. This occurs with a probability pFA for each slot 

individually. The analysis’s pMD and pFA values can be adjusted to accommodate the 

specifics of the CLH’s sensing technique. Using cyclo-stationary sensing rather than 

energy sensing, for instance, would result in lower pMD and pFA [35]. In the most 

extreme case, a CLH capable of decoding scheduled information broadcast by the 

cellular BS would be invaluable. Without changing the scope of our research, let us 

assume that pMD = PFA = 0; in this scenario. However, even in this instance, the 

scheduled SN might not get the scheduling information right a small percentage of the 

time. This amounts to a false report in practice. The CLH may also wish to repurpose 

the channels once [36]. 

When the CLH fails to identify a cellular signal but orders an SN to transmit (since it 

has the necessary data or enough energy to do so), the SN and the cellular packet will 

collide, and both will be lost. There is a loss of the cellular package when the CLH 

carries out a missed detection or subsequent RF energy transfer. The system model for 
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this scenario allows for the retransmission of cellular packets up to N 1. In contrast, 

the sensor nodes employ forward error correction and do not retransmit lost packets. 

In this work, we adopt the on-off process commonly employed in literature for 

modeling bursty traffic [37, 38, 39] as the source of the aggregate wireless incoming 

packet traffic. If there wasn’t a cellular packet in this slot, then within the next slot is 

the most likely time for a burst’s leading packet to arrive. 

If a packet has been received in this slot, then there is a b% chance that there won’t be 

any further packets arriving in the next slot. Suppose it arrives during the transmission 

of an existing packet. If there is already too much traffic in the queue, the new packet 

will be discarded. Once a packet has been successfully sent, or the maximum number 

of attempts has been achieved, the next packet in the queue will be sent during the 

next transmission slot. Note that we assume a unified queue and incoming traffic for 

the downlink and downlink, as a base station plans wireless transmissions. An 

alternative method of characterizing the spikey incoming traffic is to use a semi-

Markov model. Still, we follow the prior research and utilize an on-off Markov chain 

instead. Our approach, in contrast to the simple on/off model, accounts for 

retransmissions and queueing of incoming packets, which results in more realistic 

transmitted traffic. 

Data packets arriving at an SN are modeled in an on-off fashion, just as cellular traffic, 

with a probability of as for packets arriving at the front of the queue and a probability 

of bs for the conclusion of a burst. It is also expected that each SN uses a queue with a 

maximum size of S items. As was previously indicated, collisions are not handled by 

resending packets from the SNs because it is presumed that they use forward error 

correction. 

If the CLH detects an empty channel and chooses to transmit RF energy, all SNs will 

harvest RF energy during that slot. In the event of a failed detection, RF harvesting 

continues regardless. There is interference between the cellphone signal and the RF 

energy signal. 

All energy definitions below are about the amount of energy harvested from the 

surrounding environment in a single storage slot. It is assumed that each SN collects 

L energy units during the time slot devoted to RF transmission. This is the same as 

supposing that the amount of energy collected equals L times the amount of energy 

harvested from the surrounding environment. If an SN has data to communicate, is on 

the transmission schedule, and has enough energy, it will send a packet. Let’s say, for 

the sake of argument, that the SN expands K energy units. If an SN is not planned to 

transmit over radio frequency (RF) or if it lacks the necessary energy or data to send, 

it will resort to ambient harvesting. One unit of energy can be harvested from the 

ambient environment if the wireless connection is transmitting simultaneously. Keep 

in mind that even if an SN gets slated for transmission, other SN may still undertake 

ambient harvesting if this occurred after the CLH did not initially detect the SN. Let’s 
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assume, for the sake of argument, that an SN has a battery system capable of a B unit. 

Assume K, L, or B are all relatively prime. If not all natural frequencies are 

fundamental to ambient collecting energy, a lower quantization level can be defined 

without compromising generality. 

Furthermore, we define multiple harvested energy levels to account for the difference 

in harvested energy levels caused by varying signal intensity. In the case of RF energy 

transmission, for instance, we can suppose that an SN will collect energy proportional 

to one of L1, L2,…, Lh units, with corresponding probabilities. Our Markov Chain 

simulations below will have additional paths thanks to them. We simplify matters by 

assuming a constant amount of gathered energy across all operations. 

 

4.Decoupling Presumption 

Sharing resources like a limited queue, packet retransmission, or RF energy transfer 

and harvesting from cellular traffic profoundly impact the behaviors of wireless or IoT 

networks. In the event of collisions brought on by the IoT network's failed detections 

and subsequent RF or data broadcasts, the wireless connection may resort to 

retransmissions or queue up its incoming data. The availability of specific ambient 

harvesting and spectrum possibilities for the IoT network is, in turn, dependent on the 

transmission activities of the cellular network. Due to their dependence, parameters 

such as the repetition status or separate assault charges of the data connection and 

each sensor node, as well as the queue depth and packet entrance processing condition 

of the wireless network, must be represented by a combined Markov chain. The size of 

the resultant state space is O(Ns2)MNBS(s), which may be too massive for efficient 

numerical analysis. 

We solved this issue by decomposing the joint Markov chain into two independent 

chains, one each for the cellular network as well as the SNS. Because of this, instead of 

evaluating a single massive chain with O'Ns2MNBS' states, we have to analyze two 

chains, one for the mobile network and one for the Ns identical SN networks. In what 

follows, I will go into greater depth on these chains or the analysis performed. The 

underlying assumptions of decoupling are described in more detail below. 

In the pioneering work of Bianchi [40], the decoupling assumption is first used to 

analyze the performance of an 802.11 network with a single cell. An essential 

(decoupling) premise of this approach is that "the packet collisions risk that all nodes 

experience is constant and thus the various back-off processes are independent." If we 

assume that the collision probability is known, we can then calculate the attempt 

chance for each node, which may then be used to estimate the collision probability. 

The resulting fixed point equation (FPE) calculates the unknowns in the collision and 

attempt probability. 

Several subsequent articles on the performance monitoring of wireless networks have 

made use of the decoupling assumption as well as the ensuing FPE approach, such as 
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[38], [41], and [42]. This has led to an examination of the reasonableness of the 

assumption in question. Because of this, it has been demonstrated [43]. The reliability 

of the decoupling assumption is translated into ODE stability as the equilibrium 

position of this ODE agrees with the equations of Bianchi's FPE. Although it was 

previously thought that the originality of the FPE solutions implied the validity of the 

decoupling assumption [44], subsequent work by Cho et al. Along with this, they have 

introduced a criterion they call “Mild Intensity (MINT),” which they claim implies the 

ODE’s stability. If there are N nodes in the network, then the chance that any given 

node will attempt stage k of the back-off process will grow as qk=N, where qk is 

permanent to Qk = 1, and N is the number of nodes. The condition is MINT. By 

calculating a fractional-order perturbation equation, we can calculate the steady-state 

probability distribution functions (PMFs) of the detached Markov chains using this 

hypothesis (FPE). 

 

5.Discussion  

The arithmetic characterizes the channel utilization rates of cellular and IoT networks 

mean values of the ratio of positions with get-through transmissions to the total 

number of slots over time. Time spent on sensing and coordinating by the IoT network 

is factored into this definition. To counter this, one option is to adjust IoT usage levels 

accordingly. Here, we extract the cellular or IoT networks’ channel utilization rates. To 

begin, we will offer an approximate assessment that makes several simplifying 

assumptions to give readers a sense of the fundamental tradeoffs inherent in the 

functioning of a cellular IoT system that allows for the transmission and harvesting of 

RF energy through reactive spectrum sensing. 

 

6.The Use of a Quick Approximation 

For a basic system model, calculating cellular and IoT utilization levels is 

straightforward. Imagine there is an indefinite backlog of SNs in the system. Further, 

let’s presume that the wireless connection attempts to retransmit any packets lost due 

to a collision until they are delivered successfully. This is the same as supposing that 

there is limitless demand on the cellular network’s queue and that there is no limit on 

the number of retransmissions that may be made. Without any accidents, the 

percentage of available bandwidth used by incoming mobile traffic is 

    QC ¼ a  þ b:    (11) 

Assuming the SNs are eternally behind and have plenty of transmission power, a 

collision will occur every time the CLH makes a missed detection. Given the probability 

of collisions, the share of the channel used by the wireless network should be 

equivalent to 

    One n    a    1 

    CC ¼ QC Xn¼0ðpMDÞ ¼  a þ b 1  pMD ;    (12) 
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Given that collisions always necessitate retransmissions. It follows that the section of 

the stream where collisions occur is proportional to 

    A    MD 

    CX ¼ CC  QC ¼  a þ b 1  pMD :    (13) 

Keep in mind that a portion of CLH RF energy transmission but a portion of collisions 

are attributable to SN transmissions because the CLH executes RF energy transfer 

with frequency 11ppwhen it perceives the channel as empty. When the communication 

modem is down, and the CLH triggers a false warning, the channel is left unusable. 

Then the unused bandwidth of the channel is proportional to 

    CI ¼ ð1  CCÞpFA:    (14) 

When the chain energy transmission channel has a probability of NL and is empty, 

CLH performs RF1 p in addition to the 1 PCX term above. This means that the CLH’s 

overall channel occupancy for RF transfer of energy is equal to 

CRF ¼ ð1  CCÞð1  pFAÞð1  pÞ þð1  PCX :    (15) | channel empty ffl{z    ffl} |collisions 

fl{z ffl} 

As a result, SNs execute ambient harvesting in the energy gathered from RF 

transmission in 1 PCX segment of the channel, which is used by the wireless network 

but does not interfere with the CLH. The energy limitation on the route that SN 

broadcasts may use is calculated as follows: L times the energy received via ambient 

harvesting per unit time, where K is the energy spent on transmission. 

Use ¼ LCRF þ CCK ð1  pÞCX :    (16) 

Yet another constraint is imposed by the quantity of available spectrum. To rephrase, 

if an SN has access to a piece of the channel that has been accurately detected as free 

& scheduled for SN transmission, then it may use only a fraction of N1s of that portion. 

 
 

Fig 3: joint Markov process 

 

Changes from the initial state of the joint Markov process are shown in Figure 3. Under 

these conditions, the wireless network is considered to be sending but not yet at its 
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maximal number of transmissions N, the SN's battery is assumed to be charged 

entirely (L js B K), while there is only one SN (0 ic M; 0 is S). As a brevity measure, x 

is utilized in place of 1 x in the transition probabilities. 

The total amount of the channel a single SN uses for broadcasts equals the smaller of 

these two restrictions. It may be approximated that the utilization level of an IoT 

network is equal to approx 14 NsminUSe; USS; (18), where Ns is the number of SNs, 

and USapprox is the fraction of the channel used by all SNs. 

Simulations showed that this simplified approximation gets closer to reality as Ns! 

increases while SN data gathering becomes more bursty (bs! increases). The results, 

however, show that this is not even close to being a reasonable assumption (Section 

6). The whole model is then analyzed, including the effects of non-infinite queues, 

bursty SN congestion, a wireless network with a limited queue length, a finite total 

number of packet forwarding for colliding packets, and so on. 

 

7.RESULTS 

Here, we compare the outcomes of Monte Carlo simulations with those generated from 

our thorough model of Markov chains for various system characteristics. The default 

values for the experimental system parameters are discussed in Section 2 unless 

otherwise specified. The Numerical Simulations have been run for 1,000,000 

iterations of time. Time is an integral part of the simulations. Both the cellular 

network’s packet arrival process and the SNs’ arrival processes are simulated, making 

the total number of simulated packet arrival processes Ns 1. Whether the cellular 

network's queue is full or empty, if a packet comes within an available time slot, the 

network will continue to send the packet. If the packet is lost due to interference from 

an SN transmission, it will be sent again in the following slot. Each packet receives up 

to N possible tries at transmission. During communications, packets that arrive are 

queued up. If there are too many packets in the queue, they will be lost. 

Initial SN battery capacities are considered to be independent and identically 

distributed over a range of 120; B for each run. An SN will queue up any incoming 

packets until it is time and energy-efficient to transmit them. If a packet is lost due to 

a collision, the SNs won’t resend it. When the queues for incoming data are complete, 

the packets are ignored. An alternative explanation for what happens whenever the SN 

stack is complete is that the eldest packet in the queue is discarded to make place for 

a new one, but this may not be the case depending on the type of IoT application being 

used. The outcomes that follow are unaffected by this. As discussed in Section 3, the 

CLH and SNs are responsible for sensing, scheduling, transferring RF energy, 

harvesting energy, and transmitting data. The usage rates of cellular networks and the 

Internet of Things are determined by dividing the number of positions in which 

transmissions were victorious by the overall number of modules available for that run. 

The numbers represent the average usage over 25 separate Monte-Carlo simulations. 
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The aggregate SN utilization rate is presented for the IoT network. Each simulated 

usage level has standard deviations substantially less than their respective means. In 

the results shown below, we show that, as indicated in Section 4.1, for high numbers 

of sensor nodes and tiny missed detection probability, the Markov chain analyses 

strongly resemble the Monte-Carlo simulations. 

 
Figure 4: loT network utilization levels 

 

As a first step, we analyze how the probability of SN scheduling, denoted by the symbol 

p, affects the overall utilization of the Internet of Things (IoT). This is depicted in Fig. 

4 for networks with 1, 50, and 500 sensor nodes. Since the proportion of the channel 



 

American Journal of Interdisciplinary Research and Development 

ISSN Online: 2771-8948 

Website: www.ajird.journalspark.org 

Volume 08, Sep., 2022 

36 | P a g e  
 

 

not filled by the wireless network is mainly utilized to transfer the energy for these 

probability values, the effectiveness of the IoT systems is limited. On the other hand, 

if p > p, the available power in the sensor nodes limits how much the IoT can be used. 

Energy transfer is becoming less common at higher p, leading to lower SN utilizations. 

Since the sensors are scheduled less, the power generated from atmospheric 

harvesting is sufficient even if there are a considerable number of detector nodes 

present, say 500, as in Fig. 4c). 

In addition, the figures incorporate the IoT utilization determined by the 

straightforward approximation presented earlier. Utilization of an Internet of Things 

network, as discussed above, typically increases with p at first but is ultimately capped 

by the amount of available spectrum (USS Use in Equation 1). (18). Utilization falls as 

p increases when power is the limiting element (USS > Use). For a set of SN traffic 

patterns, it is clear that the simple approximation dramatically exaggerates the 

amount of time people spend using the Internet of Things. However, as the number of 

sensors grows, the approximation’s accuracy improves. When the amount of sensor 

nodes within a network is low, we see in the figures that the SN routing process 

significantly impacts the IoT usage levels. This is because queue overflows happen less 

frequently with shorter bursts (bigger bs) of SN traffic, resulting in a better utilization 

rate. 

One last thing to mention about Fig. 4 concerns the reliability of the decoupling 

presumption. The most significant discrepancy between the Markov chain analyses 

and the Monte Carlo findings occurs when only one SN is present, even though the 

former closely follows the latter in all graphs. A difference of 50 or 500 SNs is not 

statistically significant. This coincides with the results of the investigation presented 

in Section 4.1.  

Use of the Internet of Things (IoT) networks as a function of scheduling probability p 

for bs two f (0,1,5,99)g is shown in Fig. 6. There are (a) exactly one, (b) exactly fifty, 

and (c) precisely five hundred sensor nodes. The difference between the bs 14 0:99 and 

bs 14 0:5 curves is too tiny to be seen in (c).  

The following plots show the utilization levels for such optimum power transfer 

strategies, and the efficient scheduling probability, p, is derived numerically for each 

data point. 

Using the example of the deployed sensor nodes, we can examine the cellular, IoT, and 

total utilization levels in Fig. 5. Our findings show that the use of the IoT network rises 

in tandem with the number of connected devices. Due to the broadcast aspect of energy 

transmission, we may see this rise due to a multi-user gain. When more nodes are 

added to a network, more data is gathered from the surrounding environment and 

transmitted. While a rise in the network’s nodes hurts any particular sensor node’s 

scheduling probability and hence reduces that node’s utilization, overall IoT network 
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utilization rises. An increase in the amount of energy collected through broadcasting, 

if it were 

 
Figure 5: Cellular loT 

 

Figure 5 illustrates the proportion of sensor nodes actively used for cellular, IoT, or 

full use. The outcomes of the Monte-Carlo calculations of cellular and IoT 

consumption are represented by blue diamonds or red triangles, respectively. When 

an opportunistic Internet of Things (IoT) network is present, the cell phone usage 

curve crosses over the baseline usage curve. Without it, the number of sensors in the 

Internet of Things would have stayed the same. 

Due to retransmissions, the utilization curve for wireless connections in an impulsive 

IoT network is similar to the connections in the lack of IoT networking activity. The 

results reveal that as the failed detection probability rises and the maximum number 

of packet forwarding drops, the impact of the IoT network’s existence on cellular 

network use grows. Also, with a 500 sensor network, the results show that the IoT 

system can achieve a cumulative utilization level of over 40% and a combined cellular 

but IoT channel utilization of over 90%. This demonstrates that such a procedure is 

possible and suitable in spectrally efficient or environmentally friendly IoT networks, 

including places. 

We then focus on the impact that rising demand for SN traffic has on cellular or IoT 

usage rates by considering an IoT network that has a single SN. Fig. 6 depicts this idea 

visually. For a particular usage and pattern of cellular traffic (here, the wireless load is 

50% with a 14 b 14 0:5), we find that there can be a maximum potential IoT utilization 

level. To meet the growing demand for SN transportation, p must drop. 
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Figure 6: loT network SN traffic parameter 

 

Figure 6 shows the percentages of available capacity used by cell phones, Internet of 

Things devices, and the whole network. In this case, we have Ns 14 1 SN, b 14 0:5, a 14 

0:5, and bs 14 0:99. Each point’s p is optimized numerically. 

Figure 7 depicts the relationship between Ns, as, and bs, and the cellular, IoT, & total 

usage rates of the cell membrane traffic parameter a. In this method, p is optimized 

numerically at each location. The outcomes of the Monte-Carlo calculations of cellular 

and IoT consumption are represented by blue diamonds or red triangles, respectively. 

It’s important to remember that the two curves depicting cell use are too similar in all 

plots. They improved SN transmission power via energy transfer. However, the 

available spectrum is confined by the increased cellular traffic and the bare minimum 

spectrum for transfer of energy by CLH, over which the SN utilization level cannot be 

satisfied. This demonstrates the impracticality of high individual traffic volumes for 

SNs using RF energy harvesting or transfer, further substantiating the suitability of 

the system provided here for an IoT operating with very low or aperiodic single traffic 

loads. 

We then look into cellular and IoT use as cellular traffic loads up. Fig. 6 depicts this 

idea visually. The accessible spectrum for the Internet of Things (IoT) network 

decreases as cellular traffic volumes rise. Since the usage of a single sensor node is 

constrained by limited available energy, the increase in the cellular traffic on the IoT 

utilization is insignificant when there is a detector node in the IoT networks (Figs. 7a 

and 7b). Sensor node traffic demand is as=as bs 14 1% in both Figs. 7a or 7b; however, 

the actual with as bs virtues in Fig. 7a portrays burstier traffic than those in Fig. 7b. 

Nevertheless, when there are various sensor networks in the Internet of Things 

network, the results change. We find that an increase in cellular traffic load has a 

detrimental effect on overall IoT utilization.  

Finally, we look into how sensor performance affects utilization rates. Figure 8 shows 

a scatter plot of the percentage of time that a cellular or IoT network is in use versus 

the probability of delayed detection pMD for a range of values for the maximum 

number of cellular transmissions allowed, N. Since any decision boundary that yields 
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a pMD > 0:5 can be inverted to get a pMD 0:5 without losing applicability, pMD is 

swept among 0 and 0.5. The black horizontal dashed line in the illustration, which can 

be seen toward the right, depicts the utilization level of the cellular network in the 

absence of any IoT operations. 

 
Figure 7: Cellular, loT, and total utilization levels 

 

Even when the IoT network reaches around 40% utilization, the effect of IoT 

operations on the wireless network is negligible for low BMD or high N. The cellular 

network’s retransmissions allow the vast majority of packets to be sent. The effect of 

the IoT networks on cellular consumption, however, becomes more evident as pMD 

rises and N falls. Since it is believed that packets that collide in both networks would 

be lost, IoT utilization decreases as pMD grows. However, for bigger pMD, IoT 

utilization rises with lower N, as the IoT connection makes better use of the available 

spectrum. 

It has also been found that as pMD increases, the difference between the Markov Chain 

model’s prediction of cellular network utilization levels and Monte-Carlo simulations 

grows. This is consistent with what was said in Section 4; the decoupling assumption 

begins to break down as the collision probability rises. However, the Markov Chain 

analysis or probability distributions do not significantly alter until pMD hits 0.3. 
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Figure 8: missed detection probability 

 

Figure 8 displays the relationship between the maximum number of permissible 

cellular communications and the percentage of cells that are in use and the likelihood 

of a missed detection. Here, p is optimized numerically at every single position 

between zero and ninety-nine. The findings from Monte-Carlo simulations are 

remarkably close to the real thing. Therefore, we infer that the dissociation assumption 

is valid for realistic systems based on our simulation environment. 

 

8.CONCLUSION 

Our wireless IoT network is the first to propose collecting and transferring RF energy 

while also sharing its assessment of sample adequacy with other mobile networks. The 

proposed slot-synchronous IoT network consists of two nodes: a cluster head (CLH), 

including a stable power supply that performs imperfect recognition of the cellular 

data, and afterward randomly organizes energy nodes (SNs) for distribution. This 

process of energy transmission from the CLH towards the SNs occurs at random 

intervals during which the CLH is thought to be at rest. The SNs can then use this 

energy to power themselves, or they can continue to collect energy from the cellular 

network’s transmissions. We demonstrate the interconnected nature of the spectrum, 

energy, information transfer, and power transmission in this framework. As the data 

volume increases, IoT network utilization rises even as individual utilizations fall. This 

is because of the distributed nature of the power transmission. We show that the 

proposed Internet of Things network is a viable 5G solution, especially for 

environmentally friendly, energy- or spectrally-efficient sensors operating the system 

with many nodes demanding mild and periodic traffic needs.  
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